JPS60422B2 - Manufacturing method of Nb↓3Sn composite material - Google Patents

Manufacturing method of Nb↓3Sn composite material

Info

Publication number
JPS60422B2
JPS60422B2 JP55128550A JP12855080A JPS60422B2 JP S60422 B2 JPS60422 B2 JP S60422B2 JP 55128550 A JP55128550 A JP 55128550A JP 12855080 A JP12855080 A JP 12855080A JP S60422 B2 JPS60422 B2 JP S60422B2
Authority
JP
Japan
Prior art keywords
composite
alloy
magnetic field
wire
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55128550A
Other languages
Japanese (ja)
Other versions
JPS5754259A (en
Inventor
恭治 太刀川
稔久 浅野
孝夫 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Original Assignee
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO filed Critical KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Priority to JP55128550A priority Critical patent/JPS60422B2/en
Publication of JPS5754259A publication Critical patent/JPS5754259A/en
Publication of JPS60422B2 publication Critical patent/JPS60422B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 本発明は珪素あるいは更にガリウムまたはアルミニウム
を添加して特性の改善された強磁界発生用NはSn複合
加工材の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a N/Sn composite processed material for generating strong magnetic fields whose characteristics have been improved by adding silicon or further gallium or aluminum.

超電導線材は電力消費なしに大電流を流せ、また強磁界
までその超電導状態を保つことが可能なので、強磁界発
生用電磁石の巻線材として利用されている。
Superconducting wires are used as winding materials for electromagnets that generate strong magnetic fields because they can carry large currents without consuming power and can maintain their superconducting state even in strong magnetic fields.

現在もっとも多量に使用されている線村は、Nb−Ti
系の合金線材であるが、その合金線材の発生磁界は約8
万5千ガウス(8.5テスラ:8.5T)が限度であり
、これ以上の強磁界を発生させるためには、上部臨界磁
界(Hc2)の高い化合物系超電導体を用いる必要があ
る。しかし、化合物特有の可塑性に欠ける点が実用化に
際しての大きな障害となっていた。近年、表面拡散法お
よび複合加工法などの拡散を利用した方法が相次いで開
発され、Nb3SnとV3Ga化合物の線村化が可能と
なり実用に供せられるようになった。表面拡散法とは、
例えばNbテーープを溶融錫(Sn)裕中に連続的に通
過させてテープ表面にSnを付着させた後、適当な温度
で熱処理してNbとSnを拡散反応させテープ表面にN
b3Sn化合物層を生成させる方法である。複合加工法
とは、例えばNbと銅(Cu)−Sn固溶合金体とを複
合一体化した後加工、熱処理してCu−Sn合金中のS
nのみを選択的にNbと反応させて、Nb3Sn化合物
層を境界面に生成させる方法で、固体拡散法の一種であ
る。NbおよびCu−Sn固溶合金体はともに十分な可
塑性を有するため、熱処理を施す以前に複合体のまま要
求される線、テープト管等の任意の形状に容易に加工が
可能である。さらに、Cu−Sn合金マトリックス中に
多数のNb棒を埋め込んで紬線加工することにより、遠
い磁界変化に対して安定な極細多芯形式の線材とするこ
とができる。このような表面拡散法および複合加工法に
より作製されたNb3SnあるいはV30a化合物線材
はすでに物性研究用などの小型強磁界マグネットとして
利用されている。一方近年、核融合炉用、高エネルギー
貯蔵用、超電導発電機用等の大型強磁界マグネットの開
発が進められており、これらに使用される超電導線材と
して15T以上の強磁界領域において大きい臨界電流(
lc)をもち、しかも遠い磁界変化に対して安定な化合
物極細多芯線の実用化が急がれている。
Currently, the most widely used liner is Nb-Ti.
The magnetic field generated by the alloy wire is approximately 8
The limit is 15,000 Gauss (8.5 Tesla: 8.5T), and in order to generate a stronger magnetic field than this, it is necessary to use a compound-based superconductor with a high upper critical magnetic field (Hc2). However, the lack of plasticity inherent to the compound has been a major obstacle to its practical application. In recent years, methods using diffusion such as surface diffusion method and composite processing method have been developed one after another, and it has become possible to form a linear structure of Nb3Sn and V3Ga compounds and put them into practical use. What is surface diffusion method?
For example, an Nb tape is passed continuously through a molten tin (Sn) bath to deposit Sn on the tape surface, and then heat-treated at an appropriate temperature to cause a diffusion reaction between Nb and Sn, resulting in N on the tape surface.
This is a method of generating a b3Sn compound layer. The composite processing method refers to, for example, combining Nb and a copper (Cu)-Sn solid solution alloy, processing and heat treating the S in the Cu-Sn alloy.
This is a method of selectively reacting only n with Nb to form an Nb3Sn compound layer on the interface, and is a type of solid diffusion method. Since both the Nb and Cu-Sn solid solution alloy bodies have sufficient plasticity, they can be easily processed into any required shape, such as a wire or tapered tube, as a composite before being subjected to heat treatment. Furthermore, by embedding a large number of Nb rods in a Cu-Sn alloy matrix and performing pongee wire processing, an ultra-fine multicore wire rod that is stable against distant magnetic field changes can be obtained. Nb3Sn or V30a compound wires produced by such a surface diffusion method and a composite processing method are already used as small-sized strong magnetic field magnets for physical property research. On the other hand, in recent years, the development of large-scale strong magnetic field magnets for nuclear fusion reactors, high energy storage, superconducting generators, etc. has been progressing, and the superconducting wire used in these has a large critical current (
There is an urgent need to put into practical use ultra-fine multifilamentary compound wires that have lc) and are stable against distant changes in magnetic fields.

