JPS6249756B2 - - Google Patents

Info

Publication number
JPS6249756B2
JPS6249756B2 JP52070467A JP7046777A JPS6249756B2 JP S6249756 B2 JPS6249756 B2 JP S6249756B2 JP 52070467 A JP52070467 A JP 52070467A JP 7046777 A JP7046777 A JP 7046777A JP S6249756 B2 JPS6249756 B2 JP S6249756B2
Authority
JP
Japan
Prior art keywords
atomic
wire
alloy
magnetic field
bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52070467A
Other languages
Japanese (ja)
Other versions
JPS545691A (en
Inventor
Takashi Yasukochi
Ryozo Akihama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKU YAKIN KK
Original Assignee
SHINKU YAKIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKU YAKIN KK filed Critical SHINKU YAKIN KK
Priority to JP7046777A priority Critical patent/JPS545691A/en
Publication of JPS545691A publication Critical patent/JPS545691A/en
Publication of JPS6249756B2 publication Critical patent/JPS6249756B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明はNb3(Sn1-xMx)金属間化合物からな
る超電導体の製造法に関する。 従来の技術 現在使用されている金属間化合物超電導マグネ
ツト材料は、Nb3Sn、V3Gaの2種であり、これ
らの材料は気相反応法または拡散による固体反応
によつて製造されている。 上記の如き公知の超電導体の特性は、下記の表
1に列記する通りである。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for producing a superconductor made of an Nb 3 (Sn 1-x M x ) intermetallic compound. BACKGROUND ART There are two types of intermetallic superconducting magnet materials currently in use: Nb 3 Sn and V 3 Ga, and these materials are manufactured by a gas phase reaction method or a solid state reaction by diffusion. The properties of the above-mentioned known superconductors are listed in Table 1 below.

【表】 上記のような特性を有する公知のNb3Sn、
V3Gaは、その臨界磁場の値が220KGであるため
に、これ等公知材料を用いて製造した超電導マグ
ネツトの発生し得る磁場は、4.2〓で最高175KG
である。 発明が解決しようとする問題点 しかるに、より高い200KG程度の磁場を発生さ
せるためには、上記の如き公知の超電導体線材で
は実現不可能であり、より高い臨界磁場を有する
超電導体材料の開発が望まれている。一方におい
て近年、臨界磁場の高い超電導材料、たとえば、
Nb3(Al0.75Ge0.25):Hc2(4.2〓)=410KG、
PbMo5S6:Hc2(4.2〓)=600KG等の物質が見い
出されているが、製造法が非常に特殊であり、実
用超電導材として用いることが出来ない。 問題点を解決するための手段 本発明の方法は、前記の如き公知材料の諸欠点
を克服し、かつ改良した超電導体の製造法に関す
るものであり、例えば臨界磁場と臨界温度に関し
ては表2のようなデータが得られている。
[Table] Known Nb 3 Sn with the above characteristics,
V 3 Ga has a critical magnetic field value of 220KG, so the magnetic field that can be generated by superconducting magnets manufactured using these known materials is 4.2〓, which is a maximum of 175KG.
It is. Problems to be Solved by the Invention However, in order to generate a higher magnetic field of about 200 KG, it is impossible to generate a higher magnetic field with the known superconductor wires as mentioned above, and it is necessary to develop a superconductor material with a higher critical magnetic field. desired. On the other hand, in recent years, superconducting materials with high critical magnetic fields, such as
Nb 3 ( Al 0.75 Ge 0.25 ): Hc 2 ( 4.2〓 ) = 410KG,
Substances such as PbMo 5 S 6 :Hc 2 (4.2〓)=600KG have been found, but the manufacturing method is very special and they cannot be used as practical superconducting materials. Means for Solving the Problems The method of the present invention overcomes the drawbacks of the known materials as described above and relates to an improved method for producing superconductors. For example, regarding critical magnetic field and critical temperature, Table 2 shows Such data has been obtained.

