JPS6086704A - Method of producing nb3sn superconductive wire material using sn-iva group element alloy - Google Patents

Method of producing nb3sn superconductive wire material using sn-iva group element alloy

Info

Publication number
JPS6086704A
JPS6086704A JP58193425A JP19342583A JPS6086704A JP S6086704 A JPS6086704 A JP S6086704A JP 58193425 A JP58193425 A JP 58193425A JP 19342583 A JP19342583 A JP 19342583A JP S6086704 A JPS6086704 A JP S6086704A
Authority
JP
Japan
Prior art keywords
wire
tin
copper
niobium
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58193425A
Other languages
Japanese (ja)
Other versions
JPH0349163B2 (en
Inventor
恭治 太刀川
伊藤 喜久男
勇二 吉田
安男 飯嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Original Assignee
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals filed Critical National Research Institute for Metals
Priority to JP58193425A priority Critical patent/JPS6086704A/en
Publication of JPS6086704A publication Critical patent/JPS6086704A/en
Publication of JPH0349163B2 publication Critical patent/JPH0349163B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は■a族元素のチタン、ジルコニウムおよびハフ
ニウムから選ばれた1種または2種以上を添加して、加
工性および強磁界特性を改良したNb x8n超電導線
材の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention involves the production of Nb x8n superconducting wire with improved workability and strong magnetic field characteristics by adding one or more selected from Group A elements titanium, zirconium, and hafnium. It is about law.

超電導線材を用いると電力消費なしに大電流を流すこと
ができ、しかも強磁界まで超電導状態が保たれることか
ら、強磁界発生用電磁石の巻線材としての利用が進めら
れている。現在、最も広く使用されている線材は、Nb
 −T i系の合金線材であるが、この合金線材の発生
磁界は9テスラ(90,000ガウス)の限度があり、
これ以上の強磁界を必要とする場合には、臨界磁界の高
い化合物系超電導体を用いる必要がある。しかし、化合
物系超電導体は可塑性に欠ける点が実用化に際しての大
きな障害になっていた。近年、表面拡散法および複合加
工法などの拡散を利用した方法が発明され、NbaSn
 (臨界温度:約18に1臨界磁界:約21テスラ)お
よびV=Ga(臨界温度:約15K、臨界磁界:約22
テスラ)の化合物系超電導線材が実用化されるようにな
った。
Superconducting wires are used as winding materials for electromagnets for generating strong magnetic fields because they allow large currents to flow without consuming power and maintain their superconducting state even in strong magnetic fields. Currently, the most widely used wire rod is Nb
-Ti is a Ti-based alloy wire, but the magnetic field generated by this alloy wire has a limit of 9 Tesla (90,000 Gauss),
If a stronger magnetic field than this is required, it is necessary to use a compound-based superconductor with a high critical magnetic field. However, compound superconductors lack plasticity, which has been a major obstacle to their practical application. In recent years, methods using diffusion such as surface diffusion method and composite processing method have been invented, and NbaSn
(Critical temperature: approx. 1 in 1 Critical magnetic field: approx. 21 Tesla) and V=Ga (Critical temperature: approx. 15 K, Critical magnetic field: approx. 22
Tesla's compound-based superconducting wire has come into practical use.

