JPH0129867B2 - - Google Patents

Info

Publication number
JPH0129867B2
JPH0129867B2 JP60037474A JP3747485A JPH0129867B2 JP H0129867 B2 JPH0129867 B2 JP H0129867B2 JP 60037474 A JP60037474 A JP 60037474A JP 3747485 A JP3747485 A JP 3747485A JP H0129867 B2 JPH0129867 B2 JP H0129867B2
Authority
JP
Japan
Prior art keywords
bath
wire
tape
magnetic field
compound layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60037474A
Other languages
Japanese (ja)
Other versions
JPS61199060A (en
Inventor
Hisashi Sekine
Yasuo Iijima
Kyoji Tachikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Original Assignee
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO filed Critical KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Priority to JP3747485A priority Critical patent/JPS61199060A/en
Publication of JPS61199060A publication Critical patent/JPS61199060A/en
Publication of JPH0129867B2 publication Critical patent/JPH0129867B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明はNb3Sn拡散線材、ことに強磁界発生用
に適するNb3Sn拡散線材の製造法に関する。 従来技術 Nb3Sn化合物超電導線材は、従来のNb―Ti系
合金線材と比較して超電導特性が優れており、核
融合装置などに必要な10T以上の強磁界を発生さ
せる上で最も実用性のある超電導材料の1つとし
て知られている。 超電導の応用として、核融合炉用、高エネルギ
ー物理用、エネルギー貯蔵用等の大型強磁界マグ
ネツトの需要が最近益々増大しており、そのため
Nb3Sn線材の超電導特性の改善には大きな関心が
寄せられている。マグネツトの発生磁界を上げる
ためには、上部臨界磁界Hc2(以下Hc2と記載す
る)を高め、高磁界中の臨界電流密度Jc(以下Jc
と記載する)を増加させることが不可欠である。
なお、Jcは実際に磁界中で測定される臨界電流値
Icを超電導体の断面積で除して求められる。 従来、Nb3Sn拡散線材の製造法として(1)Nbの
下地線またはテープを加熱溶融したSn浴中を通
過させ、これを熱処理して表面にNb3Sn化合物層
を生成させる方法が知られている。 しかし、この方法で作られたNb3Sn化合物線材
の磁界中のJc特性は15T以上で急速に低下するの
で、15T以上の磁界を発生し得る超電導マグネツ
トは作り難い欠点があつた。また、(2)Nb芯をCu
―Sn合金中に埋め込んだ後、線材またはテープ
に加工する等の複合線材を作り、これを加熱処理
してNb3Sn化合物層を生成させる方法も知られて
いる。 しかし、この方法により得られる線材は、超電
導性を持たない余分の部分を持つため、線材全断
面積当りのJcとしては低い値となる欠点があつ
た。 発明の目的 本発明は従来の方法の欠点をなくしようとする
ものであり、その目的はHc2が高く、また高磁界
中のIc及びJcの優れたNb3Sn拡散線材を製造する
方法を提供するにある。 発明の構成 本発明者らは前記目的を達成するため鋭意研究
の結果、純ニオブまたは他の微量元素を含有する
ニオブの下地線またはテープを600〜1200℃に加
熱溶融した錫浴中を通過させ、これを800〜1000
℃で熱処理して表面にNb3Sn化合物層を生成させ
る方法において、純Nbの場合には、浴に、また、
Nbの場合には下地線またはテープか、浴のいず
れか一方あるいは両方に一定量のTiを含有させ
ると、Nb3Sn化合物層の層厚を増大し、Hc2を大
巾に増大することを見い出した。また、Nb3Sn化
合物層の層厚を増大させることにより全磁界中で
のIcを増大し、更にHc2の増大により強磁界中で
のIc及びJcを著しく増大し得ることを究明した。
この知見に基き、本発明を完成した。 本発明の要旨は、純ニオブの下地線またはテー
プを600〜1200℃に加熱溶融した錫浴中に通過さ
せ、これを800〜1000℃で1分〜200時間熱処理し
て表面にNb3Sn化合物層を生させる方法におい
て、浴に0.1〜0.3原子%のチタンを含有せしめる
こと、および、ニオブの下地線またはテープを
600〜1200℃に加熱溶融した錫浴中に通過させ、
これを800〜1000℃で1分〜200時間熱処理して表
面にNb3Sn化合物層を生成させる方法において、
下地線またはテープに、もしくはこれと浴との両
方に0.1〜30原子%のチタンを含有せしめること、
さらには、上記の各々の場合について、さらに、
0.1〜30原子%の鉛あるいはインジウムを浴に含
有せしめることを特徴とするNb3Sn拡散線材の製
造法にある。 本発明の製造法が特徴とするTiの錫浴、また
は下地線もしくはテープへの添加は生成する
Nb3Sn化合物層の層厚を増大し、結晶粒を微細化
すると共に、そのHc2を大巾に増加させる作用効
果を奏する。そしてこのNb3Sn化合物層の増大は
線材の臨界電流Icを著しく増大させ、またHc2
増加は線材の強磁界でのIc及びJcを著しく増加さ
せる。Tiの量が0.1原子%より少ない場合はTiの
添加効果が殆んど得られず、30原子%を超えると
Hc2がかえつて低下し、またNb―Ni合金下地の
加工性も多少低下する。 本発明における錫浴としては、Tiを0.1〜30原
子%を、更に必要に応じ0.1〜30原子%のPb、In
を固溶させたものを使用する。 錫浴へのTiの固浴は前述のニオブの項に述べ
たと同様の作用効果を奏する。その固浴量も0.1
〜30原子%の範囲であることがHc2への影響とし
て前記理由と同じ理由で必要である。 また、Tiの固浴は下地線またはテープ、浴の
いずれか一方であればよく、あるいは両方であつ
てもよい。 Tiの固浴と共に、Pb、Inを固溶させると、約
15T以上の強磁界中での線材のIcを更に改善す
る。しかし、その反面Nb3Sn化合物層の生成速度
を低下させ、またNb3Sn化合物の結晶粒を粗大化
させるため、約13Tより低い磁界中でのIcは低下
させ、また13〜15Tの磁界領域でのIcは増加させ
ない。 Pb、Inの固溶量はいずれも0.1〜30原子%であ
ることが好ましい。0.1原子%未満ではその効果
が殆んど得られず30原子%を超えと、Nb3Sn化合
物層の生成を阻害する。 浴の温度は600〜1200℃であることが必要であ
る。該温度が600℃より低いとSnの塗布が不均一
となり、1200℃を超えると、Nbが浴にとけて浴
組成を変化させ超電導特性を低下させる。 純ニオブまたはニオブの下地線またはテープを
錫浴中を通過させた後、800〜1000℃で1分〜200
時間熱処理する。これにより下地線またはテープ
の表面に連続したNb3Sn化合物層が生成される。
熱処理温度が800℃より低いとNb3Sn化合物層が
生成されず、1000℃を超えるとNb3Sn化合物の結
晶粒が粗大化して超導電特性を低下させる。また
熱処理時間が1分間より短いとNb3Sn化合物層が
生成されず、200時間を超えるとNb3Sn化合物の
結晶粒が粗大化して超電導特性を低下させるの
で、前記範囲であることが必要である。 実施例 純Nb及びNbに5原子%のTiを配合した素材
を、それぞれアルゴン雰囲気中でアーク溶解炉で
溶解し、ロール加工によつて幅3mm、厚さ70μm
のテープを作つた。これらのテープを第1表に示
す組成のSn基浴(温度950℃)中をそれぞれ通過
させ、そのテープ表面にSnまたはSn基合金を塗
布した。このテープからそれぞれ長さ5cmの試料
を切り取り、アルゴンガス雰囲気中で950℃で10
