JPS5828683B2 - NBYSN1-XALX - Google Patents

NBYSN1-XALX

Info

Publication number
JPS5828683B2
JPS5828683B2 JP49034605A JP3460574A JPS5828683B2 JP S5828683 B2 JPS5828683 B2 JP S5828683B2 JP 49034605 A JP49034605 A JP 49034605A JP 3460574 A JP3460574 A JP 3460574A JP S5828683 B2 JPS5828683 B2 JP S5828683B2
Authority
JP
Japan
Prior art keywords
xalx
wire
critical
magnetic field
niobium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49034605A
Other languages
Japanese (ja)
Other versions
JPS50128992A (en
Inventor
昂 安河内
信光 碓井
良三 秋浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKU YAKIN KK
Original Assignee
SHINKU YAKIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKU YAKIN KK filed Critical SHINKU YAKIN KK
Priority to JP49034605A priority Critical patent/JPS5828683B2/en
Publication of JPS50128992A publication Critical patent/JPS50128992A/ja
Publication of JPS5828683B2 publication Critical patent/JPS5828683B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 本発明はNbySnl−xAAx金属間化合物からなる
超電導体の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a superconductor comprising a NbySnl-xAAx intermetallic compound.

現在使用されている金属間化合物超電導マグネット材料
は、Nb3Sn 、 V3Ga の2種であり、これら
の材料は気相反応法または拡散による固体反応法によっ
て製造されている。
There are two types of intermetallic superconducting magnet materials currently used: Nb3Sn and V3Ga, and these materials are manufactured by a gas phase reaction method or a solid state reaction method using diffusion.

上記の如き公知の超電導体の特性は下記の表1に列記す
る通りである。
The properties of the above-mentioned known superconductors are listed in Table 1 below.

上記のような特性を有する公知のNb3 Sn 。Known Nb3Sn having the above characteristics.

V3 G aは、その臨界磁場の値が220KGである
ために、これら公知材料を用いて製造した超電導マグネ
ットの発生し得る磁場は、4.2°にで最高150KG
である。
V3 Ga has a critical magnetic field value of 220 KG, so the maximum magnetic field that can be generated by superconducting magnets manufactured using these known materials is 150 KG at 4.2°.
It is.

しかるに、より高い200KG程度の磁場を発生させる
ためには、上記の如き公知の超電導体線材では実験不用
能であり、より高い臨界磁場(少なくとも200 KG
以上)を発生し得る超電導体材料の開発が望1れている
However, in order to generate a higher magnetic field of about 200 KG, it is impossible to experiment with the known superconductor wires as described above, and a higher critical magnetic field (at least 200 KG) is required.
The development of superconducting materials that can generate the above) is desired.

一方に3いて近年°に以上の臨界温度を有する超電導体
材料が幾種類か開発され、これらのうち若干のものは前
述したような所望の高い臨界磁場を有している。
On the other hand, in recent years several types of superconductor materials having critical temperatures above 3°C have been developed, and some of these have the desired high critical magnetic fields as mentioned above.

これらの例としてはNb5(Alo、75Ge0.25
) :4]OKGおよびNb3Al:300KGを挙
げることができる。
Examples of these include Nb5(Alo, 75Ge0.25
) :4] OKG and Nb3Al:300KG.

しかし乍ら、これらの材料は1500°C以上の高温処
理によってのみ製造しうるため、実用超電導マグネット
材料に要求される他の重要な要素である、高い臨界電流
缶度を具備し得ない。
However, since these materials can only be manufactured by high-temperature treatment at 1500° C. or higher, they cannot have a high critical current capacity, which is another important element required for practical superconducting magnet materials.

このような理由によって上記組成の超電導材料は実用化
し得ない現状である。
For these reasons, the superconducting material having the above composition cannot be put to practical use at present.