しかし、従来の純NbとCu−Sn2元合金との複合体
から作製したN広Sn化合物線材の臨界電流(lc)は
、lOT以上の磁界で急速に低下し、この線材によって
は12r以上の磁界を発生し得る超電導マグネットを作
製することは困難であった。一方、V30a化合物線材
は強磁界特性がN広Snよりもすぐれているが、材料の
価格がNGSnよりかなり高価であるため、線材を大量
に使用する大型設備に関しては、強磁界特性を少量の合
金元素添加により改善したNQSn線材を使用する方が
得策である。最近、Nbにハフニウム(Hf)を固溶さ
れた2元合金体と、Cu−Sn2元合金あるいはそれに
GaまたはAIを添加した3元Cu基合金体とを複合一
体化したのち加工、熱処理して強磁界中の超電導特性が
顕著に改善されたNb3Sn化合物線材を製造する方法
が開発された(特願昭53−112191)。Nb合金
中のHfはNb3Sn相内に固溶してN広Sn層の拡散
生成速度を著しく増大させてNb3Sn層の厚さを増加
しlcを増大させる。また、Cu−Sn合金中に添加さ
れたGaまたはAIもSnとともにNO合金体内に拡散
して「生成されるN広Sn相内に固溶しそのHc2を高
める。このようにしてHf、あるいはHfおよびGaL
あるいはHfおよびAIを添加したN広Sn複合加工
線材の強磁界特性は著しく改善され、強磁界まで大きい
lc値が得られている。しかし「上記発明において使用
されるHfは高価なため、V30a線村に比較して安価
というNらSn線材の利点が若干損なわれる欠点があっ
た。そのためさらに安価な添加元素で強磁界特性を改善
することが「V3Gaと競合する強磁界用Nb3Sn複
合加工線材の実用化条件として要求されていた。本発明
はこのような要求を満たすために、Hfに比べはるかに
安価なSiを添加したNb合金体と、Cu−Snあるい
はCu触Sn−GaあるいはCu−Sn−山合金体との
複合体を所定の形状まで加工して熱処理し、複合体境界
面にSi、Ga、山を少量含む強磁界特性の改善された
N広Sn層を拡散生成させることを目的とする。
However, the critical current (lc) of a conventional N-rich Sn compound wire made from a composite of pure Nb and a Cu-Sn binary alloy decreases rapidly in a magnetic field of 1OT or more, and depending on this wire, the critical current (lc) decreases rapidly in a magnetic field of 12r or more. It has been difficult to create a superconducting magnet that can generate . On the other hand, V30a compound wire has better strong magnetic field characteristics than N-wide Sn, but the material is much more expensive than NGSn, so for large equipment that uses a large amount of wire, it is necessary to improve the strong magnetic field characteristics by using a small amount of alloy. It is better to use NQSn wire improved by adding elements. Recently, a binary alloy body in which hafnium (Hf) is dissolved in Nb and a Cu-Sn binary alloy or a ternary Cu-based alloy body in which Ga or AI is added are integrated, processed and heat-treated. A method for manufacturing a Nb3Sn compound wire with significantly improved superconducting properties in a strong magnetic field has been developed (Japanese Patent Application No. 112191/1982). Hf in the Nb alloy dissolves in the Nb3Sn phase and significantly increases the diffusion formation rate of the Nb3Sn layer, increasing the thickness of the Nb3Sn layer and increasing lc. In addition, Ga or AI added to the Cu-Sn alloy also diffuses into the NO alloy together with Sn and dissolves in the formed N-rich Sn phase to increase its Hc2. and GaL
Alternatively, the strong magnetic field characteristics of the N-wide Sn composite processed wire rod added with Hf and AI are significantly improved, and a large lc value is obtained even in strong magnetic fields. However, since the Hf used in the above invention is expensive, it has the disadvantage that the advantage of N and Sn wires, which are cheaper than V30a wires, is slightly impaired.Therefore, the strong magnetic field characteristics can be improved with cheaper additive elements. This was required as a condition for the practical application of Nb3Sn composite processed wire rods for strong magnetic fields that compete with V3Ga.In order to meet these requirements, the present invention has developed an Nb alloy with Si added, which is much cheaper than Hf. A composite of Cu-Sn, Cu-contacted Sn-Ga, or Cu-Sn-mountain alloy is processed into a predetermined shape and heat treated, and a strong magnetic field containing a small amount of Si, Ga, and peaks is applied to the interface of the composite. The purpose is to diffusely generate an N-wide Sn layer with improved characteristics.