表面拡散法とは、例えばNbaSn化合物線材において
は、下地ニオブテープを溶融錫浴中を連続的に通過させ
たのち、熱処理によってニオブと錫を拡散反応させ下地
テープ面上にNb3Sn化合物層を生成させる方法であ
る。複合加工法とは、例えばNb sSn化合物におい
ては、ニオブ基体と銅−錫合金基体とを複合一体化させ
、線またはテープまたは管状に加工したのち、熱処理に
よって銅−錫合金基体中の錫とニオブ基体とを選択的に
拡散反応させてNb3Sn化合物層をニオブ基体の周囲
に生成させる方法である。この複合加工法を用いると、
銅−錫合金基体中に多数の細いニオブ芯を埋込んだ極細
多芯線の製造法が可能となり、速い磁界変化に対して安
定な超電導特性が得られる。なお、Vs(3aの極細多
芯線も同様な方法で製造し−C得られる。このような表
面拡散法および複合加工法により作製されたNb s 
SnあるいはV、Ga化合物線材はすでに物性研究用な
どの小型強磁界マグネットとして利用されている。
The surface diffusion method is, for example, in the case of NbaSn compound wire, the base niobium tape is continuously passed through a molten tin bath, and then the niobium and tin are caused to undergo a diffusion reaction by heat treatment to generate a Nb3Sn compound layer on the base tape surface. It's a method. For example, in the case of a Nb sSn compound, the composite processing method means that a niobium base and a copper-tin alloy base are compositely integrated, processed into a wire, tape, or tube shape, and then tin and niobium in the copper-tin alloy base are processed by heat treatment. This is a method in which a Nb3Sn compound layer is generated around a niobium substrate by selectively causing a diffusion reaction with the niobium substrate. Using this composite processing method,
It becomes possible to manufacture an ultrafine multifilamentary wire in which a large number of thin niobium cores are embedded in a copper-tin alloy substrate, and stable superconducting properties can be obtained against rapid magnetic field changes. Incidentally, Vs (3a) ultra-fine multifilamentary wire can also be produced by the same method to obtain -C.
Sn, V, and Ga compound wires have already been used as small-sized strong magnetic field magnets for research on physical properties.

一方、核融合炉用、高エネルギー加速器用、超電導発電
楓用等の大聖強磁界マグネットの開発が盛んに進められ
ており、これらに使用される超電導線材として15テス
ラ以上の強磁界領域において大きい臨界′電流をもち、
しかも、速い磁界変化に対して安定な化合物系極細多芯
線の実用化が急がれている。しかし従来のニオブ基体と
銅−錫合金基体との複合体から作製されるNb、Sn化
合物線材の臨界電流は約12テスラ以上の磁界で急速に
低下し、この線材によって12テスラ以上の強磁界を発
生し得る超電導マグネットを作製することが困難であっ
た。一方、V=Ga化合物線材はNbaSn化合物線材
に比較して強磁界特性が優しているが、材料の価格がN
baSnより高価なため、線材を大量に使用する大型設
備に関して有利とは言えない。従って、少量の合金元素
を添加して強磁界特性を改善したNb s Sn化合物
線材を用いる方が得策である。最近、l’%la族元素
であるチタン、ジルコニウムあるいは)−フニウムをニ
オブ基体あるいは銅−錫合金基体に添加することにより
強磁界での超電導特性の著しく改善されたNb3Sn化
合物線材の製造法が発明された(特願昭55−1285
51号、特願昭56−121479号)。
On the other hand, the development of Daisei strong magnetic field magnets for use in nuclear fusion reactors, high energy accelerators, superconducting power generation Kaede, etc. is actively progressing, and the superconducting wire used in these has a large criticality in the strong magnetic field region of 15 Tesla or more. 'has a current,
Furthermore, there is an urgent need to commercialize compound-based ultrafine multifilamentary wires that are stable against rapid magnetic field changes. However, the critical current of the conventional Nb, Sn compound wire made from a composite of a niobium base and a copper-tin alloy base decreases rapidly in a magnetic field of about 12 Tesla or more, and this wire can handle a strong magnetic field of 12 Tesla or more. It has been difficult to produce superconducting magnets that can generate On the other hand, V=Ga compound wire has better strong magnetic field characteristics than NbaSn compound wire, but the material price is N
Since it is more expensive than baSn, it cannot be said to be advantageous for large-scale equipment that uses a large amount of wire rods. Therefore, it is better to use a Nb s Sn compound wire with improved strong magnetic field characteristics by adding a small amount of alloying elements. Recently, a method has been invented for producing Nb3Sn compound wires with significantly improved superconducting properties in strong magnetic fields by adding titanium, zirconium, or )-fnium, which are l'%La group elements, to a niobium substrate or a copper-tin alloy substrate. (Patent application 1985-1285)
No. 51, Japanese Patent Application No. 121479/1983).