本発明の方法は、前記の如き公知材料の諸欠点を克服し
かつ改良した超電導体の製造法に関するものであり、本
発明の要旨とするところは前述の如く、金属銅と金属ニ
オブまた0、05−10原子咎の範囲内でチタニウム、
ジルコニウム、ハフニウム筐たはタンタルの1種もしく
は2種以上を含有するニオブ基合金とを組合せて一体と
し、これを圧延、伸線等によりテープまたは線材に加工
し、350°〜800°Cの溶融5nl−xfl’−l
x’浴(x’0.1〜60原子%)中に浸漬し、ついで
4500〜1000℃の温度で10分間〜1000時間
焼鈍してβ−W型NbySn1−xAlx(y −=
3〜4 、x=1〜30原子係)の原子間化合物を形成
することを特徴とする超電導体の製造法である。
The method of the present invention relates to a method for manufacturing a superconductor that overcomes the drawbacks of the known materials as described above and is improved. Titanium within the range of 05-10 atomic charges,
A niobium-based alloy containing one or more of zirconium, hafnium, or tantalum is combined into a single body, processed into a tape or wire rod by rolling, wire drawing, etc., and melted at 350° to 800°C. 5nl-xfl'-l
x' bath (x'0.1 to 60 at%) and then annealed at a temperature of 4500 to 1000°C for 10 minutes to 1000 hours to obtain β-W type NbySn1-xAlx (y -=
3 to 4, x=1 to 30 atoms).

本発明の方法により、製造された線材は、臨界温度にお
いては大きな変化を示さないにも拘らず、臨界磁場((
ついては、前記化合物にち・いてX=30原子%の場合
、250KG以上、x=5原子優の場合、300KGを
得ることができる。
Although the wire manufactured by the method of the present invention does not show a large change at the critical temperature, the critical magnetic field ((
Therefore, in the case of the above-mentioned compound, when X=30 atomic %, 250 KG or more can be obtained, and when x=5 atoms, 300 KG can be obtained.

しかもこの線材は、比較的低温度での拡散法で製造され
るために、Nb3Snと同程度の高い臨界電流音度が、
低磁場より高磁場に亘って保持されていることが確認で
きた。
Moreover, since this wire is manufactured using a diffusion method at a relatively low temperature, it has a critical current sound intensity as high as that of Nb3Sn.
It was confirmed that it was retained in a high magnetic field rather than a low magnetic field.

本発明方法は」−記以外にパレスマグネットや交流用の
多芯線の製造にも有効である特徴を有する。
In addition to the above, the method of the present invention has a feature that it is also effective for manufacturing palace magnets and multicore wires for alternating current.

従って、本発明方法で製造された超電導体線材は、現在
のNb5SrrtたばV 3 Ga 線材では達成し得
ない200KGにも達する超高磁場を発生しうる超電導
マグネット材料として用いることができる。
Therefore, the superconductor wire manufactured by the method of the present invention can be used as a superconducting magnet material capable of generating an extremely high magnetic field of up to 200 KG, which cannot be achieved with the current Nb5Srrt, V 3 Ga wire.

本発明方法による具体的実施例を以下に詳述するが、本
発明をこれら実施例に限定するものではない。
Specific examples of the method of the present invention will be described in detail below, but the present invention is not limited to these examples.

実施例 1 直径12mmの銅棒に、長手方向に貫通する3個の内径
約4間の孔を設け、夫々の孔に直径4mvtのニオブ棒
を挿入した後、中間焼鈍なしに、前記の組合せ体を外径
が0.25mmとなる1で伸線加工し、更に錫耘よびア
ルミニウムを補う目的で、420℃の溶融浴5n4−x
Alx’ (x’−約10原子咎)中に浸漬した後、不
活性ガス雰囲気中で750℃の温度で150時間熱処理
することにより、基材たるニオブと組合ピた銅との境界
部附近にβ−W型のNbySnl−XAlX(y−3〜
4、X:10原子係)金属間化合物を形成させた。
Example 1 A copper rod with a diameter of 12 mm was provided with three longitudinally penetrating holes with an inner diameter of approximately 4 mm, and after inserting a niobium rod with a diameter of 4 mvt into each hole, the above combination was produced without intermediate annealing. 1 to have an outer diameter of 0.25 mm, and in order to supplement the tin and aluminum, a molten bath of 5n4-x at 420°C was used.
After being immersed in Alx'(x' - about 10 atoms), heat treatment was performed at a temperature of 750°C for 150 hours in an inert gas atmosphere to form a bond near the boundary between the base material niobium and the composite copper. β-W type NbySnl-XAlX (y-3~
4.X: 10 atoms) An intermetallic compound was formed.