この明細書中の合金の含有率はすべて原子%で表示され
ている。本発明による製造法では、まずNb3Sn層の
拡散生成を促進させるためにSiを固溶させたNb基合
金体を溶製し、また別にCu−Sn合金体あるいはそれ
にN広SnのHc2を高める効果のあるGaまたはAI
を添加した合金体を溶製し、上記Nb基合金体をCu基
合金体で被覆した各種形状の複合体を作り、これを線引
き、圧延あるいは管引きなどにより線「テープあるいは
管などに加工する。ここでNbに添加されるS瞳はすぐ
れた超電導特性を得るために0.1%以上、またNb基
合金体の良好な加工性を保持する上から3%以下の範囲
内にあること、特に0.2〜1%の範囲内にあることが
望ましい。またCu−Sn−GaあるいはCu−Sn−
AI合金体中のGaあるいはAI量もすぐれた超電導特
性を得るためにそれぞれ0.1%以上、またCu基合金
体の良好な加工性を保持する上から15%あるいは18
%以下の範囲内になければならない。さらにCu基合金
体中のSn量は十分なNb3Sn層厚を得るために2%
以上「 また良好な加工性を保持する上から9%以下の
範囲内になければならない。ついで該加工材を熱処理し
、Snあるいはそれに加えて少量のGaまたはAIをN
b基合金体内に拡散させて複合体境界面に少量のSiあ
るいはさらにGaまたはAIを含む超電導特性のすぐれ
たNb3Sn化合物層を生成せしめる。ここで拡散のた
めの熱処理は600〜900oCの温度範囲で1分間〜
20餌時間の時間内おこなう。これより低い温度あるい
は短い時間の熱処理では十分な量のN広Sn層が生成さ
れず、また逆にこれより高温、長時間になるとNb3S
nの結晶粒が粗大化し超電導特性が劣化する。本発明で
得られるSiあるいはさらにGaまたはAIが添加され
たNbぶn複合加工線材は、従来のN広Sn線材と比較
して臨界電流cと上部臨界磁界Hc2が増加し、その結
果強磁界におけるlcの改善が顕著である。
All alloy contents in this specification are expressed in atomic percent. In the manufacturing method according to the present invention, first, an Nb-based alloy body containing Si as a solid solution is melted in order to promote the diffusion and formation of the Nb3Sn layer, and separately, a Cu-Sn alloy body or a Nb-based alloy body or an Nb-based alloy body is produced, which has the effect of increasing Hc2. Ga or AI with
The above-mentioned Nb-based alloy is coated with a Cu-based alloy to form composites of various shapes, and these are processed into wires, tapes, tubes, etc. by wire drawing, rolling, or tube drawing. Here, the S pupil added to Nb should be within the range of 0.1% or more to obtain excellent superconducting properties, and 3% or less to maintain good workability of the Nb-based alloy body. In particular, it is desirable that the content be within the range of 0.2 to 1%.Also, Cu-Sn-Ga or Cu-Sn-
The amount of Ga or AI in the AI alloy body should be 0.1% or more, respectively, to obtain excellent superconducting properties, and 15% or 18%, respectively, to maintain good workability of the Cu-based alloy body.
Must be within the range of % or less. Furthermore, the amount of Sn in the Cu-based alloy is 2% in order to obtain a sufficient thickness of the Nb3Sn layer.
``Also, it must be within the range of 9% or less to maintain good workability.Next, the processed material is heat treated to add Sn or a small amount of Ga or AI in addition to N.
It is diffused into the b-based alloy to form a Nb3Sn compound layer with excellent superconducting properties containing a small amount of Si or further Ga or AI at the interface of the composite. Here, the heat treatment for diffusion is performed at a temperature range of 600 to 900oC for 1 minute.
Do this within 20 feeding hours. Heat treatment at a lower temperature or for a shorter time will not produce a sufficient amount of N-rich Sn layer, and conversely, if the heat treatment is performed at a higher temperature or for a longer time, the Nb3S
The crystal grains of n become coarse and the superconducting properties deteriorate. The Nbbn composite processed wire to which Si or further Ga or AI is added obtained in the present invention has an increased critical current c and upper critical magnetic field Hc2 compared to the conventional N wide Sn wire, and as a result, in a strong magnetic field The improvement in lc is remarkable.