これらの方法では、ニオブ基体あるいは銅−錫合金基体
に添加されだ■a族元素がNb5Sn化合物の拡散生成
を促進させるとともに、その一部がNbaSn化合物層
内に固溶し、強磁界での超電導特性を高める作用を有す
る。しかし、これらの製法ではlVa族元素をニオブ基
体あるいは銅−錫合金基体に添加するため、重性加工性
が優れず、約40%の断面縮少率毎に中間焼鈍を必要と
し、実用的な長尺線を作製するのに焼鈍回数が極めて多
くなり、製造コストを著しく高める難点があった。さら
に、従来の複合加工法に用いる銅−錫合金基体では塑性
加工性の保持から錫の固溶量が限定され、そのために拡
散生成するNb s Sn化合物相が線材全所面積当た
り少なく、臨界電流容量の大きな線材の作製に難点があ
った。
In these methods, Group A elements added to the niobium substrate or copper-tin alloy substrate promote the diffusion and formation of the Nb5Sn compound, and a portion of it is dissolved in the NbaSn compound layer, resulting in superconductivity in a strong magnetic field. It has the effect of enhancing properties. However, in these manufacturing methods, since the lVa group element is added to the niobium base or the copper-tin alloy base, heavy workability is not excellent and intermediate annealing is required for every 40% reduction in area, making it impractical for practical use. In order to produce a long wire, an extremely large number of annealing operations are required, resulting in a significant increase in manufacturing costs. Furthermore, in the copper-tin alloy substrate used in the conventional composite processing method, the amount of solid solution of tin is limited in order to maintain plastic workability, so the amount of Nb s Sn compound phase that diffuses and forms is small per total area of the wire, and the critical current There was a difficulty in producing a wire rod with a large capacity.

IVa族元素を純銅に添加した銅合金基体と錫基体とニ
オブ基体の三者の複合加工法によるNb、Sn化合物線
材の製造法(特願昭57−25981号)は、各基体の
量性加工性が比較的よく、また+Va族元素を含むため
優れた強磁界臨界電流特性をもつなど上記の難点をある
程度解決している。しかしながら強度の加工金製する実
用規模の極細多芯線をこの製法で作製する場合、中間焼
鈍なしに最終線径まで一様に伸線加工するには、加工性
の点で■a族元素の含有量の極めて少ない銅合金を用い
ざるを得ない。その結果生成されるNb s Sn化合
物中の■a族元素含有量も低くなり、強磁界臨界電流特
性が劣化するという好ましくない結果が得られる。
A method for manufacturing Nb and Sn compound wire rods by a composite processing method of a copper alloy base, a tin base, and a niobium base in which group IVa elements are added to pure copper (Japanese Patent Application No. 57-25981) is based on quantitative processing of each base. It solves the above-mentioned problems to some extent, such as having relatively good properties and excellent strong magnetic field critical current characteristics because it contains +Va group elements. However, when producing a practical scale ultra-fine multifilamentary wire made of strong processed metal using this manufacturing method, in order to uniformly draw the wire to the final wire diameter without intermediate annealing, it is necessary to It is necessary to use an extremely small amount of copper alloy. As a result, the content of group (1)a elements in the resulting Nb s Sn compound also decreases, resulting in an unfavorable result of deterioration of the strong magnetic field critical current characteristics.

本発明は’f’Ja族元素であるチタン、ジルコニウム
またはハフニウムを銅基体ではなく、加工性の極めて優
れた錫基体に添加して、加工の容易な方法で強磁界での
超電導特性が改善され、さらに、臨界電流容量の大きい
Nb3Sn超電導腺材を製造することを目的としたもの
である。
The present invention improves superconducting properties in strong magnetic fields by adding titanium, zirconium, or hafnium, which are 'f' Ja group elements, to a tin base, which has extremely excellent workability, instead of a copper base. Furthermore, the purpose is to manufacture a Nb3Sn superconducting material with a large critical current capacity.

