JPH0349164B2 - - Google Patents

Info

Publication number
JPH0349164B2
JPH0349164B2 JP58193426A JP19342683A JPH0349164B2 JP H0349164 B2 JPH0349164 B2 JP H0349164B2 JP 58193426 A JP58193426 A JP 58193426A JP 19342683 A JP19342683 A JP 19342683A JP H0349164 B2 JPH0349164 B2 JP H0349164B2
Authority
JP
Japan
Prior art keywords
niobium
wire
tin
copper
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58193426A
Other languages
Japanese (ja)
Other versions
JPS6086705A (en
Inventor
Kyoji Tachikawa
Kikuo Ito
Juji Yoshida
Yasuo Iijima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Original Assignee
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO filed Critical KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Priority to JP58193426A priority Critical patent/JPS6086705A/en
Publication of JPS6086705A publication Critical patent/JPS6086705A/en
Publication of JPH0349164B2 publication Critical patent/JPH0349164B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は繊維分散型Nb3Sn超電導線材の製造法
に関する。さらに詳しくは加工性の良い銅−ニオ
ブ合金と、さらに加工性の良いチタン、ジルコニ
ウムおよびハフニウムから選ばれた1種または2
種以上を含む錫合金を複合化させたものを使用
し、加工性および強磁界特性の改良された繊維分
散型Nb3Sn超電導線材の製造法に関する。 (従来の技術とその課題) 超電導線材を用いると電力消費なしに大電流を
流すことができ、しかも強磁界まで超電導状態が
保たれることから、強磁界発生用電磁石の巻線材
として利用が進められている。現在、最も広く使
用されている線材はNb−Ti系の合金線材である
が、この合金線材の発生磁界は9テスラ(90000
ガウス)の限度があり、これ以上の強磁界を必要
とする場合には、臨界磁界の高い化合物系超電導
体を用いる必要がある。しかし、化合物系超電導
体は可塑性に欠ける点が実用化に際しての大きな
障害になつていた。近年、表面拡散法および複合
加工法などの拡散を利用した方法が発明され、
Nb3Sn(臨界温度:約18K、臨界磁界:約22テラ
ス)の化合物系超電導線材が実用化されるように
なつた。この内複合加工法は、例えばNb3Snにお
いてはニオブ基体と銅一錫合金基体とを密着さ
せ、線状またはテープ状に加工したのち、熱処理
によつて銅一錫合金基体中の錫を選択的にニオブ
と反応させてNb3Sn化合物層を境界面に生成させ
る方法で、固体拡散法の1種である。この固体拡
散法を利用して銅一錫合金基体中に多数のニオブ
棒を埋込んだ複合体を線状に加工して熱処理する
ことによつて、磁界変化に対して安定なNb3Sn化
合物極細多芯線の製造が可能となつた。また、
V3Ga化合物極細多芯線も同様の製造法で作製で
きる。このような表面拡散法い複合加工法によつ
て作製されたNb3SnあるいはV3Ga化合物線材は
すでに物性研究用などの小型強磁界マグネツトと
して利用されている。 しかし、この複合加工法では、最初に複合体を
作製する複雑な工程が必要であり、また、Nb3Sn
の場合、銅一錫合金基体は加工により著しく効果
するため、銅中の錫の含有量は8原子%程度以下
に限定され、大量のNb3Sn層の生成が困難である
とともに、断面縮小率が約40%毎に中間焼鈍を必
要とし、実用的な長尺線材を作るには焼鈍回数が
極めて多くなり、合金線材に比較して製造コスト
が著しく高くなる。さらに、複合加工線材は機械
的強度が比較的弱く、実用に供するときは補強材
との組合せから全断面積当りの臨界電流容量が低
くなる難点があつた。 最近、この難点を克服した繊維分散型の線材作
製法が開発された。この製造法は銅一ニオブ合金
基体をアーク溶解あるいは高周波溶解により溶製
して、銅マトリツクス内にニオブの微細なデンド
ライト粒子が均一に分散したインゴツトを作製す
る。この合金は加工性に優れ、中間焼鈍を必要と
せずに任意の径に加工することができる。この加
工によりニオブ粒子は大きな変形を受け極めて細
長い繊維状となつて、線材のなかに密接して多数
分散されたものとなる。この線材表面に好ましい
量の錫を電気メツキなどによつて付着させて熱処
理を行うと錫が内部に拡散してニオブ繊維と反応
してNb3Snの極細繊維を多数含んだ線材となる。
この含有繊維は径が細かく間隔も狭いため繊維自
体が強化の役目を果して線材自身の強度を高める
と共に曲げや引張りなどによる歪に対する超電導
特性の劣化を少なくすることができる。化合物系
超電導線材では臨界電流劣化の開始歪が約1%以
上であることが実用上の目標値となつているが、
この線材はこの条件を充分に満足するものであ
る。この製法において、溶製された銅−ニオブ合
金基体はなるべく強度の加工を行つた方が繊維の
密度が高くなり超電導特性ならびに機械的特性が
向上する。 さらに、最近になつて銅−ニオブ合金にa族
元素であるチタンを少量添加した繊維分散型
Nb3Sn線材の製造法(特願昭56−121478号、特公
昭62−12607号)および銅−ニオブ合金基体とニ
オブ−チタン合金あるいは銅−チタン合金基体を
複合して繊維分散型Nb3Sn線材の製造法(特願昭
57−71461号、特公昭62−62406号)が相ついで発
明された。これらの製法においてa続元素は
Nb3Snフイラメントの拡散生成を促進させるほ
か、その一部がNb3Sn化合物相内に固溶して、強
磁界中での臨界電流容量を著しく高める作用を有
する。しかし、これらの製造法において、a族
元素は銅−ニオブ合金中、銅中またはニオブ中に
含有せしめられるために、それらの硬度が上昇
し、a族元素を含まぬ従来の繊維分散型線材に
比べると、線材への加工法が若干低下した。 (課題を解決するための手段) 本発明は従来法の難点を克服するためになされ
たものであり、その目的はその製造が容易で、且
つ強磁界での超電導特性と機械的特性の優れた繊
維分散型Nb3Sn超電導線材の製造法を提供するに
ある。本発明はa族元素であるチタン、ジルコ
ニウムおよびハフニウムから選ばれた1種または
2種以上を含む錫合金基体と銅マトリツクス内に
ニオブが多数分散している銅マリツクス内にニオ
ブが多数分散している銅−ニオブ合金基体とから
なる複合体を作製し、これを線、テープあるいは
管に加工した後、400〜900℃での拡散熱処理を行
いNb3Sn化合物極細繊維を生成させる方法を特徴
とする。また錫合金基体としては上記元素の他に
銅を少量含んでもよい。銅中の錫、チタン、ジル
コニウムまたはハフニウムの拡散は極めて速やか
であるため、銅−ニオブ合金基体に複合させる錫
合金基体は拡散熱処理のとき、同時に線材全体に
拡散する。その結果、添加されたチタン、ジルコ
ニウムまたはハフニウムはニオブ繊維と拡散した
錫との反応により生じるNb3Sn極細繊維の生成を
促進するほか、一部がNb3Sn化合物相内に固溶し
て、Nb3Snの強磁界特性を著しく改善する。ま