【表】 また本発明の製造法で得られた超電導体材料
Nb3(Sn1-xInx)の高磁場臨界電流特性を、公知
のNb3Snと対比した曲線を添附図面に示す。図中
曲線Aは本発明のNb3(Sn1-xInx)の特性を、曲
線Bは公知のNb3Snの特性を示す。 本発明製造法の要旨とするところは、前記特許
請求の範囲各項に明記した通りであるが、各種製
造条件を限定した理由を以下に詳述する。 (1) 本発明において焼鈍温度を900゜−1200℃と
限定したのは、Sn浴又はSn1-x″Mx″浴中におい
てβ−W型化合物を拡散形成するための活性化
エネルギーは温度に換算して約900℃以上であ
り、この温度より低い温度においては、β−W
型化合物を形成しない。又1200℃以上の拡散温
度では結晶粒界が粗大化し、磁束のピン止め力
を弱め、臨界電流密度Jcを低下させるためであ
る。 (2) Nb3(Sn1-xMx)においてxの範囲を前述の
ごとく限定した理由は、この濃度範囲において
は超伝導特性、特にHc2に対して顕著な効果を
もたらす。これ以上の濃度範囲では特性が少し
劣化し又拡散形成させにくい。 (3) b、b族金属M(Ga、In、Tl及びPb)
を添加することによりHc2は急激に増大する。
これはb、b族金属のみが化合物中におけ
るSnと置換し起し残留電気抵抗を増大させ、
Hc2を増大させる。b、b族金属以外の金
属がSnと置換を起こすためには、非常に大き
な活性化エネルギーが必要であり、通常の方法
では作れないためである。 (4) B=0.01〜30原子%と限定したのは、この濃
度以上では圧延、線引きが困難となるためであ
る。 (5) 焼鈍時間を5分〜200時間と巾をもたせたの
は、化合物層の厚さ及び結晶粒界の大きさが反
応温度と反応時間の函数であり、反応時間が高
く反応時間が長い程、化合物層の厚みは増しか
つ、結晶粒界が粗大化する。臨界電流Icは厚み
と結晶粒界の大きさとのかねあいにおいて最適
化することが出来るが、金属Mの種類、xの範
囲等により最適化の条件は異る。例えばGaは
比較的短時間(5分〜10分)の焼鈍時間で最適
化出来る。 (6) x″の原子%を0.01〜50原子%と限定した理由
はx″を50原子%以上とすると、M原子のNbへ
の拡散が逆に阻害されるためである。 本発明の方法により、製造された線材は、臨界
温度においては大きな変化を示さないにも拘ら
ず、臨界磁場については、前記化合物においてx
=30原子%の場合、250KG以上、x=5原子%の
場合、300KGを得ることができる。しかもこの線
材は、比較的低温度での拡散法で製造されるため
に、Nb3Snと同程度の高い臨界電流密度が、低磁
場より高磁場に亘つて保持されていることが確認
できた。本発明方法は上記以外にパルスマグネツ
トや交流用の多芯線の製造にも有効である特徴を
有する。 以上金属ニオブと周期率表におけるb及び
b族金属M(Ga、In、Tl及びPb)の1種との合
金について述べたが、前記金属ニオブを遷移金属
(Ti、Zr、Hf及びTa)の1種又は2種以上を含有
するニオブ基合金としても同等の作用効果を達成
し得るものである。 従つて、本発明の方法で製造された超電導体線
材は、現在のNb3SnまたはV3Ga線材では達成し
得ない200KGにも達する超高磁場を発生しうる超
電導マグネツト材料として用いることができる。 本発明方法により具体的実施例を以下に詳述す
る。 Nb基合金および、浴の組成比は、前述のごと
き範囲の任意の値を取りうる。また、本発明をこ
れ等実施例に限定するものではない。 実施例 1 Nb1-BMB〔M=In、B=4原子%〕を圧延し、
幅5mm、厚さ100μmのテープを作り、Sn浴中で
950℃−20分の熱処理を行ないNb3(Sn1-xMx
{M=In、x=0.05}を形成させた。このように
して作つた線材の超電導特性はTc=18〓、Hc2
290KGであつた。 実施例 2 Nb1-BMB〔M=In、B=4原子%〕を圧延し、
幅5mm、厚さ100μmのテープを作り、
Sn1-x″Mx″〔x″=10原子%〕浴中で950℃−20分
の熱処理を行なつた。このようにして作つた線材
の超電導特性はTc=18〓、Hc2=290KGであつ
た。 実施例 3 直径20mmのCu1-ySny{y=5原子%}合金棒
に、長手方向に貫通する内径4mmの孔を7筒所設
け、その孔にNb1-BMB{M=In、B=4原子%}
を挿入し、外径が0.1mmになるまで伸線して得ら
れる線材を7本あみにし、420℃の溶融
Sn1-x″Mx″〔x″=4原子%、M=In〕浴に浸漬
し、これをアルゴンガス等の不活性ガス中、850
℃の温度で100時間熱処理することによつて基材
たるニオブとの境界部附近にβ−W型のNb3
(Sn1-xMx){x=5原子%}金属間化合物を形成
させた。この場合Tc=18〓、Hc2=290KGであつ
た。
[Table] Superconductor materials obtained by the production method of the present invention
The attached drawing shows a curve comparing the high-field critical current characteristics of Nb 3 (Sn 1-x In x ) with that of known Nb 3 Sn. In the figure, curve A shows the characteristics of Nb 3 (Sn 1-x In x ) of the present invention, and curve B shows the characteristics of known Nb 3 Sn. The gist of the manufacturing method of the present invention is as specified in each claim above, and the reasons for limiting the various manufacturing conditions will be explained in detail below. (1) The reason why the annealing temperature is limited to 900°-1200°C in the present invention is that the activation energy for diffusing and forming the β-W type compound in the Sn bath or Sn 1-x ″M x ″ bath is It is about 900℃ or higher when converted to
does not form type compounds. Further, at a diffusion temperature of 1200° C. or higher, the grain boundaries become coarse, weakening the pinning force of the magnetic flux and lowering the critical current density Jc. (2) The reason for limiting the range of x in Nb 3 (Sn 1-x M x ) as described above is that this concentration range has a significant effect on superconductivity, especially Hc 2 . If the concentration exceeds this range, the characteristics will deteriorate slightly and diffusion formation will be difficult. (3) b, b group metal M (Ga, In, Tl and Pb)
By adding , Hc 2 increases rapidly.
This occurs because only group b and b metals replace Sn in the compound, increasing the residual electrical resistance.