このように処理した線材の超電導特性はTc −17°
K 、Hc2=270KGであった。
The superconducting property of the wire treated in this way is Tc -17°
K, Hc2=270KG.

実施例 2 直径12關の銅棒の中心に、長手方向に貫通する内径約
7mmの孔を設け、この孔に[亘径7間のニオブ棒を挿
入し、この組合せ体を外径が0.1 mmになる1で伸
線して得た線材を3本編みとし、420°Cの溶融Sn
、−xAlx’浴(x’−5原子係)に浸漬し、これを
内径約0.25mmの銅パイプに挿入してダイスを通し
て締りを加え、または更に伸線加工した後、真空中で7
50℃の温度で150時間熱処理することによって、基
材たるニオブと組合せた銅との境界部附近にβ−W型の
NbySn 1−xAlx(y=3〜4.x=5原子係
)金属間化合物を形成させた。
Example 2 A hole with an inner diameter of about 7 mm passing through the longitudinal direction was provided in the center of a copper rod with a diameter of 12 mm, a niobium rod with a diameter of 7 mm was inserted into this hole, and the assembled body was made with an outer diameter of 0 mm. The wire rod obtained by drawing 1 to a thickness of 1 mm was knitted into three strands, and molten Sn was heated at 420°C.
, -xAlx' bath (x'-5 atoms), inserted into a copper pipe with an inner diameter of about 0.25 mm, tightened through a die, or further wire-drawn, and then heated in a vacuum for 7
By heat treatment at a temperature of 50°C for 150 hours, β-W type NbySn 1-xAlx (y = 3 to 4. A compound was formed.

上記の処理によって得た線材の超電導特性はTc=17
.5°に、Hc2=300KGであった。
The superconducting property of the wire obtained by the above treatment is Tc=17
.. At 5°, Hc2=300KG.

実施例 3〜7 実施例1および2の倒れかの方法で、各変数を種々変化
させた例を表2i/i:示す。
Examples 3 to 7 Table 2i/i shows examples in which each variable was varied in the same manner as in Examples 1 and 2.

これらの結果から得られた超電導特性を第1図および第
2図に示す。
The superconducting properties obtained from these results are shown in FIGS. 1 and 2.

これらの結果から明らかな如く、方法釦よび変数を変化
させた場合には、臨界温度と臨界磁物は最終的に形成さ
れたβ−W型NbySn1−XAlX(y3〜4、x
= 0〜50原子%)の組成のXのみに依存し、方法や
変数には殆んど依存しないことが判明した。
As is clear from these results, when the method buttons and variables are changed, the critical temperature and critical magnetic material are
It was found that it depends only on the composition of X (= 0 to 50 at.

NbySnl−xAlX の変化により臨界温度と臨界
磁物を表3に示す。
Table 3 shows the critical temperature and critical magnetism depending on the change in NbySnl-xAlX.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はβ−W型NbySn1−XAlX(y−3〜4
゜x=0〜1)の臨界温区の組成依存性を示すグラフ、
第2図は同じくβ−W型NbySn1−XAlX(y−
3〜4.x=0〜1)の臨界磁場の組成依存性をなすグ
ラフである。
Figure 1 shows β-W type NbySn1-XAlX (y-3~4
A graph showing the composition dependence of the critical temperature area of ゜x=0 to 1),
Figure 2 also shows β-W type NbySn1-XAlX (y-
3-4. 2 is a graph showing the composition dependence of the critical magnetic field for x=0 to 1).

