JPH0317332B2 - - Google Patents

Info

Publication number
JPH0317332B2
JPH0317332B2 JP1070556A JP7055689A JPH0317332B2 JP H0317332 B2 JPH0317332 B2 JP H0317332B2 JP 1070556 A JP1070556 A JP 1070556A JP 7055689 A JP7055689 A JP 7055689A JP H0317332 B2 JPH0317332 B2 JP H0317332B2
Authority
JP
Japan
Prior art keywords
base
wire
copper
niobium
tin alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1070556A
Other languages
Japanese (ja)
Other versions
JPH0272511A (en
Inventor
Kyoji Tachikawa
Kikuo Ito
Juji Yoshida
Yasuo Iijima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Original Assignee
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO filed Critical KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Priority to JP1070556A priority Critical patent/JPH0272511A/en
Publication of JPH0272511A publication Critical patent/JPH0272511A/en
Publication of JPH0317332B2 publication Critical patent/JPH0317332B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Powder Metallurgy (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 本発明はa族元素のチタン、ジルコニウムお
よびハフニウムから選ばれた1種または2種以上
を添加して、加工性および強磁界特性を改良した
Nb3Sn超電導線材の製造法に関するものである。 超電導線材を用いると電力消費なしに大電流を
流すことができ、しかも強磁界まで超電導状態が
保たれることから、強磁界発生用電磁石の巻線材
としての利用が進められている。現在、最も広く
使用されている線材は、Nb−Ti系の合金線材で
あるが、この合金線材の発生磁界は9テスラ
(90000ガウス)の限度があり、これ以上の強磁界
を必要とする場合には、臨界磁界の高い化合物系
超電導体を用いる必要がある。しかし、化合物系
超電導体は可塑性に欠ける点が実用化に際しての
大きな障害になつていた。近年、表面拡散法およ
び複合加工法などの拡散を利用した方法が発明さ
れ、Nb3Sn(臨界温度:約18K、臨界磁界:約21
テスラ)およびV3Ga(臨界温度:約15K、臨界磁
界:約22テスラ)の化合物系超電導線材が実用化
されるようになつた。 表面拡散法とは、例えばNb3Sn化合物線材にお
いては、下地ニオブテープ溶融錫浴中を連続的に
通過させたのち、熱処理によつてニオブと錫を拡
散反応させ下地テープ面上にNb3Sn化合物層を生
成させる方法である。複合加工法とは、例えば
Nb3Sn化合物においては、ニオブ基体と銅−錫合
金基体とを複合一体化させ、線またはテープまた
は管状に加工したのち、熱処理によつて銅−合金
基体中の錫とニオブ基体とを選択的に拡散反応さ
せてNb3Sn化合物層をニオブ基体の周囲に生成さ
せる方法である。この複合加工法を用いると、銅
−錫合金基体中に多数の細いニオブ芯を埋込んだ
極細多芯線の製造が可能となり、速い磁界変化に
対して安定な超電導特性が得られる。なお、
V3Gaの極細多芯線も同様な方法で製造して得ら
れる。このような表面拡散法および複合加工法に
より作製されたNb3SnあるいはV3Ga化合物線材
はすでに物性研究用などの小型強磁界マグネツト
として利用されてもいる。 一方、核融合炉用、高エネルギー加速器用、超
電導発電機用等の大型強磁界マグネツトの開発が
盛んに進められており、これらに使用される超電
導線材として15テスラ以上の強磁界領域において
大きい臨界電流をもち、しかも、速い磁界変化に
対して安定な化合物系極細多芯線の実用化が急が
れている。しかし従来のニオブ基体と銅−錫合金
基体との複合体から作製されるNb3Sn化合物線材
の臨界電流は約12テスラ以上の磁界で急速に低下
し、この線材によつて12テスラ以上の強磁界を発
生し得る超電導マグネツトを作製することは困難
であつた。一方、V3Ga化合物線材はNb3Sn化合
物線材に比較して強磁界特性が優れているが、材
料の価格がNb3Snより高価なため、線材を大量に
使用する大型設備に関しては有利とは言えない。
従つて、少量の合金元素を添加して強磁界特性を
改善したNb3Sn化合物線材を用いる方が得策であ
る。このような観点から注目されるのがa族元
素であるチタン、ジルコニウムあるいはハフニウ
ムをニオブ基体あるいは銅−錫合金基体に添加す
る方法である。これにより強磁界での超電導特性
の著しく改善されたNb3Sn化合物線材を製造する
方法が提案されている。(特願昭55−128551号、
特願昭56−121479号)。 これらの方法では、ニオブ基体あるいは銅−錫
合金基体に添加されたa族元素がNb3Sn化合物
の核散生成を促進させるとともに、その一部が
Nb3Sn化合物層内に固溶し、強磁界での超電導特
性を高める作用を有する。しかし、これらの製造
ではa族元素をニオブ基体あるいは銅−錫合金
基体に添加するため、塑性加工性が優れず、約40
%の断面縮少率毎に中間焼鈍を必要とし、実用的
な長尺線を作製するのに焼鈍回数が極めて多くな
り、製造コストを著しく高める難点があつた。さ
らに、従来の複合加工法に用いる銅−錫合金基体
では塑性加工性の保持から錫の固溶量が限定さ
れ、そのために拡散生成するNb3Sn化合物が線材
全断面積当たり少なく、臨界電流容量の大きな線
材の作製に難点があつた。 a族元素を純銅に添加した銅合金基体と錫基
体とニオブ基体の三者の複合加工法によるNb3Sn
化合物線材の製造法(特願昭57−25981号)は、
各基体の塑性加工性が比較的よく、またa族元
素を含むため優れた強磁界臨界電流特性をもつな
ど上記の難点をある程度解決している。しかしな
がら強度の加工を要する実用規模の極細多芯線を
この製法で作製する場合、中間焼鈍なしに最終線
径まで一様に伸線加工するには、加工性の点で
a族元素の含有量の極めて少ない銅合金を用いざ
るを得ない。その結果生成されるNb3Sn化合物中
のa族元素含有量も低くなり、強磁界臨界電流
特性が劣化するという好ましくない結果が得られ
る。 本発明はa族元素であるチタン、ジルコニウ
ムまたはハフニウムを銅基体ではなく、加工性の
極めて優れた錫基体に添加して、加工の容易な方
法で強磁界での超電導特性が改善され、さらに、
臨界電流容量の大きいNb3Sn超電導線材を製造す
ることを目的としたものである。 本発明は、a族元素であるチタン、ジルコニ
ウムおよびハフニウムから選ばれた1種または2
種以上を含む錫合金基体と銅基体とニオブ基体の
三者のいずれか少くとも一つの管体内に他の基体
粉末を装入し、または、該錫合金基体とニオブ基
体の二者のいずれか一つの管体内に他の基体粉末
を装入し、所定の形状まで加工したのち、拡散熱
処理を行いニオブ基体の周囲にa族元素を含有
したNb3Sn化合物を生成させることを特徴とす
る。また錫合金基体体としては上記a族元素の
ほかに少量の銅を含有してもよい。 錫基体に添加するチタン、ジルコニウムまたは
ハフニウムの量は優れた超電導特性を得るため
に、1種または2種以上を合計して0.1原子%以
上、また、錫合金基体の良好な加工性を保持する
うえから15原子%以下の範囲になければならな
い。好ましくは1〜10原子%の範囲である。 銅基体あるいは錫合金基体に含まれる銅は、拡
散熱処理の際、錫およびa族元素の拡散を助
け、優れた超電導特性を得るのに効果がある。錫
合金基体に加える銅の量は錫の拡散速度を高める
のに有効な2原子%以上、また、錫合金基体の良
好な加工性を保持するうえから30原子%以下の範
囲とする。 所定の形状に加工した後に行う熱処理は、
Nb3Sn生成のために400℃以上、すぐれた超電導
特性を得るために950℃以下でなければならない。 各基体はその一部もしくは全部が粉体の形状で
あつてもよく、同じ基体が同時に管体として使用
されてもよい。 本発明においては加工性の極めて優れた錫合金
基体のほか加工性のよいニオブ基体(および銅基
体)とから構成される、粉体と管体との複合体を
用いるため、a族元素を銅基体に含有せしめた
製法にくらべても伸線加工が著しく容易となり、
強度の加工を要する実用規模の極細多芯線におい
ても中間焼鈍を省いて細線への加工が可能となり
線材作製におけるコストが著しく軽減される。錫
合金基体に添加したa族元素のチタン、ジルコ
ニウムあるいはハフニウムはNb3Sn化合物の生成
を促進させ、また、添加元素の一部がNb3Sn化合
物内に固溶することにより、超電導臨界磁界を向
上させ、また、15テスラ以上の強磁界での臨界電
