JPS63216212A - Nb3sn-based superconductive wire and production of it - Google Patents

Nb3sn-based superconductive wire and production of it

Info

Publication number
JPS63216212A
JPS63216212A JP62048218A JP4821887A JPS63216212A JP S63216212 A JPS63216212 A JP S63216212A JP 62048218 A JP62048218 A JP 62048218A JP 4821887 A JP4821887 A JP 4821887A JP S63216212 A JPS63216212 A JP S63216212A
Authority
JP
Japan
Prior art keywords
based metal
metal material
wire
superconducting wire
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62048218A
Other languages
Japanese (ja)
Other versions
JPH0570888B2 (en
Inventor
Toshitada Onishi
大西 利只
Yutaka Tateishi
立石 裕
Yoshiaki Nakabayashi
中林 美明
Kiyoshi Yoshizaki
吉崎 浄
Shoji Miyashita
章志 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Mitsubishi Electric Corp filed Critical Agency of Industrial Science and Technology
Priority to JP62048218A priority Critical patent/JPS63216212A/en
Publication of JPS63216212A publication Critical patent/JPS63216212A/en
Publication of JPH0570888B2 publication Critical patent/JPH0570888B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Wire Processing (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain good critical current characteristics and mechanical characteristics in superconductive wire formed of Nb and Sn-based metal material and Cu-based metal material disposed around it by mixing a certain quantity of Cr in at least either the Cu- or Sn-based metal materials. CONSTITUTION:In superconductive wire obtained by applying a cross sectional contraction work and a heat process to material of Nb-based metal and Sn- based metal with Cu-based metal material disposed around it to be integrated with it, at least either the Cu-based metal material or Sn-based metal material includes 0.1-20wt% Cr. Superconductive wire of such a constitution like this is formed as below, for example. That is, in base material 6 consisting of Cu-0.8 wt%Cr alloy are embedded 90 core wires 3 of Nb, forming a composite multi- core tube including a hollow part 2 at the center. Next an Sn rod is inserted into the hollow part 2 and drawn to be 0.2mm in dia. by cold drawing. Then by heat processing this wire, Nb, Sn compound is produced on the surface of Nb filaments 4, and the base material 6 becomes Cu-Sn-Cr alloy 7 since Sn is scattered.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高磁界を発生する超電導コイルの巻線材として
用いられるNb2Sn系化合物超電導線の製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a Nb2Sn-based compound superconducting wire used as a winding material for a superconducting coil that generates a high magnetic field.

〔従来の技術〕  。[Conventional technology].

最近、核融合、高エネルギー物理、核磁気共鳴装置、物
性研究用などの分野において、高磁界を発生でき、かつ
、交流損失の少ない超電導コイルの製作が進められてい
る。高磁界超電導コイルの巻線材として用いられる代表
的な化合物超電導線はNb2Sn系化合物超電導線であ
る。Nb、 Sn線は。
Recently, in fields such as nuclear fusion, high energy physics, nuclear magnetic resonance devices, and materials research, progress has been made in producing superconducting coils that can generate high magnetic fields and have low AC losses. A typical compound superconducting wire used as a winding material for a high-field superconducting coil is an Nb2Sn-based compound superconducting wire. Nb and Sn lines.

特許公報(%公昭54−24109)に示されるように
As shown in the patent publication (%Koshō 54-24109).

各構成成分であるNb、 Sn、 Cuなどを一体とし
て伸線し、最終寸法で熱処理することによって内部的に
Nb2Snを生成させる。いわゆる複合加工法で製造さ
れている。
Nb2Sn is internally generated by drawing the constituent components Nb, Sn, Cu, etc. as one body and heat-treating the wire to the final size. It is manufactured using a so-called composite processing method.

第3図及び第4図に、従来の代表的な化合物超電導線で
あるNb2Sn線の熱処理前と熱処理後の横断面を示す
。図において、(1)はCu層、(2)はSn層。
FIGS. 3 and 4 show cross sections of an Nb2Sn wire, which is a typical conventional compound superconducting wire, before and after heat treatment. In the figure, (1) is a Cu layer, and (2) is a Sn layer.