本発明は■a族元素であるチタン、ジルコニウムおよび
ハフニウムから選ばれた1種寸たけ2種以上を含む錫合
金基体と銅基体とニオブ基体の三者からなる複合体また
は該錫合金体とニオブ基体の三者からなる複合体を作製
し、所定の形状まで加工したのち、拡散熱処理を行いニ
オブ基体の周囲に■a族元累を含有したNb3Sn化合
物を生成させることを特徴とする。また錫合金基体とし
ては上記■a族元素のほかに少量の銅を含有してもよい
The present invention is directed to (1) a composite consisting of a tin alloy base, a copper base, and a niobium base containing one or more of the group a elements selected from titanium, zirconium, and hafnium, or the tin alloy body and niobium The method is characterized in that a composite body consisting of the three substrates is prepared, processed into a predetermined shape, and then subjected to diffusion heat treatment to generate an Nb3Sn compound containing Group A elements around the niobium substrate. Further, the tin alloy substrate may contain a small amount of copper in addition to the above-mentioned group ①a elements.

錫基体に添加するチタン、ジルコニウムまたはハフニウ
ム量は優れた超電導特性を得るために、1種または2種
以上を合計して0.1原子係以上、また、錫合金基体の
良好な加工性を保持するうえから15原子係以下の範囲
になければならない。好ましくは1〜10原子%の範囲
である。
The amount of titanium, zirconium, or hafnium added to the tin substrate should be 0.1 atomic coefficient or more in total of one or more types in order to obtain excellent superconducting properties, and to maintain good workability of the tin alloy substrate. Therefore, it must be in the range of 15 atoms or less. Preferably it is in the range of 1 to 10 atom%.

銅基体あるいは錫合金基体に含まれる銅は、拡散熱処理
の際、錫および■a族元素の拡散を助け、優れた超電導
特性を得るのに効果がある。
Copper contained in the copper substrate or the tin alloy substrate assists in the diffusion of tin and group Ⅰa elements during diffusion heat treatment, and is effective in obtaining excellent superconducting properties.

錫合金基体に加える銅の量は錫の拡散速度を高めるのに
有効な2原子係以上、また、錫合金基体の良好な加工性
を保持するうえから30原子係以下の範囲になければな
らない。
The amount of copper added to the tin alloy substrate must be in the range of 2 atoms or more to be effective in increasing the diffusion rate of tin, and 30 atoms or less in order to maintain good workability of the tin alloy substrate.

複合体を所定の形状に加工した後行う熱処理は、Nb、
Sn生成のために4001Z’以上、すぐれた超電導特
性を得るために950 C以下でなければならない。
The heat treatment performed after processing the composite into a predetermined shape is performed using Nb,
The temperature must be 4001Z' or higher to generate Sn, and 950 C or lower to obtain excellent superconducting properties.

複合体を構成する各基体は、むくの棒状のほか、他の基
体を挿入するだめの単数あるいは複数個の穴を有する管
状のものでもよい。さらに各基体はその一部もしくは全
部が粉体の形状であってもよい。
Each substrate constituting the composite body may be in the shape of a solid rod or in the form of a tube having one or more holes into which other substrates are inserted. Further, each substrate may be partially or entirely in the form of powder.