流を顕著に増加させる。一方、熱処理工程では錫
の充分な量を複合体内部から拡散により供給する
ことができるのでNb3Sn化合物相が多量に得られ
るなどの効果から臨界電流容量の大きな線材が作
製できる。その結果、各種超電導利用機器の性能
向上や小型化による製造および冷却コストの軽減
が達成される。また、本発明で作製された線材は
極細多芯線形式であるために、速い磁界変化に対
して超電導性が安定に保持され、強磁界中で用い
る機器の安全性と信頼性を著しく向上させる優れ
た効果を有する。 次に実施例を示してこの発明について具体的に
証明する。 実施例 1〜2 第1図に示したように、外形8mm内径6mmのニ
オブ管(2)に銅粉末(3)、ニオブ粉末(2)および錫−5
原子%チタン粉末(1)あるいは錫−5原子%ハフニ
ウム粉末(1)を5:3:1の割合でつめた複合体を
作製した。用いた粉末はそれぞれ約100μmの大
きさであつた。この複合体をスエージングおよび
線引きにより中間焼鈍なしで0.4mgφの長尺に加
工した。次いでアルゴン雰囲気の石英管に封入し
たのち、650℃×50時間の拡散熱処理を行つた。
このように作製した試料の超電導特性の臨界電流
(Ic)および臨界温度(Tc)の測定結果を表1に
示した。またこの表1には同様な方法で作製した
錫にa族元素を添加しない線材(比較例1)の
測定結果をも示した。この測定結果から明らかな
ように比較例1に比べ本実施例の線材は超電導特
性のIcおよびTcの向上が顕著である。 【表】
Detailed Description of the Invention The present invention improves workability and strong magnetic field characteristics by adding one or more selected from group a elements titanium, zirconium, and hafnium.
This invention relates to a method for manufacturing Nb 3 Sn superconducting wire. Superconducting wires are used as winding materials for electromagnets for generating strong magnetic fields because they allow large currents to flow without consuming power and maintain their superconducting state even in strong magnetic fields. Currently, the most widely used wire rod is Nb-Ti alloy wire rod, but the magnetic field generated by this alloy wire rod is limited to 9 Tesla (90,000 Gauss), and if a stronger magnetic field than this is required. For this purpose, it is necessary to use a compound-based superconductor with a high critical magnetic field. However, compound superconductors lack plasticity, which has been a major obstacle to their practical application. In recent years, methods using diffusion such as surface diffusion method and composite processing method have been invented, and Nb 3 Sn (critical temperature: approx. 18K, critical magnetic field: approx. 21
Tesla) and V 3 Ga (critical temperature: approximately 15 K, critical magnetic field: approximately 22 Tesla) compound superconducting wires have come into practical use. In the surface diffusion method, for example, in the case of a Nb 3 Sn compound wire, after the base niobium tape is passed continuously through a molten tin bath, niobium and tin are caused to undergo a diffusion reaction through heat treatment to form Nb 3 Sn on the base tape surface. This is a method of generating a compound layer. For example, the composite processing method is
In the case of Nb 3 Sn compounds, a niobium base and a copper-tin alloy base are compositely integrated and processed into a wire, tape, or tube shape, and then the tin and niobium base in the copper-alloy base are selectively separated by heat treatment. In this method, a Nb 3 Sn compound layer is formed around a niobium substrate by a diffusion reaction. Using this composite processing method, it is possible to manufacture an ultrafine multifilamentary wire in which a large number of thin niobium cores are embedded in a copper-tin alloy substrate, and stable superconducting properties can be obtained against rapid magnetic field changes. In addition,
A V 3 Ga ultrafine multifilamentary wire can also be produced in a similar manner. Nb 3 Sn or V 3 Ga compound wires produced by such surface diffusion methods and composite processing methods are already being used as small-sized strong magnetic field magnets for research on physical properties. On the other hand, the development of large-scale strong magnetic field magnets for use in nuclear fusion reactors, high-energy accelerators, superconducting generators, etc. is actively progressing, and the superconducting wire used in these has a large criticality in the strong magnetic field region of 15 Tesla or more. There is an urgent need to commercialize compound-based ultrafine multifilamentary wires that carry current and are stable against rapid changes in magnetic fields. However, the critical current of the conventional Nb 3 Sn compound wire made from a composite of a niobium base and a copper-tin alloy base decreases rapidly in a magnetic field of about 12 Tesla or more; It has been difficult to create superconducting magnets that can generate a magnetic field. On the other hand, V 3 Ga compound wire has superior strong magnetic field characteristics compared to Nb 3 Sn compound wire, but the material is more expensive than Nb 3 Sn, so it is not advantageous for large equipment that uses a large amount of wire. I can't say that.