(3)はNb層、(4)は超電導線素としてのNb、 
Sn層、(5)はブロンズ層を示している。第3図にお
いて、中央に配置されたSnが、熱処理によってCu母
相中に拡散し、Nbの表面にNb2Snを生成させ、C
u母相をブロンズに変え、第4図に示す構造の線になる
(3) is an Nb layer, (4) is Nb as a superconducting wire element,
The Sn layer and (5) indicate the bronze layer. In Fig. 3, Sn placed in the center is diffused into the Cu matrix by heat treatment, producing Nb2Sn on the surface of Nb, and C
The u matrix is changed to bronze, resulting in the structural lines shown in Figure 4.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

超電導コイルには、磁界の変動に対しても安定な運転が
可能で、高磁界が発生できることが強く要求されている
。そのためには2%に臨界電流密度が十分高いこと、超
電導線の機械的強度が大きいこと、交流損失が少ないこ
とが必要である。
Superconducting coils are strongly required to be able to operate stably even under magnetic field fluctuations and to generate high magnetic fields. For this purpose, it is necessary that the critical current density be sufficiently high at 2%, that the mechanical strength of the superconducting wire be large, and that the AC loss be small.

しかしながら、前述の複合加工法で製作されるNb2S
n系化合物超電導線では、 Nb2Sn生成熱処理後の
ブロンズ母相の機械強度が低いため応力による臨界電流
密度の低下が激しく2また。同じくブロンズ母相の電気
抵抗が低いためフィラメントどうしの電気的結合が起り
、交流損失が大きくなるという欠点があった。
However, Nb2S produced by the above-mentioned composite processing method
In n-based compound superconducting wires, the mechanical strength of the bronze matrix after Nb2Sn formation heat treatment is low, so the critical current density decreases sharply due to stress. Similarly, since the electrical resistance of the bronze matrix is low, electrical coupling between the filaments occurs, resulting in a large alternating current loss.

本発明は、このような問題点を解決するためになされた
もので、臨界電流密度が高く2機械的特性に優れ、交流
損失の少ない化合物超電導線を得ることを目的とする。
The present invention was made to solve these problems, and aims to obtain a compound superconducting wire that has a high critical current density, excellent mechanical properties, and low AC loss.

〔問題を解決するための手段〕[Means to solve the problem]

本発明によるNb2Sn系化合物超電導線の製造方法は
、Nb基金属材とSn基金属材の周辺にCu基金属材を
配置した状態で一体として断面縮小加工して熱処理する
ことによって超電導線を製造する方法において、上記C
u基金属材あるいはSn基金属のうち少なくとも一方を
0.1〜20wt%のCrを含有する金属材とすること
である。
The method for manufacturing a Nb2Sn-based compound superconducting wire according to the present invention is to manufacture a superconducting wire by integrally reducing the cross section of a Nb-based metal material and a Sn-based metal material with a Cu-based metal material disposed around them and subjecting them to heat treatment. In the method, the above C
At least one of the U-based metal material and the Sn-based metal material is a metal material containing 0.1 to 20 wt% Cr.

また2本発明によるNb2Sn系化合物超電導線は。Furthermore, the Nb2Sn-based compound superconducting wire according to the present invention is as follows.

Cu −S n −Cr合金内に複数のNb、 Sn系
化合物超電導線素を配置するものでちる。
A plurality of Nb and Sn-based compound superconducting wire elements are arranged within a Cu-Sn-Cr alloy.

〔作 用〕[For production]

本発明においては、Cu基金属材あるいはSn基金属材
にCrf添加することによって、 Nb2Sn生成熱処
理後のブロンズ母相とNb、 Sn層にCrが含有され
るので、臨界電流密度が改善され9機械的強度が向上し
、かつ、交流損失も少ないNb2Sn系化合物超電導線
を得ることができる。
In the present invention, by adding Crf to the Cu-based metal material or the Sn-based metal material, Cr is contained in the bronze matrix and the Nb and Sn layers after the Nb2Sn formation heat treatment, so the critical current density is improved and It is possible to obtain an Nb2Sn-based compound superconducting wire with improved physical strength and low AC loss.

〔実施例〕〔Example〕

以下2本発明の実施例を図に示し詳細に説明する。第1
図、第2図は本発明の実施例1を示し。
Two embodiments of the present invention will be illustrated in the drawings and explained in detail below. 1st
FIG. 2 shows a first embodiment of the present invention.

この実施例は、まず、母相がCu−0,8wtqbCr
合金(6)で、この母相に90本のNb芯線が埋設され
、中央に中空部を持つ複合多芯チューブを用意した。
In this example, first, the matrix is Cu-0,8wtqbCr
A composite multicore tube was prepared using alloy (6) in which 90 Nb core wires were embedded in the matrix and had a hollow part in the center.