た、Nb3Sn層中に固溶しないで残存したチタン、
ジルコニウムまたはハフニウムは熱処理後の線材
の機械的強度を増加させるのに役立つ。なお、銅
−ニオブ合金基体内のニオブ含有量は10〜60原子
%であることが必要であり、10原子%未満である
と線材内部のニオブ繊維密度が小さくなり、繊維
間隔が大きくなつて超電導特性が低下する。ま
た、60原子%を越えると銅−ニオブ合金基体の加
工性が劣化するほか、錫の線材全体への均一な拡
散が困難となつて超電導特性および機械的特性を
低下させる。錫基体に添加するチタン、ジルコニ
ウムまたはハフニウム量は優れた超電導特性を得
るために1種または2種以上を合計して0.1原子
%以上、また錫合金基体の良好な加工性を保持す
るうえから15原子%以下の範囲になければならな
い。好ましは1〜10原子%の範囲である。錫合金
基体には拡散熱処理の際、錫およびチタン、ジル
コニウム、ハフニウムの拡散を助け優れた超電導
特性を得るために、銅を少量添加することが好ま
しい。錫合金基体に加える銅の量は錫の拡散速度
を高めるのに2原子%以上、また、錫合金基体の
良好な加工性を保持するうえから30原子%以下の
範囲になければならない。 複合する錫合金基体の量は線材全断面積当り1
体積%から50体積%が適当で、1体積%未満であ
るとNb3Sn極細繊維が生成され難く、50体積%を
越えるとNb3Sn化合物相以外の化合物が生成され
て超電導特性および機械的特性の点で好ましくな
い。拡散熱処理におけるNb3Sn極細繊維の生成に
は400〜900℃の温度範囲が望ましく、400℃より
低い温度ではNb3Sn極細繊維の生成速度が極めて
遅く、また、超電導特性も劣化させる。900℃を
越えると生成されたNb3Snの結晶粒が粗大化して
超電導特性を劣化させる。 本発明において、溶製した錫合金基体は、錫中
にチタン、ジルコニウム、ハフニウムの析出相が
細かく一様に分布した金属組織となるために、そ
の加工性は鈍錫のそれと変わらぬ程の極めて優れ
たものである。他に銅マトリツクス内にニオブが
多数分散しており加工性の良い銅−ニオブ基体か
ら構成される本発明の方法は、チタン、ジルコニ
ウムあるいはハフニウムを銅−ニオブ基体もしく
はニオブ基体に含有せしめた従来法の繊維分散型
Nb3Sn線材の製法に比べると伸線加工が著しく容
易となり、強度の加工を要する実用規模の極細多
芯線においても中間焼鈍を省いて細線への加工が
可能となり線材作製におけるコストが著しく軽減
される。また、添加元素としてのチタン等は
Nb3Sn極細繊維の生成を促進するだけでなく、
Nb3Sn化合物層内に固溶することにより、臨界磁
界を向上させ、15テスラ以上での臨界電流を顕著
に増加させる。なお、拡散工程では充分な量の錫
を複合体の内部から拡散させて供給することがで
きるので、Nb3Sn極細繊維が大量に生成されて臨
界電流の大きな線材が作製できる。このようにし
て線材の超電導特性と機械的特性が改善されるた
め、各種超電導利用機器の性能向上が得られるほ
か、小型化による冷却コストの軽減が達成され
て、さらに、広い範囲への利用の道を開くことが
出来る等の優れた効果を奏し得られる。 (実施例) 実施例 1〜4 銅とニオブを複合した棒状消耗電極を用いたア
ーク溶解により銅−30原子%ニオブ合金基体を溶
製したのち、機械加工により外径25mmの丸棒に加
工した。この丸棒に4mmφの穴を7ケ所あけて、
錫−5原子%チタン合金(実施例1)、錫−5原
子%ジルコニウム合金(実施例2)、錫−4原子
%チタン−3原子%ハフニウム合金(実施例3)
あるいは錫−5原子%チタン−10原子%銅合金棒
(実施例4)のうちいずれかをそれぞれ7本挿入
して図1に示すような複合体を作製した。この複
合体を中間焼鈍なしに溝ロールおよび線引きによ
り、外径0.5mmの線に加工した。これらをアルゴ
ン雰囲気中の石英管に封入し、600℃×100時間の
拡散熱処理を行いNb3Snを生成させた。本発明を
従来法と比較するために、錫合金のかわりに鈍錫
棒を使用して実施例1と同じ形状および方法によ
り超電導線を作製した(比較例1)。また、銅−
30原子%ニオブ−2原子%チタン合金基体を作製
し、比較例1と同様に外径25mmの丸棒に4mmφの
穴を7ケ所あけて、その穴に鈍錫棒を挿入した複
合体を1.0mmφの線に加工し、熱処理を行つた
(比較例2)。さらに25mmφの銅−30原子%ニオブ
合金基体を作製し、その中心に7.2mmφの鈍錫棒
を挿入し、その周囲に1.7mmφのニオブ−50原子
%チタン合金(比較例3)あるいは2.3mmφの銅
−3原子%チタン合金棒(比較例4)をそれぞれ
6本挿入して複合したのち同様な方法で外径0.5
mmφの線に加工および熱処理を行つた。このよう
に作製した試料の12テスラの強磁界中での臨界電
流密度、Jc(線材断面積当りの超電導通電容量)
の値を表1に示した。表からチタン、ジルコニウ
ムあるいはハフニウムを錫に添加すると従来法の
比較例1に比べて16テスラの強磁界のJc値が特に
著しく大きくなり、15テスラ以上の強磁界での使
用が可能になることがわかる。通常2A×104A/
cm2以上のJcがあれば超電導線材として考えられ
る。なお比較例2の線材は銅一ニオブ−チタン合
金基体の加工化が著しく、1mmφ以下の伸線加工
は出来なかつた(破線した)。比較例3,4の線
材の場合、0.5mmφまでの伸線加工は可能であつ
たが、加工後の線材の断面観察によれば、加工硬
化のためにニオブーチタン合金芯または銅−チタ
ン合金芯はその芯径が不揃いになつたり、また、
一部の芯は破断していた。比較例2〜4の16テス
ラの強磁界のJc値も、表1に示されるように本発
明実施例に比べてかなり劣つていた。 【表】
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a fiber-dispersed Nb 3 Sn superconducting wire. More specifically, one or two selected from copper-niobium alloy, which has good workability, and titanium, zirconium, and hafnium, which have good workability.
This invention relates to a method for manufacturing a fiber-dispersed Nb 3 Sn superconducting wire with improved workability and strong magnetic field properties using a composite of tin alloys containing at least 100% of tin alloys. (Conventional technology and its issues) Superconducting wires allow large currents to flow without consuming power, and the superconducting state is maintained even in strong magnetic fields, so their use as winding materials for electromagnets for generating strong magnetic fields is progressing. It is being Currently, the most widely used wire rod is Nb-Ti alloy wire rod, and the magnetic field generated by this alloy wire rod is 9 Tesla (90,000