不発明においては加工性の極めて優れた錫合金基体のほ
か加工性のよいニオブ基体(および銅基体)とから構成
される複合体を用いるため、■a族元素を銅基体に含有
せしめた製法にくらべても伸線加工が著しく容易となり
、強度の加工を要する実用規模の極細多芯線においても
中間焼鈍を省いて細線への加工が可能となり線材作製に
おけるコストが著しく軽減される。錫合金基体に添加し
た■a族元素のチタン、ジルコニウムあるいはハフニウ
ムはNb5Sn化合物の生成を促進させ、また、添加元
素の一部がNb5Sn化合物内に固溶することにより、
超電導臨界磁界を向上させ、また、15テスラ以上の強
磁界での臨界電流を顕著に増加させる。一方、熱処理工
程では錫の充分な量を複合体内部から拡散により供給す
ることが出来るのでNb s Sn化合物相が多量に得
られるなどの効果から臨界電流容量の大きな線材が作製
できる。その結果、各種超電導利用機器の性能向上や小
型化による製造および冷却コストの軽減が達成される。
In our invention, we use a composite consisting of a tin alloy base with extremely good workability and a niobium base (and copper base) with good workability, so Compared to this, wire drawing becomes significantly easier, and even practical-scale ultra-fine multifilamentary wires that require strong processing can be processed into thin wires without intermediate annealing, and the cost of wire production is significantly reduced. ■A group elements such as titanium, zirconium, or hafnium added to the tin alloy substrate promote the formation of Nb5Sn compounds, and some of the added elements become solid solutions in the Nb5Sn compounds.
It improves the superconducting critical magnetic field and significantly increases the critical current in strong magnetic fields of 15 Tesla or more. On the other hand, in the heat treatment step, a sufficient amount of tin can be supplied from inside the composite by diffusion, so a wire rod with a large critical current capacity can be produced due to effects such as obtaining a large amount of Nb s Sn compound phase. As a result, it is possible to improve the performance of various superconductor-based devices and reduce manufacturing and cooling costs through miniaturization.

また、本発明で作製された線材は極細多芯線形式である
ために、速い磁界変化に対して超電導性が安定に保持さ
れ、強磁界中で用いる機器の安全性と信頼性を著しく向
上させる優れた効果を有する。
In addition, since the wire produced by the present invention is in the form of an ultra-fine multicore wire, its superconductivity is stably maintained even in the face of rapid magnetic field changes, which is an excellent feature that significantly improves the safety and reliability of equipment used in strong magnetic fields. It has a great effect.

2.5餌〆の穴に錫−5原子係チタン合金、錫−5原子
係ジルコニウム合金あるいは錫−3原子係チタン−2原
子係ハフニウム合金棒を挿入し、さらにその周囲にあけ
た1■グのニオブ棒を8本挿入した第1図に示す断面構
造をもつ複合体を作製した。この複合体をスェージング
および線引により0.4Wmりの長尺線に加工した。な
お従来技術の銅−7原子%錫−1原子係チタン合金とニ
オブ芯からなる複合体では8諺ダから0.4m$まで加
工するのに約10回の中間焼鈍を必要としたのに対し、
本実施例試料の加工においては各素材の加工性が極めて
よいために中間焼鈍は全く不必要であった。
2.5 Insert a tin-5-atom titanium alloy, a tin-5-atom zirconium alloy, or a tin-3-atom titanium-dihafnium alloy rod into the bait hole, and then drill a 1-inch hole around it. A composite body having the cross-sectional structure shown in FIG. 1 was prepared by inserting eight niobium rods. This composite was processed into a long wire of 0.4 Wm by swaging and drawing. In contrast, the conventional composite consisting of a copper-7 atomic percent tin-1 atomic titanium alloy and a niobium core required intermediate annealing approximately 10 times to process the material from 8 to 0.4 m. ,
In processing the samples of this example, intermediate annealing was not necessary at all because the workability of each material was extremely good.

次いでアルゴン雰囲気の石英管に封入したのち、725
CX50時間の拡散熱処理を行った。このようにして作
製した試料のNt)ssn化合物層の厚み、臨界電流(
Ic )および臨界温度(Tc )の測定結果を表1に
示す。また、表1には同様な製法で作製した錦にl’%
Ia族元素を添加しない線材(比較例1−a)および錫
のかわりに銅に■a族元素を添加した線材(比較例1−
b)の測定結果も示す。
Then, after sealing in a quartz tube in an argon atmosphere, 725
CX diffusion heat treatment was performed for 50 hours. The thickness of the Nt)ssn compound layer of the sample prepared in this way, the critical current (
The measurement results of Ic ) and critical temperature (Tc ) are shown in Table 1. Table 1 also shows l'% for nishiki produced using a similar manufacturing method.
Wire rod without group Ia element added (Comparative Example 1-a) and wire rod in which group ■a element was added to copper instead of tin (Comparative Example 1-a)
The measurement results of b) are also shown.

