JPH063690B2 - Copper-coated ΝbTi superconducting wire - Google Patents

Copper-coated ΝbTi superconducting wire

Info

Publication number
JPH063690B2
JPH063690B2 JP59026772A JP2677284A JPH063690B2 JP H063690 B2 JPH063690 B2 JP H063690B2 JP 59026772 A JP59026772 A JP 59026772A JP 2677284 A JP2677284 A JP 2677284A JP H063690 B2 JPH063690 B2 JP H063690B2
Authority
JP
Japan
Prior art keywords
nbti
copper
barrier
filament
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59026772A
Other languages
Japanese (ja)
Other versions
JPS60170110A (en
Inventor
一也 大松
正之 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP59026772A priority Critical patent/JPH063690B2/en
Publication of JPS60170110A publication Critical patent/JPS60170110A/en
Priority to JP4006351A priority patent/JPH0664942B2/en
Publication of JPH063690B2 publication Critical patent/JPH063690B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention 【産業上の利用分野】[Industrial applications]

本発明は、銅被覆NbTi超電導線に関し、更に詳しく
は、銅被覆NbTi超電導極細多芯線に関する。
The present invention relates to a copper-coated NbTi superconducting wire, and more specifically to a copper-coated NbTi superconducting ultrafine multifilamentary wire.

【従来の技術および発明が解決しようとする課題】[Prior Art and Problems to be Solved by the Invention]

従来、銅パイプを嵌合した多数のNbTi合金棒を銅ビ
レット中に挿入複合化し、熱間押出しによって縮径し、
次いでダイスを通して伸線加工を行うことによって数千
本のNbTi合金フィラメントを有する超電導極細多芯
線を製造していた。しかし、この超電導極細多芯線に
は、Icの低下および永久電流モードで使用時に電流の
減衰を生じるという欠点がある。熱間押出しのための昇
温および押出し時の加工発熱のためにNbTi合金と銅
の金属間化合物(例えば、TiCu、(TiNb)
Cu)の層が形成され、この層はNbTi合金フィラメ
ントより硬く、伸線加工時においてNbTi合金フィラ
メントにくい込み、NbTi合金フィラメントの多数の
断線を生じさせるからである。
Conventionally, a large number of NbTi alloy rods fitted with copper pipes are inserted into a copper billet to form a composite, and the diameter is reduced by hot extrusion,
Then, a wire was drawn through a die to manufacture a superconducting ultrafine multifilamentary wire having thousands of NbTi alloy filaments. However, this superconducting ultrafine multifilamentary wire has the drawbacks of lowering Ic and causing current decay when used in the persistent current mode. An intermetallic compound of NbTi alloy and copper (for example, Ti 2 Cu, (TiNb) 2 ) due to the temperature rise for hot extrusion and the heat generation of processing during extrusion.
This is because a layer of Cu) is formed, and this layer is harder than the NbTi alloy filament, and is hard to penetrate into the NbTi alloy filament during the wire drawing process, causing a large number of disconnection of the NbTi alloy filament.

【課題を解決するための手段】[Means for Solving the Problems]