次に、 Sn棒を用意し、これを複合多芯中空部に挿入
し、第1図にその断面を示すような複合棒を作成した。
Next, a Sn rod was prepared and inserted into the composite multicore hollow part to create a composite rod whose cross section is shown in FIG.

この複合棒をすべて冷間引抜加工で直径0.2■まで伸
線した。伸線加工は中間焼鈍の必要もなく安定になされ
た。また、Nbフィラメントの径は約9amであった。
All of these composite rods were drawn to a diameter of 0.2 cm by cold drawing. The wire drawing process was stable without the need for intermediate annealing. Further, the diameter of the Nb filament was about 9 am.

次にこの線ヲ750℃で50時間熱処理することによっ
て、Nbフィラメントの表面にNb2Sn化合物を生成
させた。第2図に熱処理後の線横断面を示す。
Next, this wire was heat-treated at 750° C. for 50 hours to form a Nb2Sn compound on the surface of the Nb filament. FIG. 2 shows a line cross section after heat treatment.

母相はSnの拡散によってCu −Sn −Cr合金(
7)になっていた。
The parent phase forms a Cu-Sn-Cr alloy (
7).

このようにして得られた線について、液体ヘリウム温度
での印加磁界中の臨界電流を測定した。
For the lines thus obtained, the critical current in an applied magnetic field at liquid helium temperature was measured.

これによると、臨界電流は、10Tで50Aと非常に高
く、従来の母相にCuCr合金を使用していない同一構
成、同一寸法の線に比べると約20チ増加していた。
According to this, the critical current was extremely high at 50 A at 10 T, which was an increase of about 20 inches compared to a conventional wire of the same configuration and size that did not use a CuCr alloy for the parent phase.

次に、線に曲げ応力をかけたときの臨界電流を測定し友
。これによると、臨界電流t−10%低下させる曲げ歪
み量は、従来の線の約0.5%に比べ2本発明の実施例
1による線は約0.8%と高く、応力による臨界電流特
性の低下が小さかった。これは。
Next, we measured the critical current when bending stress was applied to the wire. According to this, the amount of bending strain that reduces the critical current t-10% is as high as about 0.8% for the wire according to Example 1 of the present invention, compared to about 0.5% for the conventional wire, and the critical current due to stress The decrease in characteristics was small. this is.

熱処理後のブロンズ母相にCrが合金化されているため
に、母相の機械的強度が増加したためである。
This is because the mechanical strength of the bronze matrix increased because Cr was alloyed with the bronze matrix after the heat treatment.

因みに、微小硬度計で母相の硬度を測定した結果では、
 Crの添加によって硬度は20〜30チ増加していた
Incidentally, the results of measuring the hardness of the matrix using a microhardness meter show that
The addition of Cr increased the hardness by 20 to 30 inches.

また、磁界の変動に対する安定性を知るために。Also, to know the stability against magnetic field fluctuations.

外部磁界をOTから6Tまで1秒で変化させた時の損失
時定数を測定したところ、従来より約り0%小さい値と
なり2本実施例の線が、変動磁界に対して特に安定であ
ることがわかった。これは、磁界の変動があった場合、
従来の線では、第4図に示すように、超電導フィラメン
ト間の母相は比較的電気抵抗の低いブロンズであったが
1本実施例の線では、ブロンズにCrが固溶することに
よって電気抵抗が高くなっているので、結合は起こりに
くくなったと考えられる。このように本発′明の実施例
1による超電導線は磁界の変動の大きい高磁界超電導機
器用の超電導線としても優れていることがわかった。
When the loss time constant was measured when the external magnetic field was changed from OT to 6T in 1 second, the value was approximately 0% smaller than that of the conventional method.2 The line of this example is particularly stable against changing magnetic fields. I understand. This means that if there is a change in the magnetic field,
In the conventional wire, as shown in Fig. 4, the matrix between the superconducting filaments was bronze, which has a relatively low electrical resistance.However, in the wire of this embodiment, the electrical resistance is low due to solid solution of Cr in the bronze. It is thought that bonding is less likely to occur because of the higher Thus, it was found that the superconducting wire according to Example 1 of the present invention is also excellent as a superconducting wire for use in high-field superconducting equipment in which magnetic field fluctuations are large.

次に2本発明の実施例2について説明する。この実施例
は、実施例1と同様の構成で、母相はCu層・ とし2Sn棒の代わりに5n−5wt%合金棒を用いた
Next, a second embodiment of the present invention will be described. This example had the same structure as Example 1, except that the parent phase was a Cu layer and a 5n-5wt% alloy rod was used instead of the 2Sn rod.