Therefore, it is better to use a Nb 3 Sn compound wire with improved strong magnetic field characteristics by adding a small amount of alloying elements. From this point of view, a method of adding titanium, zirconium, or hafnium, which are Group A elements, to a niobium substrate or a copper-tin alloy substrate is attracting attention. A method for manufacturing Nb 3 Sn compound wires with significantly improved superconducting properties in strong magnetic fields has been proposed. (Special application No. 128551, 1983,
(Special Application No. 121479/1983). In these methods, group a elements added to the niobium substrate or copper-tin alloy substrate promote the generation of nuclear dispersion of Nb 3 Sn compounds, and some of them are
It forms a solid solution within the Nb 3 Sn compound layer and has the effect of enhancing superconducting properties in strong magnetic fields. However, in the production of these, group A elements are added to the niobium base or copper-tin alloy base, so the plastic workability is not good, and the
Intermediate annealing is required for every % cross-sectional reduction ratio, and the number of annealing steps is extremely large in order to produce a practical long wire, which has the disadvantage of significantly increasing manufacturing costs. Furthermore, in the copper-tin alloy substrate used in conventional composite processing methods, the amount of solid solution of tin is limited in order to maintain plastic workability, and as a result, the amount of Nb 3 Sn compounds that diffuse and form is small per the total cross-sectional area of the wire, which reduces the critical current capacity. There was a difficulty in making large wire rods. Nb 3 Sn produced by a composite processing method of a copper alloy base, a tin base, and a niobium base in which Group A elements are added to pure copper.
The method for manufacturing compound wire (Patent Application No. 57-25981) is
Each substrate has relatively good plastic workability, and since it contains group a elements, it has excellent strong magnetic field critical current characteristics, which solves the above-mentioned problems to some extent. However, when producing practical-scale ultra-fine multifilamentary wires that require high-strength processing using this manufacturing method, in order to uniformly draw the wire to the final wire diameter without intermediate annealing, it is necessary to reduce the content of group A elements in terms of workability. It is necessary to use an extremely small amount of copper alloy. As a result, the content of group a elements in the Nb 3 Sn compound produced also decreases, resulting in an unfavorable result of deterioration of the strong magnetic field critical current characteristics. The present invention improves superconducting properties in a strong magnetic field by adding titanium, zirconium, or hafnium, which are Group A elements, to a tin substrate, which has extremely excellent workability, instead of a copper substrate.
The purpose is to manufacture Nb 3 Sn superconducting wire with a large critical current capacity. The present invention provides one or two selected from group a elements titanium, zirconium, and hafnium.
At least one of a tin alloy base, a copper base, and a niobium base containing at least one of the following substances is charged with another base powder, or either of the tin alloy base and the niobium base The method is characterized in that another base powder is charged into one tube, processed into a predetermined shape, and then subjected to diffusion heat treatment to generate a Nb 3 Sn compound containing group a elements around the niobium base. Further, the tin alloy substrate may contain a small amount of copper in addition to the above group a elements. The amount of titanium, zirconium, or hafnium to be added to the tin substrate is 0.1 atomic % or more in total of one or more types in order to obtain excellent superconducting properties, and to maintain good workability of the