本発明者らは、銅被覆NbTi超電導線を鋭意研究の結
果、予めNbTi合金棒表面にNbバリアを被覆すると
NbTi合金フィラメントの断線がほとんどないことを
見い出し、本発明を完成するに至った。 本発明の要旨は、NbTi合金棒の表面にNbのバリア
を被覆し、NbTiフィラメント径が2〜30μm、N
bバリア厚が0.1〜2μmであることを特徴とする銅
被覆NbTi超電導線に存する。 バリア層は、0.1〜2μmである。0.1μmよりも
小さい厚みでは、バリア厚みが不十分であり、押出しや
伸線加工中にバリアが破れたり、NbTi合金と銅の金
属間化合物が形成されたりするので、フィラメント断線
率が大きくなり、例えば、NMR−CT用の断線率の規
格値である2%よりも大きくなる。2μmよりも大きい
厚みでは、バリアの断面積がNbTiフィラメントに対
して大きくなり、臨界電流密度が低下してしまう。 NbTiフィラメント径としては2〜30μmが適す
る。2μmよりも小さい場合、NbTiフィラメント自
体の加工性が低下するため、フィラメント断線率が大き
くなる。30μmを超えると、NbTiフィラメントの
加工度が不十分となり、実用的なNbTi超電導線に適
さない。 また、相対的に3mm程度のNbTi合金棒に200μm
程度のNbバリアを被覆することが工業的な生産性に富
んでおり、バリア厚0.1〜2μmに対応したNbTi
径として2〜30μmとなる。 本発明の超電導極細多芯線の製造手順を以下に詳しく述
べる。 (1)NbTi合金棒の表面にNbのバリアを被覆す
る。この工程が本発明の超電導線の特徴である。この段
階でNbTi合金棒の直径は数mm〜数10mm、Nbバリ
ア厚は数100μm程度である。以後の工程は従来法と
全く同じである。 (2)このNbTi合金棒と銅パイプまたは銅合金(例
えば、Cu−Ni合金)パイプを嵌合し、多数の嵌合物
を銅ビレット中に挿入する。 (3)ビレットを熱間押出しによって縮径し、次いでダ
イスを通して伸線加工する。 通常用いられるNbTi合金棒はTi含量40〜60重
量%であり、この合金は銅と金属間化合物を作り易い。
バリアとして用いられるNbはかなりの高温(例えば7
00℃)においても銅と金属間化合物を作らない。被覆
するバリアの厚さは押出しおよび伸線条件によって異な
るが最終寸法で1μm程度が好ましい。被覆するバリア
はシート状のもの等が用いられる。
As a result of earnest research on the copper-coated NbTi superconducting wire, the present inventors have found that if the surface of the NbTi alloy rod is previously covered with an Nb barrier, the NbTi alloy filament is not broken, and the present invention has been completed. The gist of the present invention is to cover the surface of an NbTi alloy rod with a Nb barrier, and to have an NbTi filament diameter of 2 to 30 μm.
It exists in a copper-coated NbTi superconducting wire having a b barrier thickness of 0.1 to 2 μm. The barrier layer has a thickness of 0.1 to 2 μm. If the thickness is less than 0.1 μm, the barrier thickness is insufficient, the barrier may be broken during extrusion or wire drawing, or an intermetallic compound of NbTi alloy and copper may be formed, resulting in a large filament breakage rate. For example, it becomes larger than 2% which is the standard value of the disconnection rate for NMR-CT. If the thickness is larger than 2 μm, the cross-sectional area of the barrier becomes large with respect to the NbTi filament, and the critical current density is lowered. A suitable NbTi filament diameter is 2 to 30 μm. When it is less than 2 μm, the workability of the NbTi filament itself is lowered, and the filament breakage rate is increased. If it exceeds 30 μm, the workability of the NbTi filament becomes insufficient, which is not suitable for a practical NbTi superconducting wire. In addition, 200 μm for a NbTi alloy rod of about 3 mm
It is industrially highly productive to coat a Nb barrier to a certain extent, and NbTi corresponding to a barrier thickness of 0.1 to 2 μm.
The diameter is 2 to 30 μm. The manufacturing procedure of the superconducting ultrafine multifilamentary wire of the present invention will be described in detail below. (1) The surface of the NbTi alloy rod is coated with a Nb barrier. This step is a feature of the superconducting wire of the present invention. At this stage, the diameter of the NbTi alloy rod is several mm to several tens mm, and the Nb barrier thickness is about several 100 μm. The subsequent steps are exactly the same as the conventional method. (2) This NbTi alloy rod is fitted with a copper pipe or a copper alloy (for example, Cu-Ni alloy) pipe, and a large number of fittings are inserted into a copper billet. (3) The billet is reduced in diameter by hot extrusion and then drawn through a die. The commonly used NbTi alloy rod has a Ti content of 40 to 60% by weight, and this alloy easily forms an intermetallic compound with copper.
Nb used as a barrier has a considerably high temperature (for example, 7
Even at 00 ° C, no intermetallic compound is formed with copper. Although the thickness of the barrier to be coated varies depending on the extrusion and wire drawing conditions, the final dimension is preferably about 1 μm. A sheet-shaped barrier or the like is used as the barrier to be covered.