Increases Hc2 . This is because a very large activation energy is required for metals other than group b and b metals to cause substitution with Sn, and it cannot be produced by normal methods. (4) The reason why B is limited to 0.01 to 30 atomic % is that rolling and wire drawing become difficult at concentrations above this concentration. (5) The reason why the annealing time ranges from 5 minutes to 200 hours is because the thickness of the compound layer and the size of grain boundaries are functions of the reaction temperature and reaction time, and the reaction time is high and the reaction time is long. As the thickness increases, the thickness of the compound layer increases and the grain boundaries become coarser. The critical current Ic can be optimized in consideration of the thickness and the size of the grain boundaries, but the optimization conditions differ depending on the type of metal M, the range of x, etc. For example, Ga can be optimized with a relatively short annealing time (5 to 10 minutes). (6) The reason why the atomic % of x'' is limited to 0.01 to 50 atomic % is that if x'' is 50 atomic % or more, the diffusion of M atoms into Nb will be inhibited. Although the wire manufactured by the method of the present invention does not show a large change in the critical temperature, the critical magnetic field is
If x = 30 atomic %, 250 kg or more can be obtained, and if x = 5 atomic %, 300 kg can be obtained. Moreover, because this wire is manufactured using a diffusion method at a relatively low temperature, it was confirmed that a high critical current density comparable to that of Nb 3 Sn is maintained over a high magnetic field rather than a low magnetic field. . In addition to the above, the method of the present invention is also effective in manufacturing pulsed magnets and AC multifilament wires. The above has described an alloy of metallic niobium with one of the b and b group metals M (Ga, In, Tl and Pb) in the periodic table. A niobium-based alloy containing one or more types can also achieve the same effects. Therefore, the superconducting wire manufactured by the method of the present invention can be used as a superconducting magnet material capable of generating an ultra-high magnetic field of up to 200 KG, which cannot be achieved with current Nb 3 Sn or V 3 Ga wire. . Specific examples of the method of the present invention will be described in detail below. The composition ratio of the Nb-based alloy and the bath can take any value within the above-mentioned range. Furthermore, the present invention is not limited to these examples. Example 1 Nb 1-B M B [M=In, B=4 atomic %] was rolled,
A tape with a width of 5 mm and a thickness of 100 μm was made and placed in an Sn bath.
After heat treatment at 950℃ for 20 minutes, Nb 3 (Sn 1-x M x )
{M=In, x=0.05} was formed. The superconducting properties of the wire made in this way are Tc = 18〓, Hc 2 =
It was 290KG. Example 2 Nb 1-B M B [M=In, B=4 atomic %] was rolled,
Make a tape with a width of 5 mm and a thickness of 100 μm,
Heat treatment was performed at 950°C for 20 minutes in a Sn 1-x ″M x ″ [x″ = 10 atomic %] bath. The superconducting properties of the wire made in this way were Tc = 18〓, Hc 2 = The weight was 290KG. Example 3 Seven holes with an inner diameter of 4 mm passing through the longitudinal direction were provided in a Cu 1-y Sn y {y=5 at%} alloy rod with a diameter of 20 mm, and Nb 1-B was inserted into the holes. M B {M=In, B=4 atomic%}
Insert the wire and draw it until the outer diameter becomes 0.1mm.The resulting wire rod is made into a net, and melted at 420℃.
Sn 1-x ″M x ″ [x″ = 4 atomic %, M = In] bath, and in an inert gas such as argon gas, 850
By heat treatment for 100 hours at a temperature of
An intermetallic compound (Sn 1-x M x ) {x=5 atomic %} was formed. In this case, Tc = 18〓 and Hc 2 = 290KG.