Gauss), and if a stronger magnetic field is required, it is necessary to use a compound-based superconductor with a high critical magnetic field. However, compound superconductors lack plasticity, which has been a major obstacle to their practical application. In recent years, methods using diffusion such as surface diffusion method and composite processing method have been invented.
Compound-based superconducting wires of Nb 3 Sn (critical temperature: approximately 18 K, critical magnetic field: approximately 22 terraces) have come into practical use. For example, in the case of Nb 3 Sn, the composite processing method involves bonding a niobium base and a copper-tin alloy base, processing them into a wire or tape shape, and then selecting the tin in the copper-tin alloy base through heat treatment. This method is a type of solid-state diffusion method in which a layer of Nb 3 Sn compound is generated on the interface by reacting with niobium. Using this solid-state diffusion method, a composite consisting of a large number of niobium rods embedded in a copper-tin alloy substrate is processed into a linear shape and heat treated to create an Nb 3 Sn compound that is stable against changes in the magnetic field. It became possible to manufacture ultra-fine multifilamentary wires. Also,
V 3 Ga compound ultrafine multifilamentary wires can also be produced using a similar manufacturing method. Nb 3 Sn or V 3 Ga compound wires produced by such surface diffusion and combined processing methods are already being used as small-sized strong magnetic field magnets for research on physical properties. However, this composite processing method requires a complicated process to first prepare the composite, and also
In the case of , the copper-tin alloy substrate is significantly affected by processing, so the tin content in copper is limited to about 8 atomic % or less, making it difficult to generate a large amount of Nb 3 Sn layer and reducing the cross-sectional reduction rate. Intermediate annealing is required every 40% of the time, and the number of annealing steps is extremely large in order to make a practical long wire rod, resulting in significantly higher manufacturing costs than alloy wire rods. Furthermore, composite processed wire rods have relatively low mechanical strength, and when put into practical use, they have the disadvantage that when combined with reinforcing materials, the critical current capacity per total cross-sectional area becomes low. Recently, a fiber-dispersed wire manufacturing method has been developed that overcomes this difficulty. In this manufacturing method, a copper-niobium alloy substrate is melted by arc melting or high frequency melting to produce an ingot in which fine niobium dendrite particles are uniformly dispersed within a copper matrix. This alloy has excellent workability and can be processed to any diameter without requiring intermediate annealing. Through this processing, the niobium particles are greatly deformed and become elongated fibers, which are closely dispersed in large numbers within the wire. When a desired amount of tin is attached to the surface of this wire by electroplating or the like and heat treatment is performed, the tin diffuses inside and reacts with the niobium fibers, resulting in a wire containing a large number of ultrafine Nb 3 Sn fibers.
Since the contained fibers have a small diameter and narrow spacing, the fibers themselves serve as reinforcement, increasing the strength of the wire itself and reducing deterioration of superconducting properties due to strain caused by bending, tension, etc. For compound superconducting wires, the practical target value is for the strain at which critical current deterioration begins to be approximately 1% or more.