時間熱処理を施した。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for producing a Nb 3 Sn diffused wire, particularly a Nb 3 Sn diffused wire suitable for generating a strong magnetic field. Conventional technology Nb 3 Sn compound superconducting wire has superior superconducting properties compared to conventional Nb-Ti alloy wire, and is the most practical material for generating strong magnetic fields of 10 T or more required for nuclear fusion devices. It is known as one of the superconducting materials. As a superconducting application, the demand for large strong magnetic field magnets for nuclear fusion reactors, high energy physics, energy storage, etc. has been increasing recently.
There is great interest in improving the superconducting properties of Nb 3 Sn wires. In order to increase the magnetic field generated by the magnet, the upper critical magnetic field Hc 2 (hereinafter referred to as Hc 2 ) is increased, and the critical current density Jc (hereinafter referred to as Jc) in the high magnetic field is increased.
) is essential.
Note that Jc is the critical current value actually measured in a magnetic field.
It is found by dividing Ic by the cross-sectional area of the superconductor. Conventionally, known methods for producing Nb 3 Sn diffusion wires include (1) passing an Nb base wire or tape through a heated and molten Sn bath, and heat-treating it to generate an Nb 3 Sn compound layer on the surface. ing. However, the Jc characteristic of the Nb 3 Sn compound wire produced by this method in a magnetic field deteriorates rapidly above 15 T, making it difficult to produce a superconducting magnet that can generate a magnetic field of 15 T or above. In addition, (2) the Nb core is replaced with Cu
- It is also known to create a composite wire by embedding it in a Sn alloy, processing it into a wire or tape, and heat-treating this to generate a Nb 3 Sn compound layer. However, since the wire obtained by this method has an extra portion that does not have superconductivity, it has the disadvantage that the Jc value per total cross-sectional area of the wire is low. OBJECTIVE OF THE INVENTION The present invention seeks to eliminate the drawbacks of conventional methods, and its purpose is to provide a method for manufacturing Nb 3 Sn diffused wire with high Hc 2 and excellent Ic and Jc in high magnetic fields. There is something to do. Structure of the Invention In order to achieve the above object, the present inventors conducted extensive research and found that a niobium base wire or tape containing pure niobium or other trace elements was passed through a tin bath heated and melted at 600 to 1200°C. , set this to 800-1000
In the method of generating a Nb 3 Sn compound layer on the surface by heat treatment at ℃, in the case of pure Nb, in the bath,
In the case of Nb, if a certain amount of Ti is included in either the base wire, the tape, or the bath, or both, the layer thickness of the Nb 3 Sn compound layer will be increased, and Hc 2 will be greatly increased. I found it. We also found that by increasing the thickness of the Nb 3 Sn compound layer, Ic in a total magnetic field can be increased, and furthermore, by increasing Hc 2 , Ic and Jc in a strong magnetic field can be significantly increased.
Based on this knowledge, the present invention was completed. The gist of the present invention is to pass a pure niobium base line or tape through a tin bath heated and molten at 600 to 1200°C, and then heat-treat it at 800 to 1000°C for 1 minute to 200 hours to form a Nb 3 Sn compound on the surface. In the layering method, the bath contains 0.1 to 0.3 atomic percent titanium and a niobium underline or tape is used.
Pass through a molten tin bath heated to 600-1200℃,
In the method of heat-treating this at 800-1000℃ for 1 minute to 200 hours to generate a Nb 3 Sn compound layer on the surface,