表1 チタン、ジルコニウムちるいはハフニウムを錫芯に添加
すると従来法である比較例1− aの無添加試料および
銅マトリックスにチタンを添加した比較例1−bに比べ
てNb5Sn化合物の生成速度、Ic1Tc、いずれも
高めている。なお、銅にIVa族元素を添加する比較例
1−bの方法では、本実施例1と同等の超電導特性を得
るためには、例えば銅に2原子係のTiを添加せねばな
らないが、銅−2原子係チタン合金を用いた複合材は加
工性が悪く、8鰭りからの伸線加工の途中約1.5 +
rm L;lで破断してしまい、最終線径0.4tm1
21’まで加工出来なかった。
Table 1 When titanium, zirconium, or hafnium is added to the tin core, the production rate of Nb5Sn compounds is lower than that of the non-additive sample of Comparative Example 1-a, which is a conventional method, and Comparative Example 1-b, in which titanium is added to the copper matrix. Ic1Tc are both elevated. In addition, in the method of Comparative Example 1-b in which group IVa elements are added to copper, in order to obtain superconducting properties equivalent to those of Example 1, it is necessary to add, for example, diatomic Ti to copper. - Composite materials using diatomic titanium alloys have poor workability, and during wire drawing from 8 fins, the wire drawing process is approximately 1.5 +
rm L: It broke at l, and the final wire diameter was 0.4tm1
I couldn't process it until 21'.

このように本発明は従来法とくらべ線材化の極めて容易
なNb5Sn超電導線材の製法である。
As described above, the present invention is a method for manufacturing a Nb5Sn superconducting wire that is much easier to manufacture into a wire than conventional methods.

錫−5原子係チタン、錫−3原子%チタン→12□、・
原−子係ハフニウムあるいは錫−5原子係チタン−10
原子係銅合金棒を7本挿入した図2に示す断面構造をも
つ複合体を作製した。この複合体を実施例(1)と同様
に伸線加工し、中間焼鈍なしでQ、 4 ttrm p
の長尺線とした。次いでアルゴン雰囲気の石英管に封入
したのち750CX50時間の拡散熱処理を行い、表1
に示すような測定結果を得た。また、表1には同様な製
法で作製した錫に■a族元素を含まない線材(比較例2
−a)および■a族元素を含まない錫−銅合金を用いた
線材(比較例2−b)の測定結果も示す。測定結果から
従来法である比較例2− aおよび比較例2−bに比べ
本実施例の線材のNb z Sn層厚および超電導特性
のIcおよびTcの向上が顕著である。
Tin-5 atom% titanium, tin-3 atom% titanium → 12□,・
Atomic group hafnium or tin-5 atomic group titanium-10
A composite body having the cross-sectional structure shown in FIG. 2 was prepared by inserting seven atomic copper alloy rods. This composite was wire-drawn in the same manner as in Example (1), and Q, 4 ttrm p was obtained without intermediate annealing.
It was made into a long line. Next, after sealing in a quartz tube in an argon atmosphere, diffusion heat treatment was performed at 750C for 50 hours.
We obtained the measurement results shown in . In addition, Table 1 shows wire rods made using the same manufacturing method that do not contain Group A elements (Comparative Example 2).
-a) and ■Measurement results of a wire rod using a tin-copper alloy that does not contain group a elements (Comparative Example 2-b) are also shown. The measurement results show that the Nb z Sn layer thickness and the superconducting properties Ic and Tc of the wire of this example are significantly improved compared to the conventional methods Comparative Example 2-a and Comparative Example 2-b.