【発明の効果】【The invention's effect】

本発明の超電導線の特長は、NbTi合金フイラメント
の断線がほとんどなく、超電導特性に優れていることで
ある。熱間押出時の高温の場合にもバリアによってNb
Ti合金と銅の拡散を防止するので、NbTi合金と銅
の金属間化合物の形成がないからである。 本発明の超電導線の別の特長は、製造コストを低減でき
ることである。高温にしても断線の原因となる障害が生
じないので熱間押出し温度を高くでき、そのため熱間押
出しの加工度を大きくできる(大きく減面できる)から
である。 また本発明の他の特長として、高い臨界電流密度があ
る。Nbバリアを適切な厚みで配置することによって、
加工途中の熱処理回路を従来の1〜3回から4〜10回
程度まで増加することができる。熱処理回路数が多い
程、臨界電流密度が高くなる事が知られており、本発明
はこの点でも工業的に有利である。 本発明の超電導線は、永久電流モードで用いられる磁気
浮上用超電導磁石およびNMR−CT用超電導磁石等に
有用である。
A feature of the superconducting wire of the present invention is that the NbTi alloy filament has almost no disconnection and has excellent superconducting properties. Depending on the barrier, Nb can be used even at high temperatures during hot extrusion.
This is because the Ti alloy and copper are prevented from diffusing, so that no intermetallic compound of NbTi alloy and copper is formed. Another feature of the superconducting wire of the present invention is that the manufacturing cost can be reduced. This is because the hot extrusion temperature can be increased because the trouble that causes the wire breakage does not occur even at a high temperature, and thus the workability of the hot extrusion can be increased (the surface can be greatly reduced). Another feature of the present invention is high critical current density. By arranging the Nb barrier with an appropriate thickness,
The number of heat treatment circuits during processing can be increased from the conventional 1 to 3 times to 4 to 10 times. It is known that the greater the number of heat treatment circuits, the higher the critical current density, and the present invention is industrially advantageous in this respect as well. INDUSTRIAL APPLICABILITY The superconducting wire of the present invention is useful for a magnetic levitation superconducting magnet, a NMR-CT superconducting magnet, and the like used in a permanent current mode.