Containing 0.1 to 30 atomic percent titanium in the base wire or tape, or in both this and the bath;
Furthermore, for each of the above cases, furthermore,
A method for manufacturing a Nb 3 Sn diffusion wire characterized by containing 0.1 to 30 at % of lead or indium in the bath. The production method of the present invention is characterized by the addition of Ti to the tin bath or to the base wire or tape.
This has the effect of increasing the layer thickness of the Nb 3 Sn compound layer, making the crystal grains finer, and greatly increasing its Hc 2 . The increase in the Nb 3 Sn compound layer significantly increases the critical current Ic of the wire, and the increase in Hc 2 significantly increases Ic and Jc of the wire in a strong magnetic field. When the amount of Ti is less than 0.1 at%, almost no effect of Ti addition is obtained, and when it exceeds 30 at%
On the contrary, Hc 2 decreases, and the workability of the Nb--Ni alloy base also decreases to some extent. The tin bath in the present invention contains 0.1 to 30 atomic % of Ti, and further 0.1 to 30 atomic % of Pb and In as necessary.
Use a solid solution of A solid Ti bath in a tin bath has the same effect as described in the section regarding niobium above. The amount of solid bath is also 0.1
The range of ~30 atom % is necessary for the same reason as above for the influence on Hc2 . Further, the solid Ti bath may be either the base line, the tape, or the bath, or may be both. When Pb and In are dissolved in solid solution along with Ti solid bath, approx.
Further improve the Ic of the wire in strong magnetic fields of 15T or more. However, on the other hand, it decreases the formation rate of the Nb 3 Sn compound layer and coarsens the crystal grains of the Nb 3 Sn compound, so Ic decreases in a magnetic field lower than about 13 T, and in the magnetic field region of 13-15 T. Ic at is not increased. The solid solution amounts of Pb and In are preferably 0.1 to 30 atomic %. If it is less than 0.1 atomic %, little effect will be obtained, and if it exceeds 30 atomic %, the formation of the Nb 3 Sn compound layer will be inhibited. The temperature of the bath should be 600-1200°C. If the temperature is lower than 600°C, Sn will not be applied uniformly, and if it exceeds 1200°C, Nb will dissolve in the bath, changing the bath composition and deteriorating the superconducting properties. After passing pure niobium or niobium base wire or tape through a tin bath, it is heated at 800 to 1000℃ for 1 minute to 200℃.
Heat treated for an hour. This creates a continuous Nb 3 Sn compound layer on the surface of the underline or tape.
If the heat treatment temperature is lower than 800°C, the Nb 3 Sn compound layer will not be formed, and if it exceeds 1000°C, the crystal grains of the Nb 3 Sn compound will become coarse and the superconducting properties will deteriorate. Furthermore, if the heat treatment time is shorter than 1 minute, the Nb 3 Sn compound layer will not be formed, and if it exceeds 200 hours, the crystal grains of the Nb 3 Sn compound will become coarse and the superconducting properties will deteriorate, so it is necessary that the heat treatment time be within the above range. be. Example Pure Nb and a material containing 5 at% Ti mixed with Nb were each melted in an arc melting furnace in an argon atmosphere, and rolled into a material with a width of 3 mm and a thickness of 70 μm.
I made a tape. Each of these tapes was passed through an Sn-based bath (temperature: 950°C) having the composition shown in Table 1, and Sn or Sn-based alloy was applied to the tape surface. Samples with a length of 5 cm were cut from this tape and heated at 950℃ for 10 minutes in an argon gas atmosphere.
Heat treatment was performed for a period of time.