そのため本発明は各種超電導利用機器を十分な余裕をも
って強磁界で使用可能ならしめ、機器の性能、安全性、
ならびに信頼性を向上させることに効果がある。さらに
強磁界特性を改善するためにNbに添加されたSjは、
同様の目的で添加されるHfに比較してはるかに安価で
、製造コストをほとんど増大させることなくNGSnの
強磁界特性を顕著に改善できるので、その経済的ならび
に技術的効果がきわめて大きい。また本発明は複合加工
法を採用しているため、遠い磁界変化に対して安定で、
交流損失の小さい極細多芯形式の緑材を作製することが
可能であり、さらに大容量線材の製造も容易で利用機器
の大型化も可能になる。以上のように本発明により改善
されたNb3Sn複合加工線材は、15T以上の強磁界
を安定度よく発生できるので、核融合炉、高エネルギー
貯蔵、超電導発電機、高エネルギー物理加速器、物性研
究用等の各種強磁界マグネットの巻線材として効果的に
使用し得る。
Therefore, the present invention enables various types of superconductor-based equipment to be used in strong magnetic fields with sufficient margin, and improves equipment performance, safety, and
It is also effective in improving reliability. Furthermore, Sj added to Nb to improve the strong magnetic field characteristics is
It is much cheaper than Hf, which is added for the same purpose, and the strong magnetic field characteristics of NGSn can be significantly improved without increasing the manufacturing cost, so its economic and technical effects are extremely large. In addition, since the present invention employs a composite processing method, it is stable against distant magnetic field changes, and
It is possible to produce ultra-fine multicore green material with low AC loss, and it is also easy to produce large capacity wires, making it possible to increase the size of equipment used. As described above, the Nb3Sn composite processed wire rod improved by the present invention can generate a strong magnetic field of 15 T or more with good stability, so it can be used for nuclear fusion reactors, high energy storage, superconducting generators, high energy physical accelerators, physical property research, etc. It can be effectively used as a winding material for various strong magnetic field magnets.

実施例 1 純NbおよびNbに0.3 0.51%のSiを配合し
た素材をアルゴン雰囲気中でアーク溶解炉にて溶製し、
これを溝ロールおよびスェージングにて3肋径まで加工
してNb−Si合金棒を作製した。
Example 1 A material containing pure Nb and Nb mixed with 0.3% to 0.51% Si was melted in an arc melting furnace in an argon atmosphere.
This was processed to a diameter of 3 ribs using grooved rolls and swaging to produce a Nb-Si alloy rod.