【実施例】【Example】

以下に実施例および比較例を示し、本発明を更に詳しく
説明する。 実施例1 径3mmのNbTi合金棒表面に厚さ200μmのシート
状のNbバリアを被覆し、外径6mmの銅パイプと嵌合
し、500本の嵌合物を外径16cmの銅ビレット中に
挿入して電子ビームでふたをした。温度600℃で30
00トンの熱間押出しによってビレットの径を50mmに
した。次いでダイスによって、NbTi合金フィラメン
ト径15μmに伸線すると、導線径は0.8mm、Nbバ
リア厚は1μmになっていた。伸線途中の導線を50c
mの長さでフィラメント径5〜40μmの範囲で何度か
サンプリングし、被覆された銅を硝酸で溶解してフィラ
メント500本のうちの断線数を計測した。第1図に、
フィラメン径およびバリア厚とフィラメント断線率の関
係を示す。 線材の線径をさらに0.1mmまでの範囲に伸線して、同
様な方法でフィラメン500本のうちの断線数を計測し
た。このときサンプリングした線材のフイラメント径は
1〜15μm、Nbバリア厚は0.05〜1μmであっ
た。この場合のフイラメント断線率の結果を第2図に示
す。 比較例1(従来例) NbTi合金棒表面に何も処理しない以外は実施例1を
くり返し、フイラメント断線数を計測した。第1図およ
び第2図に、フィラメント断線率の結果を示す。 第1図からわかるように、本発明の超電導線は従来の超
電導線と比較して格段に断線率が低く、フィラメント径
が小さいほどその差が著しくなる。フィラメント径が3
0μmよりも大きい場合では、従来のNbバリアのない
ものでも、フィラメント断線率は1%で実用に適すが、
30μm以下の場合では、Nbバリアの効果で、フイラ
メント断線率が低減できることが判る。Nbバリアの厚
みは2μm以下であることが好ましいことがわかる。 第2図に示す様に、フィラメント径が2μmよりも小さ
く、Nbバリア厚が0.1μmよりも小さい場合には、
フィラメント断線率が大幅に増加し、規格値の2%を上
回るため、実用に適さないことがわかる。 実施例2 実施例1の線材について、臨界電流密度を調べた結果を
第1表に示す。 線径が1.6〜0.10mmの範囲ではNbTi当たりの
臨界電流密度は、5T,4.2Kで2000A/mm
上を示しており、実用に適する。線径が1.6mmを超え
るとNbTiの加工度が不十分なため臨界電流密度は低
い。また、線径が0.10mmより細くなると、フィラメ
ント断線が増加することに対応して臨界電流密度が低い
ことがわかる。この結果からもNbTiフィラメント径
およびNbバリア厚の適切な範囲がわかる。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. Example 1 A surface of a NbTi alloy rod having a diameter of 3 mm was coated with a sheet-like Nb barrier having a thickness of 200 μm, fitted with a copper pipe having an outer diameter of 6 mm, and 500 fittings were placed in a copper billet having an outer diameter of 16 cm. It was inserted and covered with an electron beam. 30 at 600 ℃
The billet diameter was brought to 50 mm by hot extrusion of 00 tons. Next, when the wire was drawn with a die to a NbTi alloy filament diameter of 15 μm, the conductor diameter was 0.8 mm and the Nb barrier thickness was 1 μm. 50c for conducting wire during wire drawing
The length of m was sampled several times in the range of the filament diameter of 5 to 40 μm, the coated copper was dissolved with nitric acid, and the number of broken wires in 500 filaments was measured. In Figure 1,
The relationship between filament diameter and barrier thickness and filament burnout rate is shown. The wire diameter of the wire rod was further drawn to a range of up to 0.1 mm, and the number of wire breaks in 500 filaments was measured by the same method. The filament diameter of the wire rod sampled at this time was 1 to 15 μm, and the Nb barrier thickness was 0.05 to 1 μm. The result of the filament disconnection rate in this case is shown in FIG. Comparative Example 1 (Conventional Example) Example 1 was repeated except that the surface of the NbTi alloy rod was not treated, and the number of filament breaks was measured. 1 and 2 show the results of the filament burnout rate. As can be seen from FIG. 1, the superconducting wire of the present invention has a remarkably lower disconnection rate than the conventional superconducting wire, and the difference becomes more significant as the filament diameter becomes smaller. Filament diameter is 3
When it is larger than 0 μm, the filament breakage rate is 1%, which is suitable for practical use even without the conventional Nb barrier.
It can be seen that when the thickness is 30 μm or less, the filament disconnection rate can be reduced by the effect of the Nb barrier. It can be seen that the thickness of the Nb barrier is preferably 2 μm or less. As shown in FIG. 2, when the filament diameter is smaller than 2 μm and the Nb barrier thickness is smaller than 0.1 μm,
It can be seen that it is not suitable for practical use because the filament breakage rate greatly increases and exceeds the standard value of 2%. Example 2 Table 1 shows the results of examining the critical current density of the wire rod of Example 1. In the wire diameter range of 1.6 to 0.10 mm, the critical current density per NbTi is 2000 A / mm 2 or more at 5T and 4.2K, which is suitable for practical use. When the wire diameter exceeds 1.6 mm, the critical current density is low because the workability of NbTi is insufficient. Further, it is understood that when the wire diameter is smaller than 0.10 mm, the critical current density is low corresponding to the increase in filament breakage. From these results, the proper range of the NbTi filament diameter and the Nb barrier thickness can be known.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図は、フィラメント径およびバリア厚
とフィラメント断線率の関係を示すグラフである。 1…実施例1、2…比較例1。
1 and 2 are graphs showing the relationship between the filament diameter and the barrier thickness and the filament breakage rate. 1 ... Example 1, 2 ... Comparative example 1.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】NbTi合金棒の表面にNbのバリアを被
覆し、NbTiフィラメント径が2〜30μm、Nbバ
リア厚が0.1〜2μmであることを特徴とする銅被覆
NbTi超電導線。
1. A copper-coated NbTi superconducting wire characterized in that the surface of an NbTi alloy rod is coated with a Nb barrier, the NbTi filament diameter is 2 to 30 μm, and the Nb barrier thickness is 0.1 to 2 μm.
JP59026772A 1984-02-14 1984-02-14 Copper-coated ΝbTi superconducting wire Expired - Lifetime JPH063690B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59026772A JPH063690B2 (en) 1984-02-14 1984-02-14 Copper-coated ΝbTi superconducting wire
JP4006351A JPH0664942B2 (en) 1984-02-14 1992-01-17 Copper clad NbTi superconducting wire with NbTi barrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59026772A JPH063690B2 (en) 1984-02-14 1984-02-14 Copper-coated ΝbTi superconducting wire