【表】 但し、試料番号1および3は比較例を示す。ま
た、組成は原子%で示す。 第1図及び第2図は、第1表に示す試料番号の
試料から得られた線材の磁界中でのH―Ic曲線
(磁界―臨界電流曲線)の液体ヘリウム中
(4.2K)における測定結果を示す。なお、試料番
号と曲線番号とはそれぞれ反応する。 第1図及び第2図から明らかなように、Nbに
Tiを固溶させたものを下地として用いた線材5
〜8は純Nbを下地として用いた線材1〜4に比
べてIcが1般に増大することがわかる。またSn
浴中にTi、Pb、Inを加えた線材2〜4は線材1
Ti、Pb、Inを下地線またはテープ、錫浴のいず
れにも加えない)に比べて、また6〜8は5に比
べて約10T以上でのIcの減少が少なくなつている
ことがわかる。 さらに、Nb下地、Sn浴中にTiを添加すると同
時にSn浴中にPbまたはInを添加して得られた線
材4及び8では、TiとPbまたはInの両者の作用
により強磁界中でのIcが著しく改善されているこ
とがわかる。 Nb下地にTiを添加し、Sn浴にTi、Pb、Inを
添加した線材は17T以上の強磁界を発生するマグ
ネツトでの使用に十分耐え得るものである。 発明の効果 本発明の方法によつて得られるNb3Sn拡散線材
は、Ti及びPb、Inを添加しないそれに比べて、
上部臨界磁界Hc2が高く、強磁界中の臨界電流Ic
及び臨界電流密度Jcが著しく改善されたものとな
る。これにより発生磁界が17T以上の超電導マグ
ネツト用線材として使用し得る。また、下地線ま
たはテープの塑性加工も容易である等の優れた効
果を有する。
[Table] However, sample numbers 1 and 3 show comparative examples. Moreover, the composition is shown in atomic %. Figures 1 and 2 show the measurement results in liquid helium (4.2K) of H-Ic curves (magnetic field-critical current curves) in a magnetic field of wire rods obtained from samples with sample numbers shown in Table 1. shows. Note that the sample number and the curve number interact with each other. As is clear from Figures 1 and 2, Nb
Wire rod using solid solution of Ti as a base 5
It can be seen that in wire rods 1 to 8, Ic generally increases compared to wire rods 1 to 4 using pure Nb as a base. Also Sn
Wires 2 to 4 with Ti, Pb, and In added to the bath are wire 1.
It can be seen that the decrease in Ic at about 10 T or higher is smaller in samples 6 to 8 than in samples 5 (no Ti, Pb, or In added to the base line, tape, or tin bath) and in comparison to sample 5. Furthermore, in wire rods 4 and 8 obtained by adding Ti to the Nb base and Sn bath and simultaneously adding Pb or In to the Sn bath, the Ic in a strong magnetic field was It can be seen that this has been significantly improved. A wire with Ti added to the Nb base and Ti, Pb, and In added to the Sn bath can withstand use in magnets that generate strong magnetic fields of 17 T or more. Effects of the Invention Compared to the Nb 3 Sn diffused wire obtained by the method of the present invention, which does not contain Ti, Pb, or In,
Upper critical magnetic field Hc 2 is high, critical current Ic in strong magnetic field
and critical current density Jc are significantly improved. As a result, it can be used as a wire for superconducting magnets with a generated magnetic field of 17T or more. Further, it has excellent effects such as easy plastic working of the base line or tape.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は第1表に示す組成により得
られたNb3Sn超電導線材の液体ヘリウム中
(4.2K)での磁界による臨界電流の変化を示す図
である。曲線1は比較例、2〜8の曲線は本発明
の方法による線材の場合である。
FIGS. 1 and 2 are diagrams showing changes in critical current due to magnetic field in liquid helium (4.2 K) of Nb 3 Sn superconducting wires obtained with the compositions shown in Table 1. Curve 1 is for the comparative example, and curves 2 to 8 are for the wire produced by the method of the present invention.