これを外径8柳内径3肋のCu−7%Sn合金管に挿入
した複合体を溝ロールおよび平ロールにより厚さ約25
0rm幅約5帆のテープ状に加工し、アルゴン雰囲気で
800qoで10岬時間の熱処理をおこなった。試料の
N広Sn層の厚さおよびTcの測定した結果は第1表の
通りであった。また、これらの試料のうちの代表的なも
ののlcの測定結果は第1図の通りであった。Siの添
加によりNはSn層の厚さが顕著に増大し、また全磁界
領域でのlc特性が著しく改善されることがわかる。第
1表 実施例 2 実施例1と同様にしてNb−0.3 0.ふ1%S捨金
棒と、Cu−5%Sn−4%Ga合金管との複合体をテ
ープ状に加工したのち80000で10畑寿間の熱処理
をおこなった。
This was inserted into a Cu-7%Sn alloy tube with an outer diameter of 8 and an inner diameter of 3 ribs, and the composite was rolled to a thickness of approximately 25 mm using grooved rolls and flat rolls.
It was processed into a tape shape with a width of 0 rm and approximately 5 sails, and was heat-treated in an argon atmosphere at 800 qo for 10 hours. The results of measuring the thickness and Tc of the N wide Sn layer of the sample are shown in Table 1. Further, the measurement results of lc of representative samples among these samples were as shown in FIG. It can be seen that the addition of Si significantly increases the thickness of the N and Sn layer, and also significantly improves the lc characteristics in the entire magnetic field region. Table 1 Example 2 Nb-0.3 0. A composite of a 1% S waste metal rod and a Cu-5% Sn-4% Ga alloy tube was processed into a tape shape, and then heat-treated at 80,000 for 10 days.

NらSn層の厚さおよびTcの測定結果を前記第1表に
、またこれらの試料のうち代表的なもののlcの測定結
果を第1図に示す。Siとoaの同時添加によりTcが
上昇し、さらに磁界の増加によるlcの低下が明らかに
小さくなり、1の以上の強磁界で大きいlcが得られる
。これはTcの上昇に伴いHc2が増加したためと考え
られる。実施例 3 実施例2と同様にしてNb−0.3 0.5、1%S捨
金体と、Cu−5%Sn−4%AI合金体との複合テー
プを作製したのち800q0で10餌時間の熱処理をお
こなった。
The measurement results of the thickness and Tc of the N and Sn layers are shown in Table 1, and the measurement results of lc of representative samples among these samples are shown in FIG. The simultaneous addition of Si and OA increases Tc, and furthermore, the decrease in lc due to an increase in magnetic field becomes clearly smaller, and a large lc can be obtained in a strong magnetic field of 1 or more. This is considered to be because Hc2 increased with the rise in Tc. Example 3 A composite tape of Nb-0.3 0.5, 1% S waste metal body and Cu-5% Sn-4% AI alloy body was prepared in the same manner as in Example 2, and then fed with 800q0 for 10 times. Heat treatment was performed for an hour.

NはSn層の厚さおよびTcの測定結果を前記第1表に
示す。SiとAIの同時添加によりTcが上昇し、また
実施例2と同様に強磁界でlcの改善が得られた。
For N, the thickness of the Sn layer and the measurement results of Tc are shown in Table 1 above. Simultaneous addition of Si and AI increased Tc, and as in Example 2, an improvement in lc was obtained in a strong magnetic field.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1および2で記した本発明によるN広S
n複合加工線材を800qoで100時間熱処理した場
合の磁界−臨界電流曲線である。 1:Nb/Cu−7%Sn、2:Nb−0.5%Si/
Cu−7%Sn、3:Nb−1%Si/Cu−7%Sn
、4:Nb−0.5%SiノCu−5%Sn−4%Ga
、5:Nb−1%SiノCu−5%Sn−4%Ga。 袋′図
FIG. 1 shows the N wide S according to the present invention described in Examples 1 and 2.
It is a magnetic field-critical current curve when an n-composite processed wire is heat-treated at 800 qo for 100 hours. 1: Nb/Cu-7%Sn, 2: Nb-0.5%Si/
Cu-7%Sn, 3:Nb-1%Si/Cu-7%Sn
, 4:Nb-0.5%Si-Cu-5%Sn-4%Ga
, 5: Nb-1%Si, Cu-5%Sn-4%Ga. bag' figure

Claims (1)