Claims (1)

【特許請求の範囲】[Claims] 1 金属銅と金属ニオブまた0、05−10原子俤の範
囲内でチタニウム、ジルコニウム、ハフニウム會たはタ
ンタルの1種もしくは2種以上を含有するニオブ基合金
とを組合せて一体とし、これを圧延、伸線等によりテー
プまたは線材に加工し、350°〜800℃の溶融5n
1−X/AlX′浴(X/−〇、1〜60原子咎)中に
浸漬し、ついで450゜〜1000℃の温度で10分間
〜1000時間焼鈍してβ−W型NbySn4−xAl
x (y = 3〜4 tニーJ〜30原子%)の金属
間化合物を形成することを特徴とする超電導体の製造法
1 Combining metallic copper and metallic niobium or a niobium-based alloy containing one or more of titanium, zirconium, hafnium or tantalum within the range of 0,05-10 atoms, and rolling this. Processed into tape or wire by wire drawing etc., melted at 350° to 800°C.
β-W type NbySn4-xAl
A method for producing a superconductor, characterized by forming an intermetallic compound of
JP49034605A 1974-03-29 1974-03-29 NBYSN1-XALX Expired JPS5828683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49034605A JPS5828683B2 (en) 1974-03-29 1974-03-29 NBYSN1-XALX

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49034605A JPS5828683B2 (en) 1974-03-29 1974-03-29 NBYSN1-XALX

Publications (2)

Publication Number Publication Date
JPS50128992A JPS50128992A (en) 1975-10-11
JPS5828683B2 true JPS5828683B2 (en) 1983-06-17

Family

ID=12418978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49034605A Expired JPS5828683B2 (en) 1974-03-29 1974-03-29 NBYSN1-XALX

Country Status (1)

Country Link
JP (1) JPS5828683B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5669721A (en) * 1979-11-12 1981-06-11 Nat Res Inst Metals Method of manufacturing nb3sn superconductor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4896093A (en) * 1972-03-21 1973-12-08

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4896093A (en) * 1972-03-21 1973-12-08

Also Published As

Publication number Publication date
JPS50128992A (en) 1975-10-11

Similar Documents

Publication Publication Date Title
US3429032A (en) Method of making superconductors containing flux traps
US3465430A (en) Method of making superconductor stock
US4917965A (en) Multifilament Nb3 Al superconducting linear composite articles
JPS6150136B2 (en)
JPH0768605B2 (en) Nb (bottom 3) Method for manufacturing Sn-based superconducting wire
JPS5823110A (en) Method of producing nb3sn superconductive wire material
JPS60423B2 (en) Manufacturing method of Nb↓3Sn composite material
US3676577A (en) Superconductors containing flux traps
US4002504A (en) Multifilament superconductors
US3465429A (en) Superconductors
US6376099B1 (en) CU-containing NB3A1 multifilamentary superconductive wire and process for producing the same
JPS5828683B2 (en) NBYSN1-XALX
US3996662A (en) Method for the manufacture of a superconductor having an intermetallic two element compound
US3358361A (en) Superconducting wire
US4321749A (en) Method for producing superconductors
JP3945600B2 (en) Method for producing Nb 3 Sn superconducting wire
JPH0644427B2 (en) Nb with ultra-fine multi-layer structure ▼ Bottom 3 ▼ Method for manufacturing A1 superconducting wire
JPS5828684B2 (en) NBYSN1-XALX
US4215465A (en) Method of making V3 Ga superconductors
JPS6249756B2 (en)
JPH03283322A (en) Manufacture of nb3al superconductor
JPS6021212B2 (en) Method for manufacturing superconducting materials
JPH01140521A (en) Manufacture of nb3al compound superconductive wire rod
JPH0317332B2 (en)
JPH024931A (en) Manufacture of nb3x super conducting material