伸線加工は容易に行うことができ、最終寸法で熱処理を
行なって、 Nb2Sn超電導線を得た。この場合にも
、実施例1と同様に、臨界電流特性2機械特性の向上、
交流損失の低下の効果があった。これは実施例1と同様
に、 Nb2Sn生成熱処理後の母相はCu−SnCr
の三元合金となっていたためである。
The wire drawing process was easy to perform, and a Nb2Sn superconducting wire was obtained by heat treatment at the final size. In this case as well, as in Example 1, critical current characteristics 2 improve mechanical properties,
This had the effect of reducing AC loss. This is similar to Example 1, and the parent phase after the Nb2Sn generation heat treatment is Cu-SnCr.
This is because it was a ternary alloy of

さらに2本発明の実施例3について説明する。Furthermore, Example 3 of the present invention will be described.

この実施例は、実施例1と同様の構成で、母相が亭 Cu−3wt%合金、 Sn棒の代わシにSn −10
wt % I n合金棒を用いた。伸線加工は容易に行
なうことができ、最終寸法で熱処理を行なって、 Nb
2Sn超電導線を得た。この場合にも実施例1および2
と同様に臨界電流特性2機械特性の向上、交流損失の低
下の効果があったが、前記実施例に比べて2%に臨界電
流特性の向上が著しく、実施例1よりも約20チ改善さ
れた。
This example has the same configuration as Example 1, with the parent phase being a Cu-3wt% alloy and Sn-10 instead of Sn rods.
A wt % In alloy rod was used. Wire drawing can be easily carried out, and heat treatment is performed at the final size to form Nb
A 2Sn superconducting wire was obtained. In this case also Examples 1 and 2
Similarly, critical current characteristics 2 had the effect of improving mechanical characteristics and reducing AC loss, but the critical current characteristics were significantly improved by 2% compared to the previous example, and were improved by about 20 degrees compared to Example 1. Ta.

なお、 Cu基金属層、 Sn基金属層に添加するCr
の量は、0.1%からその効果が見られ、20チ以上に
なると加工も困難になり、臨界電流特性も低下する。
Note that Cr added to the Cu-based metal layer and the Sn-based metal layer
The effect can be seen from the amount of 0.1%, and when the amount exceeds 20 inches, processing becomes difficult and the critical current characteristics also deteriorate.

例えば、 Cr f 0.1wt %から0.3 wt
 %程度まで添加すると、Or添加量の増加にともなっ
て、主に交流損失の低下が著しくなる。0.3〜1(h
vt%程度では。
For example, Cr f 0.1wt% to 0.3wt
%, the AC loss mainly decreases significantly as the amount of Or added increases. 0.3~1(h
At about vt%.

交流損失の低下だけではなく、上記実施例3において述
べ九ように臨界電流特性も改善される。また、  10
vt96以上になると、交流損失はさらに低下するが、
臨界電流特性は劣化してくる。
Not only the AC loss is reduced, but also the critical current characteristics are improved as described in the third embodiment. Also, 10
At vt96 or higher, the AC loss further decreases, but
Critical current characteristics deteriorate.

臨界電流特性を向上させる添加元素としては。As an additive element that improves critical current characteristics.

上記実施例3で述ベアtInのほかに、従来法において
特性改善に有効であることが知られているTi。
In addition to the bare tIn mentioned in Example 3 above, Ti is known to be effective in improving characteristics in conventional methods.

Ga、 Be、 )J、 Mn、 Zn、 Zr、 F
e、 Niなどは本発明の場合にも同様の効果を示した
。また、その添加手段としては、 Sn棒のほかにCu
母相でもよく、添加量としては、0.1wt%から効果
を示し、20wt%以上になると臨界電流特性と伸線加
工性の低下を招いたので、0.1〜20w1%が適当で
ある。
Ga, Be, )J, Mn, Zn, Zr, F
E, Ni, etc. showed similar effects in the case of the present invention. In addition, as addition means, in addition to Sn rod, Cu
The parent phase may also be used, and the addition amount is effective from 0.1 wt%, but if it exceeds 20 wt%, the critical current characteristics and wire drawability deteriorate, so 0.1 to 20 w1% is appropriate.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、従来よりも、
さらに臨界電流特性9機械特性が優れ。
As explained above, according to the present invention, compared to the conventional
Furthermore, critical current characteristics9 mechanical properties are excellent.