【特許請求の範囲】 1 ニオブに0.1〜3原子%の珪素を含む合金体と、
銅に2〜9原子%の錫を含む合金体との複合体を、線引
き、圧延あるいは管引きなどにより線、テープあるいは
管状などに加工した後、600〜900℃で1分〜20
0時間熱処理を行い複合境界にNb_3Sn化合物を生
成させることを特徴とするNb_3Sn複合加工材の製
造法。 2 ニオブに0.1〜3原子%の珪素を含む合金体と、
銅に2〜9原子%の錫と0.1〜15原子%のガリウム
または0.1〜18原子%のアルミニウムを含む合金体
との複合体を、線引き、圧延あるいは管引きなどにより
線、テープあるいは管状に加工した後、600〜900
℃で1分〜200時間熱処理を行い複合体境界面にNb
_3n化合物を生成させることを特徴とするNb_3S
n複合加工材の製造法。
[Claims] 1. An alloy body containing 0.1 to 3 atomic percent silicon in niobium;
A composite of copper and an alloy containing 2 to 9 at% tin is processed into a wire, tape, or tube shape by drawing, rolling, or tube drawing, and then heated at 600 to 900°C for 1 to 20 minutes.
A method for producing a processed Nb_3Sn composite material, which comprises performing heat treatment for 0 hours to generate a Nb_3Sn compound at the composite boundary. 2. An alloy body containing 0.1 to 3 atomic percent silicon in niobium,
A composite of copper with an alloy containing 2 to 9 at% tin and 0.1 to 15 at% gallium or 0.1 to 18 at% aluminum is made into a wire or tape by drawing, rolling, or tube drawing. Or after processing into a tubular shape, 600~900
Heat treatment was performed at ℃ for 1 minute to 200 hours to add Nb to the interface of the composite.
Nb_3S characterized by producing a _3n compound
n Manufacturing method for composite processed materials.
JP55128550A 1980-09-18 1980-09-18 Manufacturing method of Nb↓3Sn composite material Expired JPS60422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55128550A JPS60422B2 (en) 1980-09-18 1980-09-18 Manufacturing method of Nb↓3Sn composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55128550A JPS60422B2 (en) 1980-09-18 1980-09-18 Manufacturing method of Nb↓3Sn composite material

Publications (2)

Publication Number Publication Date
JPS5754259A JPS5754259A (en) 1982-03-31
JPS60422B2 true JPS60422B2 (en) 1985-01-08

Family

ID=14987523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55128550A Expired JPS60422B2 (en) 1980-09-18 1980-09-18 Manufacturing method of Nb↓3Sn composite material

Country Status (1)

Country Link
JP (1) JPS60422B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2572150Y2 (en) * 1991-03-11 1998-05-20 川崎重工業株式会社 Boat rudder

Also Published As

Publication number Publication date
JPS5754259A (en) 1982-03-31

Similar Documents

Publication Publication Date Title
JPS6150136B2 (en)
US4419145A (en) Process for producing Nb3 Sn superconductor
Suenaga et al. Fabrication techniques and properties of multifilamentary Nb 3 Sn conductors
JPS60423B2 (en) Manufacturing method of Nb↓3Sn composite material
US4323402A (en) Method for producing superconducting Nb3 Sn wires
JPS648698B2 (en)
US4341572A (en) Method for producing Nb3 Sn superconductors
JPS60422B2 (en) Manufacturing method of Nb↓3Sn composite material
JP3945600B2 (en) Method for producing Nb 3 Sn superconducting wire
Luhman et al. Improvements in Critical Current Densities of Nb3Sn by Solid Solution Additions of Sn in Nb
JPH0349163B2 (en)
JPS60421B2 (en) Manufacturing method of Nb↓3Sn composite superconductor
JPH0317332B2 (en)
JPS61199060A (en) Manufacture of nb3sn-diffused wire rod
JP3046828B2 (en) Nb Lower 3 Method for Manufacturing Sn Composite Superconductor
Tachikawa et al. Process for producing Nb 3 Sn superconductor
JPS607704B2 (en) Manufacturing method of Nb↓3Sn diffusion wire
Tachikawa et al. Method for producing superconducting Nb3Sn wires
Tachikawa Recent developments in high-field superconductors
JPS6249756B2 (en)
JPH0316725B2 (en)
JPS59108202A (en) Nb3sn compound superconductive wire and method of producing same
JPH0315285B2 (en)
JPS6212607B2 (en)
JPS58189908A (en) Method of producing fibrous dispersion type nb3sn superconductive wire material