実施例 (3) 外径8■内径6mのニオブ管に銅粉末、ニオブ粉末およ
び錫−5原子係チタン粉末あるいは錫−5原子係ハフニ
ウム粉末を5:3:1の割合でつめた図3に示す断面構
造をもつ複合体を作製した。
Example (3) A niobium tube with an outer diameter of 8 m and an inner diameter of 6 m is filled with copper powder, niobium powder, and tin-5 atomic titanium powder or tin-5 atomic hafnium powder in a ratio of 5:3:1 as shown in Fig. 3. A composite with the cross-sectional structure shown was fabricated.

用いた粉末はそれぞれ約100μmの大きさであった。The powders used each had a size of approximately 100 μm.

この複合体を実施例(1)および(2)と同様に中間焼
鈍なしで0.4mflの長尺線に加工した。次いでアル
ゴン雰囲気の石英管に封入したのち、650 U X 
50時間の拡散熱処理を行った。このように作製した試
料の超電導特性の臨界電流(Ic)および臨界温度(T
c)の測定結果を表2に示す。また表2には同様な方法
で作製した錫に1’%l’a族元素を添加しない線材(
比較例3)の測定結果も示す。測定結果から比較例3に
比べ本実施例の線材は超電導特性のIcおよびTcの向
上が顕著である。
This composite was processed into a 0.4 mfl long wire in the same manner as in Examples (1) and (2) without intermediate annealing. Then, after sealing in a quartz tube in an argon atmosphere, 650 U
Diffusion heat treatment was performed for 50 hours. The critical current (Ic) and critical temperature (T
The measurement results of c) are shown in Table 2. Table 2 also shows wire rods produced in the same manner without adding 1'% l'a group elements to tin (
The measurement results of Comparative Example 3) are also shown. The measurement results show that, compared to Comparative Example 3, the wire of this example has significantly improved superconducting characteristics Ic and Tc.

表2Table 2

【図面の簡単な説明】[Brief explanation of drawings]

図1、図2および図3はそれぞれ実施例1.2および3
にて実施した不発明の複合体断面形状。図中1はIVa
族元素を含有した錫合金または、■a族元素および銅を
含有した錫合金基体、2はニオブ基体、3は銅基体を示
す。
Figures 1, 2 and 3 are examples 1.2 and 3, respectively.
The cross-sectional shape of the uninvented composite material was created in . 1 in the figure is IVa
A tin alloy containing a group element or a tin alloy substrate containing a group a element and copper; 2 indicates a niobium substrate; and 3 indicates a copper substrate.

Claims (1)

【特許請求の範囲】 錫合金基体およびニオブ基体の三者より成る複合体を作
製し、これを線、テープあるいは管に加工したのち、4
00〜950Cでの拡散熱処理によりニオブ基体の周囲
にチタン、ジルコニウムあるいはノ・フニウムを含有し
たNb5Sn化合物相を生成させることを特徴とするN
b l Sn超電導線材の製造法。 (2)錫合金基体としてチタン、ジルコニウムおよびハ
フニウムのうちから選ばれた1種または2種以上を合計
して0.1〜15原子係含み、さらに銅を2〜30原子
係含む錫合金を用いることを特徴とする特許請求の範囲
第1項記載の方法。
[Claims] After producing a composite consisting of a tin alloy base and a niobium base, and processing this into a wire, tape, or tube,
Nb5Sn compound phase containing titanium, zirconium or no-funium is formed around the niobium substrate by diffusion heat treatment at 00 to 950C.
bl Method for manufacturing Sn superconducting wire. (2) As a tin alloy substrate, use a tin alloy containing a total of 0.1 to 15 atoms of one or more selected from titanium, zirconium, and hafnium, and further containing 2 to 30 atoms of copper. A method according to claim 1, characterized in that:
JP58193425A 1983-10-18 1983-10-18 Method of producing nb3sn superconductive wire material using sn-iva group element alloy Granted JPS6086704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58193425A JPS6086704A (en) 1983-10-18 1983-10-18 Method of producing nb3sn superconductive wire material using sn-iva group element alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58193425A JPS6086704A (en) 1983-10-18 1983-10-18 Method of producing nb3sn superconductive wire material using sn-iva group element alloy