Claims (1)

【特許請求の範囲】 1 純ニオブの下地線またはテープを600〜1200
℃に加熱溶融した錫浴中に通過させ、これを800
〜1000℃で1分〜200時間熱処理して表面に
Nb3Sn化合物層を生成させる方法において、浴に
0.1〜30原子%のチタンを含有せしめることを特
徴とするNb3Sn拡散線材の製造法。 2 ニオブの下地線またはテープを600〜1200℃
に加熱溶融した錫浴中に通過させ、これを800〜
1000℃で1分〜200時間熱処理して表面にNb3Sn
化合物層を生成させる方法において、下地線また
はテープに、もしくはこれと浴との両方に0.1〜
30原子%のチタンを含有せしめることを特徴とす
るNb3Sn拡散線材の製造法。 3 純ニオブの下地線またはテープを600〜1200
℃に加熱溶融した錫浴中に通過させ、これを800
〜1000℃で1分〜200時間熱処理して表面に
Nb3Sn化合物層を生成させる方法において、浴
に、もしくはニオブの下地線あるいはテープ、ま
たはこれと浴との両方に0.1〜30原子%のチタン
を加えると同時に、0.1〜30原子%の鉛あるいは
インジウムを浴に含有せしめることを特徴とする
NB3Sn拡散線材の製造法。
[Claims] 1. Pure niobium base line or tape with a density of 600 to 1200
Pass through a tin bath heated to molten 800 °C.
Heat treated at ~1000℃ for 1 minute ~ 200 hours to create a surface
In the method of generating the Nb 3 Sn compound layer, the bath is
A method for producing a Nb 3 Sn diffusion wire characterized by containing 0.1 to 30 atomic % of titanium. 2 Heat the niobium base line or tape to 600 to 1200℃.
Pass it through a tin bath heated and molten to 800~
Heat treated at 1000℃ for 1 minute to 200 hours to form Nb 3 Sn on the surface.
In the method of producing a compound layer, the base line or tape, or both this and the bath, contains 0.1 to
A method for producing a Nb 3 Sn diffusion wire characterized by containing 30 atomic percent titanium. 3 Pure niobium base line or tape 600~1200
Pass through a tin bath heated to molten 800 °C.
Heat treated at ~1000℃ for 1 minute ~ 200 hours to create a surface
In the method of producing a Nb 3 Sn compound layer, 0.1 to 30 at. characterized by containing indium in the bath
Manufacturing method of NB 3 Sn diffusion wire.
JP3747485A 1985-02-28 1985-02-28 Manufacture of nb3sn-diffused wire rod Granted JPS61199060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3747485A JPS61199060A (en) 1985-02-28 1985-02-28 Manufacture of nb3sn-diffused wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3747485A JPS61199060A (en) 1985-02-28 1985-02-28 Manufacture of nb3sn-diffused wire rod