This wire fully satisfies this condition. In this manufacturing method, if the melted copper-niobium alloy substrate is processed to be as strong as possible, the fiber density will be higher and the superconducting properties and mechanical properties will be improved. Furthermore, recently, a fiber-dispersed type that is made by adding a small amount of titanium, a group A element, to a copper-niobium alloy has been developed.
A method for manufacturing Nb 3 Sn wire (Japanese Patent Application No. 121478/1982, Japanese Patent Publication No. 12607/1983) and fiber-dispersed Nb 3 Sn by composite of copper-niobium alloy substrate and niobium-titanium alloy or copper-titanium alloy substrate. Manufacturing method of wire rod (Tokugansho
57-71461 and Special Publication No. 62-62406) were invented successively. In these manufacturing methods, the a-sequential elements are
In addition to promoting the diffusion and formation of Nb 3 Sn filaments, a portion of them dissolves in the Nb 3 Sn compound phase and has the effect of significantly increasing the critical current capacity in a strong magnetic field. However, in these manufacturing methods, since group A elements are contained in the copper-niobium alloy, copper, or niobium, their hardness increases, making it difficult to use conventional fiber-dispersed wire rods that do not contain group A elements. In comparison, the processing method for wire rods has deteriorated slightly. (Means for Solving the Problems) The present invention was made to overcome the difficulties of conventional methods, and its purpose is to provide a material that is easy to manufacture and has excellent superconducting properties and mechanical properties in a strong magnetic field. The present invention provides a method for manufacturing a fiber-dispersed Nb 3 Sn superconducting wire. The present invention consists of a tin alloy base containing one or more selected from Group A elements titanium, zirconium, and hafnium, and a copper matrix in which a large amount of niobium is dispersed. The method is characterized by a method in which a composite consisting of a copper-niobium alloy substrate is prepared, processed into a wire, tape or tube, and then subjected to diffusion heat treatment at 400 to 900°C to produce Nb 3 Sn compound ultrafine fibers. do. The tin alloy substrate may also contain a small amount of copper in addition to the above elements. Since the diffusion of tin, titanium, zirconium or hafnium in copper is extremely rapid, the tin alloy base composited with the copper-niobium alloy base is simultaneously diffused throughout the wire during the diffusion heat treatment. As a result, the added titanium, zirconium, or hafnium not only promotes the formation of Nb 3 Sn ultrafine fibers caused by the reaction between the niobium fibers and the diffused tin, but also partially dissolves in the Nb 3 Sn compound phase. Significantly improves the strong magnetic field properties of Nb 3 Sn. In addition, titanium, which remained without solid solution in the Nb 3 Sn layer,
