JPS63150814A - Manufacture of nb-ti based fine multi-core superconductor - Google Patents

Manufacture of nb-ti based fine multi-core superconductor

Info

Publication number
JPS63150814A
JPS63150814A JP29849586A JP29849586A JPS63150814A JP S63150814 A JPS63150814 A JP S63150814A JP 29849586 A JP29849586 A JP 29849586A JP 29849586 A JP29849586 A JP 29849586A JP S63150814 A JPS63150814 A JP S63150814A
Authority
JP
Japan
Prior art keywords
temperature
heat treatment
superconducting
critical current
current density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29849586A
Other languages
Japanese (ja)
Inventor
雄一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP29849586A priority Critical patent/JPS63150814A/en
Publication of JPS63150814A publication Critical patent/JPS63150814A/en
Pending legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は超電導マグネット等に用いられる隆−Ti系
極細多芯超電導導体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Field of Application> The present invention relates to a method for manufacturing an ultra-fine multicore superconducting conductor of Ryu-Ti system used in superconducting magnets and the like.

〈従来の技術〉 従来、陽−T、系極細多芯超電4導体を製造する場合、
臨界電流密度を高くするために熱間押出温度を約500
℃以下のできるだけ低い温度で行ない、芯線断線や臨界
電流密度を低下させる原因となる(a  T、化合物の
生成を抑え、300℃〜500℃の温度で0.5〜10
0時間の熱処理と断面減少率10%以上の冷間加工を1
〜数回繰返し、臨界電流密度の向上を行なっていた。
<Conventional technology> Conventionally, when manufacturing positive-T, ultrafine multicore superconductor 4 conductors,
In order to increase the critical current density, the hot extrusion temperature was adjusted to about 500℃.
The temperature should be as low as possible (below 300°C to 500°C, to prevent the core wire from breaking or reducing the critical current density).
Heat treatment for 0 hours and cold working with a cross-section reduction rate of 10% or more
The critical current density was improved several times.

〈発明が解決しようとする問題点〉 隆−−系合金の磁束のビン止め中心となるα−15粒子
が最適析出するような条件の熱処理を行なうと基材の銅
とNb  Ti中のTiが反応し、QL−Ti化合物を
生成する。
<Problems to be Solved by the Invention> When heat treatment is performed under conditions such that α-15 particles, which are the center of magnetic flux binding in a ridge-based alloy, are optimally precipitated, the Ti in the base material copper and Nb react to produce a QL-Ti compound.

CIL −Ti化合物は硬くて脆く時効後の冷間加工時
にNo− Ti芯線の断線を起こり易くするうえ、有効
なI’4  ”r、l!li面積を減少するため臨界電
流値を低下させる原因となる。そのため臨界電流密度を
向上させるには熱間押出時にできる限り、熱履歴を少な
くして化合物の生成を押さえ、その後の時効熱処理と冷
間加工の繰返しを行なう必要があった。
The CIL-Ti compound is hard and brittle, which makes the No-Ti core wire more likely to break during cold working after aging, and also reduces the effective I'4''r,l!li area, which causes a decrease in the critical current value. Therefore, in order to improve the critical current density, it was necessary to minimize the thermal history during hot extrusion to suppress the formation of compounds, and then repeat the aging heat treatment and cold working.

しかしこの方法では1回の時効熱処理では大した臨界電
流密度の向上が望めず、2回以上の時効熱処理が必要で
あった。また臨界電流密度を最適化するためには高磁界
はど最終時効からの断面減少率を大きくする必要があり
、時効時の超電導線の線径が大きくなり、大きな熱処理
炉が必要となったり、取扱いが困難になったりしていた
However, with this method, a significant improvement in critical current density cannot be expected with one aging heat treatment, and two or more aging heat treatments are required. In addition, in order to optimize the critical current density, it is necessary to increase the area reduction rate after final aging using a high magnetic field, which increases the wire diameter of the superconducting wire during aging and requires a large heat treatment furnace. It became difficult to handle.

〈問題点を解決するための手段〉 この発明は上記の点に鑑みて検討の結果、得られたもの
で、m −T、系合金からなる芯線の複数本を銅基材中
に埋め込んだ複合超電導ビレットを600℃以上700
℃以下の温度で0.2〜30時間加熱した後、540℃
以上600℃以下の温度で熱間押出加工し、断面減少率
80%以上の冷間加工を加え、さらに時効熱処理した後
、断面減少率30%以上の冷間加工を加えて目的とする
寸法の多芯超電導導体を得ることを特徴とするものであ
る。
<Means for solving the problems> This invention was obtained as a result of studies in view of the above points, and is a composite material in which a plurality of core wires made of m-T alloy are embedded in a copper base material. Superconducting billet heated to 600°C or higher 700°C
After heating at a temperature below ℃ for 0.2 to 30 hours, 540℃
After hot extrusion processing at a temperature of 600℃ or less, cold working with a reduction in area of 80% or more, aging heat treatment, and cold working with a reduction in area of 30% or more, the desired dimensions are obtained. This method is characterized by obtaining a multicore superconducting conductor.