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4006351A Division JPH0664942B2 (en) 1984-02-14 1992-01-17 Copper clad NbTi superconducting wire with NbTi barrier

Publications (2)

Publication Number Publication Date
JPS60170110A JPS60170110A (en) 1985-09-03
JPH063690B2 true JPH063690B2 (en) 1994-01-12

Family

ID=12202584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59026772A Expired - Lifetime JPH063690B2 (en) 1984-02-14 1984-02-14 Copper-coated ΝbTi superconducting wire

Country Status (1)

Country Link
JP (1) JPH063690B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0789453B2 (en) * 1985-03-29 1995-09-27 古河電気工業株式会社 Nb-Ti alloy superconducting wire
JP2547193B2 (en) * 1985-04-05 1996-10-23 古河電気工業株式会社 Nb-Ti alloy superconducting wire
US5226947A (en) * 1992-02-17 1993-07-13 Wisconsin Alumni Research Foundation Niobium-titanium superconductors produced by powder metallurgy having artificial flux pinning centers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4044457A (en) 1976-04-01 1977-08-30 The United States Of America As Represented By The United States Energy Research And Development Administration Method of fabricating composite superconducting wire

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127326A (en) * 1974-08-30 1976-03-06 Minolta Camera Kk

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4044457A (en) 1976-04-01 1977-08-30 The United States Of America As Represented By The United States Energy Research And Development Administration Method of fabricating composite superconducting wire

Also Published As

Publication number Publication date
JPS60170110A (en) 1985-09-03

Similar Documents

Publication Publication Date Title
JPH063690B2 (en) Copper-coated ΝbTi superconducting wire
JPH063691B2 (en) Copper-coated ΝbTi superconducting wire
JP2562435B2 (en) Superfine superconducting wire
JPH0554730A (en) Copper coating nbti superconducting wire having nbti barrier
JPS60170109A (en) Copper coated nbti superconductive lead and method of producing same
JPS60250512A (en) Method of producing nb3sn composite superconductive wire
JPS60170112A (en) Copper coated nbti superconductive lead and method of producing same
JP3059570B2 (en) Superconducting wire and its manufacturing method
Verhoeven et al. The influence of coarsening treatments upon properties of in situ Nb 3 Sn-Cu superconducting wire
JPS61101913A (en) Manufacture of nbti very fine multicore superconducting wire
JP3011986B2 (en) Manufacturing method of alloy superconducting wire
JPS5994307A (en) Method of producing compound superconductive wire
JPH065130A (en) Composite multi-core nbti superconductive wire
JPH05174647A (en) Manufacture of compound superconductive wire
JPS6147018A (en) Nb3 sn-nbti composite superconductive wire
JP2562434B2 (en) Compound superconducting wire
JPS63102115A (en) Manufacture of superconductive alloy wire material
JPH0642335B2 (en) NbTi Extra-fine multi-core superconducting wire manufacturing method
JP2002063816A (en) MANUFACTURING METHOD OF Nb3Al-SYSTEM SUPERCONDUCTING WIRE
JPS61227310A (en) Manufacture of nb3 sn by internal diffusion
JPS63150814A (en) Manufacture of nb-ti based fine multi-core superconductor
JPH02192618A (en) Manufacture of superconductive alloy wire rod
JPS61230209A (en) Nb-ti alloy based super conducting line
JPH063693B2 (en) NbTi Extra-fine multi-core superconducting wire manufacturing method
JPH07282650A (en) Compound superconductor