【図面の簡単な説明】[Brief explanation of the drawing]

添附図面は本発明方法で得られた超電導体材料
の高磁場臨界電流特性を、公知のNb3Snと対比し
た図表であり、縦軸は臨界電流を示し横軸は外部
磁場を示す。
The accompanying drawing is a chart comparing the high-field critical current characteristics of the superconductor material obtained by the method of the present invention with that of known Nb 3 Sn, where the vertical axis shows the critical current and the horizontal axis shows the external magnetic field.

Claims (1)

【特許請求の範囲】 1 金属ニオブと周期率表におけるb及びb
族金属(M)の1種との合金Nb1-BMB〔上式に
おいてB=0.01〜30原子%、M=Ga、In、Tl及
びPb〕を造り、該合金を圧延、伸線等に加工
し、ついで錫浴又は錫と前記金属(M)との合金
Sn1-x″Mx″〔上式においてx″=0.01〜50原子%、
M=Ga、In、Tl及びPb〕浴中に浸漬し、900゜〜
1200℃の温度で焼鈍してβ−W型化合物Nb3
(Sn1-xMx)〔上式においてx=0.01〜50原子%、
M=Ga、Io、Tl及びPb〕を形成することを特徴
とする金属間化合物超電導体の製造法。 2 圧延、伸線加工においてテープ又は線材に加
工する特許請求の範囲第1項記載の金属間化合物
超電導体Nb3(Sn1-xMx)の製造法。 3 焼鈍時間が5分〜200時間である特許請求の
範囲第1項記載の金属間化合物超電導体Nb3
(Sn1-xMx)の製造法。
[Claims] 1 Niobium metal and b and b in the periodic table
An alloy Nb 1-B M B [in the above formula, B = 0.01 to 30 atomic %, M = Ga, In, Tl, and Pb] with one type of group metal (M) is made, and the alloy is rolled, wire drawn, etc. and then in a tin bath or an alloy of tin and the metal (M).
Sn 1-x ″M x ″ [in the above formula, x″ = 0.01 to 50 atomic%,
M=Ga, In, Tl and Pb] Immersed in bath, 900° ~
β-W type compound Nb3 by annealing at a temperature of 1200℃
(Sn 1-x M x ) [In the above formula, x = 0.01 to 50 atomic%,
A method for producing an intermetallic compound superconductor, characterized in that M=Ga, Io , Tl, and Pb]. 2. A method for producing intermetallic compound superconductor Nb 3 (Sn 1-x M x ) according to claim 1, which is processed into a tape or wire rod by rolling or wire drawing. 3. Intermetallic compound superconductor Nb 3 according to claim 1, wherein the annealing time is 5 minutes to 200 hours.
(Sn 1-x M x ) manufacturing method.
JP7046777A 1977-06-16 1977-06-16 Method of producing intermetal compound superconductor nb3*sn11xmx* Granted JPS545691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7046777A JPS545691A (en) 1977-06-16 1977-06-16 Method of producing intermetal compound superconductor nb3*sn11xmx*