〈作用〉 この発明において、掻−下、系合金からなる芯線の複数
本を銅基材中に埋め込んだ複合超電導ビレットを600
℃以上700℃以下の温度で0.2〜30時間加熱する
のは、所定の温度に大単重のビレット全体を均一な温度
分布にするためであり、その温度は充分なα−T、粒子
を析出させるのに最適な温度で、それ以下では析出が不
完全になり、QL −Ti化合物を生成させるだけであ
り、逆にそれ以上ではα−T1粒子が租大化するうえ、
−一Ti化合物が許容範囲を越えるからである。また、
熱間押出しを540℃以上600℃以下で行なうのは押
出時に受ける加工発熱による温度上昇で700℃以上に
なることを防ぐためである。
<Function> In the present invention, a composite superconducting billet in which a plurality of core wires made of a base alloy are embedded in a copper base material is made of 600
The reason for heating for 0.2 to 30 hours at a temperature of ℃ to 700℃ is to uniformly distribute the temperature of the entire large unit weight billet to a predetermined temperature. This is the optimum temperature to precipitate. Below this temperature, the precipitation will be incomplete and only QL-Ti compounds will be produced. On the other hand, above this temperature, the α-T1 particles will become large and
-Ti compound exceeds the permissible range. Also,
The reason why the hot extrusion is carried out at a temperature of 540° C. or higher and 600° C. or lower is to prevent the temperature from rising to 700° C. or higher due to heat generated during extrusion.

この発明では従来の多段熱処理の1段目の熱処理による
効果を熱間押出時に与えることを特徴とするものであり
、これによってその後の加工度を充分にとれるうえ、従
来より少ない熱処理で同様の結果を得ることができる。
This invention is characterized in that the effect of the first stage heat treatment of conventional multi-stage heat treatment is imparted during hot extrusion, which allows for a sufficient degree of subsequent processing and achieves similar results with less heat treatment than before. can be obtained.

特に熱処理後の冷間加工度による臨界電流密度の向上は
、従来の1段時効では殆んど見込めなかったものが、こ
の発明では従来の多段時効よりも小さな断面減少率で臨
界電流密度が向上するため熱処理時の線径を小さくする
ことができるのである。
In particular, improvement in critical current density due to the degree of cold working after heat treatment could hardly be expected with conventional single-stage aging, but with this invention, critical current density is improved with a smaller area reduction rate than with conventional multi-stage aging. Therefore, the wire diameter during heat treatment can be reduced.

〈実施例〉 以下、この発明を実施例により詳細に説明する。<Example> Hereinafter, this invention will be explained in detail with reference to Examples.

下記第1表に示す条件で押出、熱処理した隆−Ti 4
jt 1B多芯超電導導体について、その加工度と臨界
電流密度との関係を調べたところ添付図面に示す結果が
得られた。
Ryu-Ti 4 extruded and heat treated under the conditions shown in Table 1 below
When the relationship between the processing degree and the critical current density of the jt 1B multicore superconductor was investigated, the results shown in the attached drawings were obtained.

第  1  表  押出、熱処理条件 この結果から、従来の方法では1段時効では加工により
殆んど臨界電流密度の変化がないが、この発明による1
段時効では小さな断面減少率の加工で、従来の2段時効
におけると同程度の臨界電流密度の上昇が認められた。
Table 1 Extrusion and heat treatment conditions From these results, it can be seen that in the conventional method, there is almost no change in the critical current density due to processing in one-stage aging, but in the case of the present invention,
In stage aging, the same degree of increase in critical current density as in conventional two-stage aging was observed when the area reduction rate was small.

〈発明の効果〉 以上説明したように、この発明の方法によれば従来より
少ない熱処理で臨界電流密度の向上が見込めるうえに、
熱処理時の線径を小さくすることができ、取扱いが容易
になるという利点と、それを逆に利用して充分加工度の
とれない寸法の超電導線の製造に効果的であることが認
められた。
<Effects of the Invention> As explained above, according to the method of the present invention, an improvement in critical current density can be expected with less heat treatment than before, and
It has been recognized that the wire diameter during heat treatment can be reduced, making it easier to handle, and that it can be used to effectively manufacture superconducting wires with dimensions that cannot be processed sufficiently. .

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明の方法と従来方法とで青られた超電4導
体の磁界6テスラにおける臨界電流密度の加工度依存性
を示す図表である。
The drawing is a chart showing the working degree dependence of the critical current density in a magnetic field of 6 tesla in a superconducting four-conductor obtained by the method of the present invention and the conventional method.