Publications (2)

Publication Number Publication Date
JPS61199060A JPS61199060A (en) 1986-09-03
JPH0129867B2 true JPH0129867B2 (en) 1989-06-14

Family

ID=12498516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3747485A Granted JPS61199060A (en) 1985-02-28 1985-02-28 Manufacture of nb3sn-diffused wire rod

Country Status (1)

Country Link
JP (1) JPS61199060A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110066973A (en) * 2019-03-29 2019-07-30 中国科学院合肥物质科学研究院 Large-scale Nb3Sn coil is heat-treated multistage temperature equalization system and its temperature control method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53119733A (en) * 1977-03-30 1978-10-19 Showa Electric Wire & Cable Co Ltd Plating method for niobium or niobium alloy material with tin or tin alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53119733A (en) * 1977-03-30 1978-10-19 Showa Electric Wire & Cable Co Ltd Plating method for niobium or niobium alloy material with tin or tin alloy

Also Published As

Publication number Publication date
JPS61199060A (en) 1986-09-03

Similar Documents

Publication Publication Date Title
Tachikawa et al. Composite‐processed Nb3Sn with titanium addition to the matrix
US4435228A (en) Process for producing NB3 SN superconducting wires
US3817746A (en) Ductile superconducting alloys
JPS6117325B2 (en)
JPS648698B2 (en)
US4385942A (en) Method for producing Nb3 Sn superconductors
Sekine et al. Studies on the composite processed Nb-Hf/Cu-Sn-Ga high-field superconductors
US4341572A (en) Method for producing Nb3 Sn superconductors
JPH0129867B2 (en)
JP3945600B2 (en) Method for producing Nb 3 Sn superconducting wire
EP1898431A1 (en) Nb3Sn SUPERCONDUCTING WIRE, PROCESS FOR PRODUCING THE SAME, AND SINGLE-CORE COMPOSITE WIRE USED IN PRODUCTION OF Nb3Sn SUPERCONDUCTING WIRE
Tenhover High critical currents obtained by heat treating rapidly quenched Hf-Zr-V metallic glasses
JPH0316726B2 (en)
JPS60421B2 (en) Manufacturing method of Nb↓3Sn composite superconductor
JPS607704B2 (en) Manufacturing method of Nb↓3Sn diffusion wire
US3761254A (en) Alloy for superconductive magnet
JPS6249756B2 (en)
JPS6366890B2 (en)
JPH0315285B2 (en)
JPS60422B2 (en) Manufacturing method of Nb↓3Sn composite material
JPS6134811A (en) Method of producing fibrous dispersed v3ga superconductive wire material
Tachikawa Improvements in Current-Carrying Capacities of A15 Superconductors in High Magnetic Fields
Tachikawa et al. Method for producing superconducting Nb3Sn wires
JPS59108202A (en) Nb3sn compound superconductive wire and method of producing same
JPS60420B2 (en) Manufacturing method of V↓3Ga superconductor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term