Zirconium or hafnium serves to increase the mechanical strength of the wire after heat treatment. Note that the niobium content in the copper-niobium alloy substrate must be 10 to 60 atomic%; if it is less than 10 atomic%, the niobium fiber density inside the wire becomes small and the fiber spacing increases, resulting in superconductivity. Characteristics deteriorate. Furthermore, if the content exceeds 60 atomic %, the workability of the copper-niobium alloy substrate deteriorates, and it becomes difficult to uniformly diffuse tin throughout the wire, resulting in deterioration of superconducting properties and mechanical properties. The amount of titanium, zirconium, or hafnium added to the tin substrate should be 0.1 atomic % or more in total of one or more types in order to obtain excellent superconducting properties, and in order to maintain good workability of the tin alloy substrate. Must be within the range of atomic percent or less. The preferred range is 1 to 10 at.%. It is preferable to add a small amount of copper to the tin alloy substrate during the diffusion heat treatment in order to assist in the diffusion of tin, titanium, zirconium, and hafnium and to obtain excellent superconducting properties. The amount of copper added to the tin alloy substrate must be in the range of 2 atomic % or more to increase the diffusion rate of tin, and 30 atomic % or less to maintain good workability of the tin alloy substrate. The amount of composite tin alloy substrate is 1 per total cross-sectional area of wire.
A suitable range is from vol.% to 50 vol.%. If it is less than 1 vol.%, it is difficult to produce Nb 3 Sn ultrafine fibers, and if it exceeds 50 vol. %, compounds other than the Nb 3 Sn compound phase are produced, which deteriorates superconducting properties and mechanical properties. Unfavorable in terms of characteristics. A temperature range of 400 to 900°C is desirable for the generation of Nb 3 Sn ultrafine fibers in diffusion heat treatment, and at temperatures lower than 400°C, the generation rate of Nb 3 Sn ultrafine fibers is extremely slow, and the superconducting properties also deteriorate. When the temperature exceeds 900°C, the crystal grains of the Nb 3 Sn produced become coarse and the superconducting properties deteriorate. In the present invention, the ingot-produced tin alloy substrate has a metal structure in which the precipitated phases of titanium, zirconium, and hafnium are finely and uniformly distributed in the tin, so its workability is extremely high, comparable to that of dull tin. It is excellent. In addition, the method of the present invention, which is composed of a copper-niobium substrate with a large amount of niobium dispersed in the copper matrix and has good workability, is a method that is similar to the conventional method in which titanium, zirconium, or hafnium is contained in a copper-niobium substrate or a niobium substrate. fiber-dispersed type
Compared to the manufacturing method for Nb 3 Sn wire, wire drawing is significantly easier, and even practical-scale ultra-fine multifilamentary wires that require strength processing can be processed into thin wires without intermediate annealing, significantly reducing the cost of wire production. Ru. In addition, titanium, etc. as an additive element is
Nb 3 Sn not only promotes the production of ultrafine fibers, but also