tin alloy substrate. It must be within the range of 15 atomic percent or less. Preferably it is in the range of 1 to 10 atom%. Copper contained in the copper substrate or the tin alloy substrate assists in the diffusion of tin and group a elements during diffusion heat treatment, and is effective in obtaining excellent superconducting properties. The amount of copper added to the tin alloy base is set to be 2 atomic % or more, which is effective for increasing the diffusion rate of tin, and 30 atomic % or less, in order to maintain good workability of the tin alloy base. The heat treatment performed after processing into the specified shape is
The temperature must be above 400°C to generate Nb 3 Sn, and below 950°C to obtain excellent superconducting properties. Part or all of each substrate may be in the form of powder, and the same substrate may be used as a tube at the same time. In the present invention, a composite of powder and tube is used, which is composed of a tin alloy base with extremely excellent workability and a niobium base (and copper base) with good workability. Compared to the manufacturing method in which it is contained in the base material, wire drawing becomes much easier.
Even practical-scale ultra-fine multifilamentary wires that require high-strength processing can be processed into thin wires without intermediate annealing, and the cost of wire production is significantly reduced. Group A elements such as titanium, zirconium, or hafnium added to the tin alloy substrate promote the formation of Nb 3 Sn compounds, and some of the added elements dissolve in the Nb 3 Sn compounds, thereby increasing the superconducting critical magnetic field. It also significantly increases the critical current in strong magnetic fields above 15 Tesla. On the other hand, in the heat treatment process, a sufficient amount of tin can be supplied by diffusion from inside the composite, so a wire rod with a large critical current capacity can be produced due to effects such as obtaining a large amount of Nb 3 Sn compound phase. As a result, it is possible to improve the performance of various superconductor-based devices and reduce manufacturing and cooling costs through miniaturization. In addition, since the wire produced by the present invention is in the form of an ultra-fine multicore wire, its superconductivity is stably maintained even in the face of rapid magnetic field changes, which is an excellent feature that significantly improves the safety and reliability of equipment used in strong magnetic fields. It has a good effect. Next, the present invention will be specifically demonstrated by showing examples. Examples 1-2 As shown in Figure 1, copper powder (3), niobium powder (2) and tin-5 were placed in a niobium tube (2) with an outer diameter of 8 mm and an inner diameter of 6 mm.
A composite was prepared in which atomic % titanium powder (1) or tin-5 atomic % hafnium powder (1) was filled in a ratio of 5:3:1. The powders used were each approximately 100 μm in size. This composite was processed into a long length of 0.4 mgφ by swaging and wire drawing without intermediate annealing. Next, after being sealed in a quartz tube in an argon atmosphere, diffusion heat treatment was performed at 650°C for 50 hours.
Table 1 shows the measurement results of the critical current (Ic) and critical temperature (Tc) of the superconducting properties of the sample prepared in this way. Table 1 also shows the measurement results of a wire rod (Comparative Example 1) produced in a similar manner to tin in which group a elements were not added. As is clear from the measurement results, compared to Comparative Example 1, the wire of this example has significantly improved superconducting characteristics Ic and Tc. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例に示した複合体の断面形状を
示した断面図である。図中の1はa族元素を含
有した錫合金または、a族元素および銅を含有
した錫合金基体、2はニオブ基体、3は銅基体を
示す。
FIG. 1 is a cross-sectional view showing the cross-sectional shape of the composite shown in the example. In the figure, 1 indicates a tin alloy containing a group A element or a tin alloy substrate containing a group A element and copper, 2 indicates a niobium substrate, and 3 indicates a copper substrate.