交流損失の少ない超電導線が得られるようになったので
、高磁界超電導パルスコイルが可能になシ。
As superconducting wires with low AC loss have become available, high-field superconducting pulse coils are now possible.

核融合、各種電力用機器、高エネルギー物理研究の推進
に役立つ。
Useful for promoting nuclear fusion, various power equipment, and high energy physics research.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は2本発明の実施例1によるNb2S
n線の熱処理前と熱処理後の横断面を示す。 第3図及び第4図は、従来のNb2Sn超電導線の熱処
理前と熱処理後の横断面図である。 図において、(1)はCu層、(4)は超電導線素とじ
て合金層である。 なお9図中同一符号は同一ま九は相当部分を示す。
Figures 1 and 2 show two Nb2S according to Example 1 of the present invention.
Cross sections are shown before and after N-line heat treatment. 3 and 4 are cross-sectional views of a conventional Nb2Sn superconducting wire before and after heat treatment. In the figure, (1) is a Cu layer, and (4) is an alloy layer that is also a superconducting wire element. Note that the same reference numerals in Figure 9 indicate corresponding parts.

Claims (3)

【特許請求の範囲】[Claims] (1)Nb基金属とSn基金属材料の周辺にCu基金属
材を配置した状態で一体として断面縮小加工して熱処理
することによって超電導線を製造する方法において、上
記Cu基金属材あるいはSn基金属材のうち少なくとも
一方がCrを0.1〜20wt%含有する金属材である
ことを特徴とするNb_2Sn系化合物超電導線の製造
方法。
(1) In a method of manufacturing a superconducting wire by integrally processing the Nb-based metal material and the Sn-based metal material with a Cu-based metal material placed around them and subjecting them to cross-sectional reduction processing and heat treatment, the Cu-based metal material or the Sn-based metal material is A method for producing a Nb_2Sn-based compound superconducting wire, characterized in that at least one of the metal materials is a metal material containing 0.1 to 20 wt% Cr.
(2)Cu基金属材あるいはSn基金属材のうち少なく
とも一方に、In、Ti、Ga、Be、Al、Mn、Z
n、Zr、NiあるいはFeのうち少なくと、一種を0
.1〜20wt%を含有する金属材であることを特徴と
する特許請求の範囲第1項記載のNb_2Sn系化合物
超電導線の製造方法。
(2) At least one of Cu-based metal material or Sn-based metal material contains In, Ti, Ga, Be, Al, Mn, Z
At least one of n, Zr, Ni or Fe is 0
.. 2. The method for producing a Nb_2Sn-based compound superconducting wire according to claim 1, wherein the metal material contains 1 to 20 wt%.
(3)Cu−Sn−Cr合金内に複数のNb_2Sn系
化合物超電導線素を配置したことを特徴とするNb_2
Sn系化合物超電導線。
(3) Nb_2 characterized by having a plurality of Nb_2Sn-based compound superconducting wire elements arranged in a Cu-Sn-Cr alloy
Sn-based compound superconducting wire.
JP62048218A 1987-03-03 1987-03-03 Nb3sn-based superconductive wire and production of it Granted JPS63216212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62048218A JPS63216212A (en) 1987-03-03 1987-03-03 Nb3sn-based superconductive wire and production of it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62048218A JPS63216212A (en) 1987-03-03 1987-03-03 Nb3sn-based superconductive wire and production of it

Publications (2)

Publication Number Publication Date
JPS63216212A true JPS63216212A (en) 1988-09-08
JPH0570888B2 JPH0570888B2 (en) 1993-10-06

Family

ID=12797272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62048218A Granted JPS63216212A (en) 1987-03-03 1987-03-03 Nb3sn-based superconductive wire and production of it

Country Status (1)

Country Link
JP (1) JPS63216212A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002364A1 (en) * 1989-08-09 1991-02-21 Tokai University Superconductive wire
EP0618627A1 (en) * 1993-04-02 1994-10-05 Mitsubishi Denki Kabushiki Kaisha Compound superconducting wire and method for manufacturing the same
JP2007165151A (en) * 2005-12-14 2007-06-28 Hitachi Cable Ltd CORE WIRE FOR Nb3Sn SUPERCONDUCTIVE WIRE, Nb3Sn SUPERCONDUCTIVE WIRE, AND METHOD OF MANUFACTURING SAME
JP2007165152A (en) * 2005-12-14 2007-06-28 Hitachi Cable Ltd CORE WIRE FOR Nb3Sn SUPERCONDUCTIVE WIRE, Nb3Sn SUPERCONDUCTIVE WIRE, AND METHOD OF MANUFACTURING SAME
JP2015185211A (en) * 2014-03-20 2015-10-22 国立研究開発法人物質・材料研究機構 METHOD OF PRODUCING Nb3Sn SUPERCONDUCTING WIRE ROD
WO2021024529A1 (en) * 2019-08-07 2021-02-11 国立研究開発法人物質・材料研究機構 PRECURSOR FOR Nb3Sn SUPERCONDUCTIVE WIRE MATERIAL, PRODUCTION METHOD THEREFOR, AND PRODUCTION METHOD FOR Nb3Sn SUPERCONDUCTIVE WIRE MATERIAL USING SAME