Claims (3)

【特許請求の範囲】[Claims] (1)No−Ti系合金からなる芯線の複数本を銅基材
中に埋め込んだ複合超電導ビレットを熱間押出加工した
後、断面減少率80%以上の冷間加工を加え、さらに1
回以上の時効熱処理を施した後、断面減少率30%以上
の冷間加工を加えることを特徴とするNo−Ti系極細
多芯超電導導体の製造方法。
(1) After hot extruding a composite superconducting billet in which multiple core wires made of No-Ti alloy are embedded in a copper base material, cold working with a reduction in area of 80% or more is performed, and then
A method for manufacturing a No-Ti-based ultrafine multifilamentary superconducting conductor, which comprises performing aging heat treatment at least once and then cold working with a reduction in area of 30% or more.
(2)複合超電導ビレットを600℃以上700℃以下
の温度で0.2〜30時間加熱した後、熱間押出を行な
うことを特徴とする特許請求の範囲第1項記載のNo−
Ti系極細多芯超電導導体の製造方法。
(2) The composite superconducting billet is heated at a temperature of 600°C or more and 700°C or less for 0.2 to 30 hours, and then hot extruded.
A method for producing a Ti-based ultrafine multicore superconducting conductor.
(3)熱間押出加工を540℃以上600℃以下の温度
で行なうことを特徴とする特許請求の範囲第1項または
第2項記載のNo−Ti系極細多芯超電導導体の製造方
法。
(3) The method for producing a No-Ti-based ultrafine multifilamentary superconducting conductor according to claim 1 or 2, characterized in that the hot extrusion process is carried out at a temperature of 540°C or higher and 600°C or lower.
JP29849586A 1986-12-15 1986-12-15 Manufacture of nb-ti based fine multi-core superconductor Pending JPS63150814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29849586A JPS63150814A (en) 1986-12-15 1986-12-15 Manufacture of nb-ti based fine multi-core superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29849586A JPS63150814A (en) 1986-12-15 1986-12-15 Manufacture of nb-ti based fine multi-core superconductor

Publications (1)

Publication Number Publication Date
JPS63150814A true JPS63150814A (en) 1988-06-23

Family

ID=17860449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29849586A Pending JPS63150814A (en) 1986-12-15 1986-12-15 Manufacture of nb-ti based fine multi-core superconductor

Country Status (1)

Country Link
JP (1) JPS63150814A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058701U (en) * 1991-07-23 1993-02-05 アルプス電気株式会社 Transformer wiring mechanism for rotating head unit
CN111715719A (en) * 2020-07-01 2020-09-29 哈尔滨理工大学 Extrusion forming device and method for heterogeneous light metal splice plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058701U (en) * 1991-07-23 1993-02-05 アルプス電気株式会社 Transformer wiring mechanism for rotating head unit
CN111715719A (en) * 2020-07-01 2020-09-29 哈尔滨理工大学 Extrusion forming device and method for heterogeneous light metal splice plate
CN111715719B (en) * 2020-07-01 2022-02-18 哈尔滨理工大学 Extrusion forming device and method for heterogeneous light metal splice plate

Similar Documents

Publication Publication Date Title
JPS63150814A (en) Manufacture of nb-ti based fine multi-core superconductor
JPS60199522A (en) Manufacture of superconductive alloy wire
JPH0125822B2 (en)
JP2704442B2 (en) Manufacturing method of high purity copper wire composed of coarse crystal grains
JP2566877B2 (en) Method for producing Cu-Ag alloy conductor
JPH0747809B2 (en) Manufacturing method of high-purity copper wire consisting of coarse crystal grains
JPH04176849A (en) High-strength and high-conductivity copper alloy thin wire
JPS6147019A (en) Nbti extrafine multicore superconductive wire
JPH063690B2 (en) Copper-coated ΝbTi superconducting wire
JPH03294461A (en) Production of high-strength and high-conductivity copper alloy thin wire
JPH1186654A (en) Method of texturing htc superconducting conductor, and conductor manufactured by the method
JPH04282513A (en) Manufacture for nb-ti superconductive wire
RU94040892A (en) Methods for producing solid and stranded superconducting wires
JPH0480485B2 (en)
JPS6147020A (en) Method of producing nbti extrafine multicore superconductivewire
JPS60235309A (en) Method of producing nb-ti alloy superconductive wire material coated with enamel insulating coating
JPS59108202A (en) Nb3sn compound superconductive wire and method of producing same
JPS62202065A (en) Manufacture of copper wire for acoustic appliance
JPH042664B2 (en)
JPS62139856A (en) Manufacture of superconductive v-hf-ti wire
JPS61101914A (en) Manufacture of nbti very fine multicore superconducting wire
JPS62256951A (en) Manufacture of nb-ti alloy superconducting wire
JPS6079612A (en) Method of producing nb3sn superconductive wire
JPS5828685B2 (en) Chiyodendo V3GA Senzaino Seizouhou
JPS60250512A (en) Method of producing nb3sn composite superconductive wire