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1070556A Division JPH0272511A (en) 1989-03-24 1989-03-24 Manufacture of nb3sn superconductive wire rod

Publications (2)

Publication Number Publication Date
JPS6086704A true JPS6086704A (en) 1985-05-16
JPH0349163B2 JPH0349163B2 (en) 1991-07-26

Family

ID=16307753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58193425A Granted JPS6086704A (en) 1983-10-18 1983-10-18 Method of producing nb3sn superconductive wire material using sn-iva group element alloy

Country Status (1)

Country Link
JP (1) JPS6086704A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643918A (en) * 1987-06-26 1989-01-09 Furukawa Electric Co Ltd Manufacture of superconductive wire
JP2015185211A (en) * 2014-03-20 2015-10-22 国立研究開発法人物質・材料研究機構 METHOD OF PRODUCING Nb3Sn SUPERCONDUCTING WIRE ROD

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59108202A (en) * 1982-12-13 1984-06-22 住友電気工業株式会社 Nb3sn compound superconductive wire and method of producing same
JPS59209210A (en) * 1983-05-13 1984-11-27 住友電気工業株式会社 Nb3sn compound superconductive wire and production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59108202A (en) * 1982-12-13 1984-06-22 住友電気工業株式会社 Nb3sn compound superconductive wire and method of producing same
JPS59209210A (en) * 1983-05-13 1984-11-27 住友電気工業株式会社 Nb3sn compound superconductive wire and production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643918A (en) * 1987-06-26 1989-01-09 Furukawa Electric Co Ltd Manufacture of superconductive wire
JP2015185211A (en) * 2014-03-20 2015-10-22 国立研究開発法人物質・材料研究機構 METHOD OF PRODUCING Nb3Sn SUPERCONDUCTING WIRE ROD

Also Published As

Publication number Publication date
JPH0349163B2 (en) 1991-07-26

Similar Documents

Publication Publication Date Title
Tachikawa et al. High‐field superconducting properties of the composite‐processed Nb3Sn with Nb‐Ti alloy cores
US4224087A (en) Method for producing Nb3 Sn superconductor
JPS6150136B2 (en)
US4419145A (en) Process for producing Nb3 Sn superconductor
Suenaga et al. Fabrication techniques and properties of multifilamentary Nb 3 Sn conductors
US4385942A (en) Method for producing Nb3 Sn superconductors
US4153986A (en) Method for producing composite superconductors
JPS6086704A (en) Method of producing nb3sn superconductive wire material using sn-iva group element alloy
US3996662A (en) Method for the manufacture of a superconductor having an intermetallic two element compound
Iwasa Recent developments in multifilament V 3 Ga & Nb 3 Sn wires in Japan
JPH0272511A (en) Manufacture of nb3sn superconductive wire rod
CA1042640A (en) Method for stabilizing a superconductor
JPS5823109A (en) Method of producing nb3sn superconductive wire material
Tachikawa et al. Process for producing Nb 3 Sn superconductor
JPS58189908A (en) Method of producing fibrous dispersion type nb3sn superconductive wire material
JPH01140521A (en) Manufacture of nb3al compound superconductive wire rod
JPS60421B2 (en) Manufacturing method of Nb↓3Sn composite superconductor
JPS60422B2 (en) Manufacturing method of Nb↓3Sn composite material
JP2001052547A (en) Nb3 COMPOUND-BASED SUPERCONDUCTIVE CABLE AND ITS MANUFACTURING METHOD
JPS60250510A (en) Method of producing nb3sn composite superconductive wire
JPS6313286B2 (en)
JPS6086705A (en) Method of producing firbrous dispersive nb3sn superconductive wire material
Tachikawa et al. Process for producing Nb 3 Sn superconducting wires
JPS60250511A (en) Method of producing nb3sn composite superconductive wire
JPS59191209A (en) Method of producing nb3sn superconductive conductor