Solid solution in the Nb 3 Sn compound layer improves the critical magnetic field and significantly increases the critical current above 15 Tesla. In addition, in the diffusion process, a sufficient amount of tin can be diffused and supplied from inside the composite, so a large amount of Nb 3 Sn ultrafine fibers can be produced and a wire with a large critical current can be produced. In this way, the superconducting and mechanical properties of the wire are improved, which not only improves the performance of various superconducting devices, but also reduces cooling costs due to miniaturization, making it possible to use it in a wide range of areas. Excellent effects such as being able to pave the way can be achieved. (Example) Examples 1 to 4 A copper-30 atomic percent niobium alloy base was melted by arc melting using a rod-shaped consumable electrode made of a composite of copper and niobium, and then machined into a round bar with an outer diameter of 25 mm. . Drill seven holes of 4mmφ on this round bar,
Tin-5 atomic% titanium alloy (Example 1), Tin-5 atomic% zirconium alloy (Example 2), Tin-4 atomic% titanium-3 atomic% hafnium alloy (Example 3)
Alternatively, seven of each of the tin-5 atom% titanium-10 atom% copper alloy rods (Example 4) were inserted to produce a composite as shown in FIG. This composite was processed into a wire with an outer diameter of 0.5 mm by groove rolls and wire drawing without intermediate annealing. These were sealed in a quartz tube in an argon atmosphere and subjected to diffusion heat treatment at 600°C for 100 hours to generate Nb 3 Sn. In order to compare the present invention with the conventional method, a superconducting wire was produced in the same shape and method as in Example 1 using a blunt tin rod instead of a tin alloy (Comparative Example 1). Also, copper-
A 30 atom% niobium-2 atom% titanium alloy substrate was prepared, seven holes of 4 mmφ were drilled in a round bar with an outer diameter of 25 mm as in Comparative Example 1, and blunt tin rods were inserted into the holes to form a composite body of 1.0 atomic percent. It was processed into a wire of mmφ and heat treated (Comparative Example 2). Furthermore, a 25 mmφ copper-30 at% niobium alloy base was prepared, a 7.2 mmφ blunt tin rod was inserted into the center, and a 1.7 mmφ niobium-50 at% titanium alloy (comparative example 3) or a 2.3 mmφ Six copper-3 atomic% titanium alloy rods (comparative example 4) were inserted into the composite, and the outer diameter was 0.5 in the same manner.
Processing and heat treatment were performed on the mmφ wire. Critical current density, Jc (superconducting current carrying capacity per wire cross-sectional area) of the sample prepared in this way in a strong magnetic field of 12 Tesla
The values are shown in Table 1. From the table, it can be seen that when titanium, zirconium, or hafnium is added to tin, the Jc value in a strong magnetic field of 16 Tesla increases significantly compared to Comparative Example 1 of the conventional method, making it possible to use it in a strong magnetic field of 15 Tesla or more. Recognize. Normally 2A×10 4A /
If it has a Jc of cm 2 or more, it can be considered a superconducting wire. In the wire of Comparative Example 2, the copper-niobium-titanium alloy base was significantly processed, and wire drawing to a diameter of 1 mm or less was not possible (dashed line). In the case of the wire rods of Comparative Examples 3 and 4, it was possible to draw the wire up to 0.5 mmφ, but according to the cross-sectional observation of the wire rod after processing, the niobium titanium alloy core or copper-titanium alloy core was hardened due to work hardening. The core diameter may become uneven, or
Some cores were broken. As shown in Table 1, the Jc values of Comparative Examples 2 to 4 in a strong magnetic field of 16 Tesla were also considerably inferior to those of the Examples of the present invention. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