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002364A1 (en) * 1989-08-09 1991-02-21 Tokai University Superconductive wire
US5837941A (en) * 1989-08-09 1998-11-17 Tokai University Superconductor wire
EP0618627A1 (en) * 1993-04-02 1994-10-05 Mitsubishi Denki Kabushiki Kaisha Compound superconducting wire and method for manufacturing the same
JP2007165151A (en) * 2005-12-14 2007-06-28 Hitachi Cable Ltd CORE WIRE FOR Nb3Sn SUPERCONDUCTIVE WIRE, Nb3Sn SUPERCONDUCTIVE WIRE, AND METHOD OF MANUFACTURING SAME
JP2007165152A (en) * 2005-12-14 2007-06-28 Hitachi Cable Ltd CORE WIRE FOR Nb3Sn SUPERCONDUCTIVE WIRE, Nb3Sn SUPERCONDUCTIVE WIRE, AND METHOD OF MANUFACTURING SAME
JP4687438B2 (en) * 2005-12-14 2011-05-25 日立電線株式会社 Core wire for Nb3Sn superconducting wire, Nb3Sn superconducting wire, and manufacturing method thereof
JP4742843B2 (en) * 2005-12-14 2011-08-10 日立電線株式会社 Core wire for Nb3Sn superconducting wire, Nb3Sn superconducting wire, and manufacturing method thereof
JP2015185211A (en) * 2014-03-20 2015-10-22 国立研究開発法人物質・材料研究機構 METHOD OF PRODUCING Nb3Sn SUPERCONDUCTING WIRE ROD
WO2021024529A1 (en) * 2019-08-07 2021-02-11 国立研究開発法人物質・材料研究機構 PRECURSOR FOR Nb3Sn SUPERCONDUCTIVE WIRE MATERIAL, PRODUCTION METHOD THEREFOR, AND PRODUCTION METHOD FOR Nb3Sn SUPERCONDUCTIVE WIRE MATERIAL USING SAME
JPWO2021024529A1 (en) * 2019-08-07 2021-12-16 国立研究開発法人物質・材料研究機構 A precursor for Nb3Sn superconducting wire, a method for manufacturing the precursor, and a method for manufacturing Nb3Sn superconducting wire using the precursor.

Also Published As

Publication number Publication date
JPH0570888B2 (en) 1993-10-06

Similar Documents

Publication Publication Date Title
US3429032A (en) Method of making superconductors containing flux traps
JPH0261764B2 (en)
USRE32178E (en) Process for producing compound based superconductor wire
US4419145A (en) Process for producing Nb3 Sn superconductor
US3836404A (en) Method of fabricating composite superconductive electrical conductors
JPS63216212A (en) Nb3sn-based superconductive wire and production of it
US4385942A (en) Method for producing Nb3 Sn superconductors
US4153986A (en) Method for producing composite superconductors
JPS60199522A (en) Manufacture of superconductive alloy wire
JPH0440806B2 (en)
JPH0471112A (en) Manufacture of aluminum stabilized super conductor
US4215465A (en) Method of making V3 Ga superconductors
JPH01140521A (en) Manufacture of nb3al compound superconductive wire rod
JPS63164115A (en) Nb3sn compound superconductive wire
JP2003288816A (en) Method of lowering ac loss of superconductive coil
JPS6025841B2 (en) compound superconductor
JP3716309B2 (en) Manufacturing method of Nb3Sn wire
JPS5823109A (en) Method of producing nb3sn superconductive wire material
JPH0317332B2 (en)
JPS6313286B2 (en)
JPS596004B2 (en) V3SI
JPS6086704A (en) Method of producing nb3sn superconductive wire material using sn-iva group element alloy
JPS63164116A (en) Nb3sn compound superconductive wire
JPS625990B2 (en)
JPH05135636A (en) Manufacture of compound superconductive wire

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term