Claims (1)

【特許請求の範囲】 1 チタン、ジルコニウムおよびハフニウムから
選ばれた1種または2種以上を合計して0.1〜15
原子%含む錫合金基体と銅基体とニオブ基体の三
者のいずれか少くとも一つの管体内に他の基体粉
末を装入し、または該錫合金基体およびニオブ基
体の二者のいずれか一つの管体内に他の基体粉末
を装入し、これを線、テープあるいは管に加工し
たのち、400〜950℃での拡散熱処理によりニオブ
基体の周囲にチタン、ジルコニウムあるいはハフ
ニウムを含有したNb3Sn化合物相を生成させるこ
とを特徴とするNb3Sn超電導線材の製造法。 2 錫合金基体としてチタン、ジルコニウムおよ
びハフニウムのうちから選ばれた1種または2種
以上を合計して0.1〜15原子%含み、さらに銅を
2〜30原子%含む錫合金を用いることを特徴とす
る、特許請求の範囲第1項記載の製造法。
[Claims] 1. One or more selected from titanium, zirconium, and hafnium in total of 0.1 to 15
atomic percent of the tin alloy base, the copper base, and the niobium base. After charging other base powder into the tube and processing it into a wire, tape, or tube, a Nb 3 Sn compound containing titanium, zirconium, or hafnium is formed around the niobium base by diffusion heat treatment at 400 to 950℃. A method for producing a Nb 3 Sn superconducting wire characterized by generating a phase. 2. A tin alloy containing a total of 0.1 to 15 atomic % of one or more selected from titanium, zirconium, and hafnium as a tin alloy substrate, and further containing 2 to 30 atomic % of copper is used. The manufacturing method according to claim 1.
JP1070556A 1989-03-24 1989-03-24 Manufacture of nb3sn superconductive wire rod Granted JPH0272511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1070556A JPH0272511A (en) 1989-03-24 1989-03-24 Manufacture of nb3sn superconductive wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1070556A JPH0272511A (en) 1989-03-24 1989-03-24 Manufacture of nb3sn superconductive wire rod