図1は本発明の方法における複合体の断面図
で、図中1はチタン、ジルコニウムあるいはハフ
ニウムを含有する錫合金芯。2は銅−ニオブ合金
基体である。
FIG. 1 is a cross-sectional view of a composite in the method of the present invention, where 1 is a tin alloy core containing titanium, zirconium, or hafnium. 2 is a copper-niobium alloy substrate.

Claims (1)

【特許請求の範囲】 1 チタン、ジルコニウムおよびハフニウムから
選ばれた1種または2種以上を合計して0.1〜15
原子%含む錫基合金基体と、10〜60原子%のニオ
ブを含むニオブ分散銅−ニオブ合金基体とからな
る複合体を作製し、これを線、テープあるいは管
に加工したのち、400〜900℃での拡散熱処理を行
なうことを特徴とする繊維分散型Nb3Sn超電導線
材の製造法。 2 錫合金基体としてチタン、ジリコニウムおよ
びハフニウムから選ばれた1種または2種以上を
合計して0.1〜15原子%含み、さらに銅を2〜30
原子%含む錫合金を用いることを特徴とする。
[Claims] 1. One or more selected from titanium, zirconium, and hafnium in total of 0.1 to 15
A composite consisting of a tin-based alloy substrate containing 10 to 60 atomic percent of niobium and a niobium-dispersed copper-niobium alloy substrate containing 10 to 60 atomic percent of niobium is prepared, processed into a wire, tape, or tube, and then heated at 400 to 900°C. 1. A method for producing a fiber-dispersed Nb 3 Sn superconducting wire, characterized by performing diffusion heat treatment. 2 Contains a total of 0.1 to 15 atomic percent of one or more selected from titanium, zirconium, and hafnium as a tin alloy base, and further contains 2 to 30 atomic percent of copper.
It is characterized by using a tin alloy containing atomic percent.
JP58193426A 1983-10-18 1983-10-18 Method of producing firbrous dispersive nb3sn superconductive wire material Granted JPS6086705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58193426A JPS6086705A (en) 1983-10-18 1983-10-18 Method of producing firbrous dispersive nb3sn superconductive wire material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58193426A JPS6086705A (en) 1983-10-18 1983-10-18 Method of producing firbrous dispersive nb3sn superconductive wire material