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7046777A JPS545691A (en) 1977-06-16 1977-06-16 Method of producing intermetal compound superconductor nb3*sn11xmx*

Publications (2)

Publication Number Publication Date
JPS545691A JPS545691A (en) 1979-01-17
JPS6249756B2 true JPS6249756B2 (en) 1987-10-21

Family

ID=13432345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7046777A Granted JPS545691A (en) 1977-06-16 1977-06-16 Method of producing intermetal compound superconductor nb3*sn11xmx*

Country Status (1)

Country Link
JP (1) JPS545691A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020231084A1 (en) * 2019-05-10 2020-11-19 한국단자공업 주식회사 Unlocking device of charging connector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107769A (en) * 1979-02-09 1980-08-19 Natl Res Inst For Metals Manufacture of nb3 sn diffused wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020231084A1 (en) * 2019-05-10 2020-11-19 한국단자공업 주식회사 Unlocking device of charging connector

Also Published As

Publication number Publication date
JPS545691A (en) 1979-01-17

Similar Documents

Publication Publication Date Title
Tachikawa et al. Composite‐processed Nb3Sn with titanium addition to the matrix
US4435228A (en) Process for producing NB3 SN superconducting wires
US3817746A (en) Ductile superconducting alloys
Takeuchi et al. Effects of the IVa element addition on the composite-processed superconducting Nb3Sn
US4323402A (en) Method for producing superconducting Nb3 Sn wires
JPH06196031A (en) Manufacture of oxide superconductive wire
US4385942A (en) Method for producing Nb3 Sn superconductors
JPS6117325B2 (en)
Sekine et al. Studies on the composite processed Nb-Hf/Cu-Sn-Ga high-field superconductors
US4341572A (en) Method for producing Nb3 Sn superconductors
JPS6249756B2 (en)
US3268373A (en) Superconductive alloys
US3303065A (en) Superocnductive alloy members
JP3945600B2 (en) Method for producing Nb 3 Sn superconducting wire
Smathers A15 Superconductors
Tachikawa et al. Effects of the IVa element additions on composite-processed Nb 3 Sn
Xu et al. Superconducting wires and methods of making thereof
JP3046828B2 (en) Nb Lower 3 Method for Manufacturing Sn Composite Superconductor
Sekine et al. Superconducting current carrying capacities of the composite-processed Nb-Hf/Cu-Sn-Ga in high magnetic fields
DE1811926B1 (en) SUPRAL CONDUCTING VANADIUM ALLOY AND METHOD FOR MANUFACTURING IT
JPS5828683B2 (en) NBYSN1-XALX
JPH0129867B2 (en)
JPH0317332B2 (en)
JPS60422B2 (en) Manufacturing method of Nb↓3Sn composite material
Tachikawa Improvements in Current-Carrying Capacities of A15 Superconductors in High Magnetic Fields