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58193425A Division JPS6086704A (en) 1983-10-18 1983-10-18 Method of producing nb3sn superconductive wire material using sn-iva group element alloy

Publications (2)

Publication Number Publication Date
JPH0272511A JPH0272511A (en) 1990-03-12
JPH0317332B2 true JPH0317332B2 (en) 1991-03-07

Family

ID=13434918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1070556A Granted JPH0272511A (en) 1989-03-24 1989-03-24 Manufacture of nb3sn superconductive wire rod

Country Status (1)

Country Link
JP (1) JPH0272511A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1796109B1 (en) * 2004-09-15 2010-11-17 Kabushiki Kaisha Kobe Seiko Sho METHOD FOR PRODUCING Nb3Sn SUPERCONDUCTIVE WIRE MATERIAL THROUGH POWDER METHOD
JP4730197B2 (en) * 2006-05-08 2011-07-20 パナソニック株式会社 High voltage transformer

Also Published As

Publication number Publication date
JPH0272511A (en) 1990-03-12

Similar Documents

Publication Publication Date Title
US4435228A (en) Process for producing NB3 SN superconducting wires
Suenaga et al. Fabrication techniques and properties of multifilamentary Nb 3 Sn conductors
US4419145A (en) Process for producing Nb3 Sn superconductor
US4385942A (en) Method for producing Nb3 Sn superconductors
US4341572A (en) Method for producing Nb3 Sn superconductors
US4153986A (en) Method for producing composite superconductors
US3996662A (en) Method for the manufacture of a superconductor having an intermetallic two element compound
JPH0317332B2 (en)
Pourrahimi et al. Powder metallurgy processed Nb/sub 3/Sn (Ta) wire for high field NMR magnets
JP3945600B2 (en) Method for producing Nb 3 Sn superconducting wire
JPH06158212A (en) Nb3al superconductor, its production, nb3al superconducting precursor composition and high magnetic field generating superconducting magnet
JPH0349163B2 (en)
JPS60422B2 (en) Manufacturing method of Nb↓3Sn composite material
JPH01140521A (en) Manufacture of nb3al compound superconductive wire rod
JPS5823109A (en) Method of producing nb3sn superconductive wire material
Tachikawa et al. Process for producing Nb 3 Sn superconductor
Wees et al. Development of high current Nb/sub 3/Sn Multifilament superconducting material following the ECN power method
Tachikawa et al. Process for producing Nb 3 Sn superconducting wires
JPH04301322A (en) Manufacture of niobium-tin superconducting wire
Iwasa Recent developments in multifilament V 3 Ga & Nb 3 Sn wires in Japan
JPS6262406B2 (en)
JPH0349164B2 (en)
JPS60421B2 (en) Manufacturing method of Nb↓3Sn composite superconductor
Galligan et al. Solid solutions of niobium--tin for preparing Nb/sub 3/Sn superconductors.[1 to 9 percent Sn]
Galligan et al. Solid solutions of niobium--tin for preparing Nb $ sub 3$ Sn superconductors