Publications (2)

Publication Number Publication Date
JPS6086705A JPS6086705A (en) 1985-05-16
JPH0349164B2 true JPH0349164B2 (en) 1991-07-26

Family

ID=16307770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58193426A Granted JPS6086705A (en) 1983-10-18 1983-10-18 Method of producing firbrous dispersive nb3sn superconductive wire material

Country Status (1)

Country Link
JP (1) JPS6086705A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823109A (en) * 1981-08-04 1983-02-10 科学技術庁金属材料技術研究所長 Method of producing nb3sn superconductive wire material
JPS59108202A (en) * 1982-12-13 1984-06-22 住友電気工業株式会社 Nb3sn compound superconductive wire and method of producing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823109A (en) * 1981-08-04 1983-02-10 科学技術庁金属材料技術研究所長 Method of producing nb3sn superconductive wire material
JPS59108202A (en) * 1982-12-13 1984-06-22 住友電気工業株式会社 Nb3sn compound superconductive wire and method of producing same

Also Published As

Publication number Publication date
JPS6086705A (en) 1985-05-16

Similar Documents

Publication Publication Date Title
US4435228A (en) Process for producing NB3 SN superconducting wires
US4419145A (en) Process for producing Nb3 Sn superconductor
US4385942A (en) Method for producing Nb3 Sn superconductors
US4153986A (en) Method for producing composite superconductors
JPS60199522A (en) Manufacture of superconductive alloy wire
JPH0349164B2 (en)
JPS6262406B2 (en)
JPH0349163B2 (en)
JPH0317332B2 (en)
JPH0315285B2 (en)
Iwasa Recent developments in multifilament V 3 Ga & Nb 3 Sn wires in Japan
JPS6212607B2 (en)
JP3046828B2 (en) Nb Lower 3 Method for Manufacturing Sn Composite Superconductor
JPH04301322A (en) Manufacture of niobium-tin superconducting wire
JPH0316725B2 (en)
JPH01140521A (en) Manufacture of nb3al compound superconductive wire rod
JPH03283322A (en) Manufacture of nb3al superconductor
JPH0132303B2 (en)
Tachikawa et al. Process for producing Nb 3 Sn superconducting wires
JPS60421B2 (en) Manufacturing method of Nb↓3Sn composite superconductor
JPS60422B2 (en) Manufacturing method of Nb↓3Sn composite material
JPH08287749A (en) Nb3sn compound superconducting wire material
JP2006100150A (en) Manufacturing method for multi-core wire of hard-to-process superconducting alloy
JPS62229720A (en) Manufacture of nb3 sn superconductor wire
JPH0350368B2 (en)