JPS63164116A - Nb3sn compound superconductive wire - Google Patents

Nb3sn compound superconductive wire

Info

Publication number
JPS63164116A
JPS63164116A JP61315022A JP31502286A JPS63164116A JP S63164116 A JPS63164116 A JP S63164116A JP 61315022 A JP61315022 A JP 61315022A JP 31502286 A JP31502286 A JP 31502286A JP S63164116 A JPS63164116 A JP S63164116A
Authority
JP
Japan
Prior art keywords
loss
nb3sn
wire
matrix
population
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61315022A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yoshizaki
吉崎 浄
Mitsunobu Wakata
光延 若田
Fumio Fujiwara
藤原 二三夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61315022A priority Critical patent/JPS63164116A/en
Publication of JPS63164116A publication Critical patent/JPS63164116A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To make it possible to obtain an Nb3Sn compound superconductive wire of a remarkably small AC loss, by using a CuSn type alloy including Sb less than 30 wt.% for a population in which filament-formed Nb3Sn compounds are buried. CONSTITUTION:In an Nb3Sn compound superconductive wire which consists of a population and plural filament-formed Nb3Sn compounds buried in the population, a CuSn type alloy including at least Sb less than 30 wt.% is used for the population. As a result, a superconductive wire of a good critical current property and a small AC loss can be obtained. Therefore, a superconductive coil with a large magnetic field fluctuation, for example, can be operated, and such a superconductive wire is utilized to realize the improvement of efficiency and the compact size of various power appliances such as an AC generator, a transformer, and a superconductive magnetic energy storing device.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は交流用超電導コイルの巻線材として用いられ
るNb、sn化合物超電導線に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a Nb, sn compound superconducting wire used as a winding material for an AC superconducting coil.

〔従来の技術〕[Conventional technology]

最近9発電機、f圧器などの交流電力機器において、効
率の向上、装置の小形化を図るため超電導化の要求が高
まっている。このような装置に適用される超電導マグネ
ットの巻線材としては交流損失の小さい超電導線が不可
欠である。現在用いられているN J 8 n超電導線
は、特公昭54−24109号公報に示されるように。
Recently, there has been an increasing demand for superconductivity in alternating current power equipment such as generators and f-pressure generators in order to improve efficiency and downsize the equipment. A superconducting wire with low AC loss is essential as a winding material for a superconducting magnet used in such devices. The currently used NJ8n superconducting wire is as shown in Japanese Patent Publication No. 54-24109.

複数のフィラメント状のNb、8n 超電導化合物が、
8n濃度が0.1〜5wt%程度のausn合金母相中
に埋設されている構造である。i@3図に従来のNb3
Sn超電導線の横断面を示す。図において、(1)は0
u8n合金層、(2)はN bl 8 nフィラメント
を示している。
A plurality of filamentary Nb, 8n superconducting compounds are
It has a structure in which the 8n concentration is embedded in the ausn alloy matrix having a concentration of about 0.1 to 5 wt%. Conventional Nb3 in i@3 diagram
A cross section of a Sn superconducting wire is shown. In the figure, (1) is 0
u8n alloy layer, (2) shows N bl 8 n filament.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

交流で用いる超電導線には、できるだけ交流損失が少な
い仁とが必要である。交流損失は。
Superconducting wires used in alternating current must have wires with as little alternating current loss as possible. AC loss.

主として履歴損失と結合損失からなっている。It mainly consists of history loss and combination loss.

前者はフィラメント径が細い程小さくなる。一方、後者
は母相を通してフィラメント同志の結合電流が流れるた
めに起きるもので、母相の電気抵抗が大きいものほど損
失は小さくなる。
The former becomes smaller as the filament diameter becomes smaller. On the other hand, the latter occurs because a coupled current between the filaments flows through the matrix, and the larger the electrical resistance of the matrix, the smaller the loss.

しかしながら、前述のNb、8n超電導線では、母相が
OuS n合金であるため電気抵抗が低く、フィラメン
ト同志の電気的結合が起り、結合損失が犬きくなるとい
う欠点があった。
However, the above-mentioned Nb, 8n superconducting wire has the disadvantage that since the matrix is an OuSn alloy, the electrical resistance is low, and electrical coupling occurs between the filaments, resulting in high coupling loss.

この発明は、このような問題点を解決するためになされ
たもので、交流損失が少ないNtI3Sn化合物超電導
線を得ることを目的とする。
This invention was made to solve these problems, and aims to obtain an NtI3Sn compound superconducting wire with low AC loss.

〔問題を解決するための手段〕[Means to solve the problem]

この発明のNb3Sn化合物超電導線は、母相と母相に
埋設された複数のフィラメント状のNb、8n化合物か
らなり、母相が少なくともsbi30wt%以下含有す
るCuSn系合金のものである。
The Nb3Sn compound superconducting wire of the present invention is composed of a matrix and a plurality of filamentary Nb, 8n compounds embedded in the matrix, and the matrix is a CuSn alloy containing at least 30 wt% of sbi.

〔作用〕[Effect]

この発明においては、フィラメント状のNb。 In this invention, filamentary Nb.

Sn化合物が埋設された母相を少なくともSbを30w
t%以下含有するCuSn系合金とすることによって、
母相の電気抵抗が増加して、交流損失が著しく小さいN
h、Sn化合物超電導線を優ることができる。
The mother phase in which the Sn compound is embedded contains at least 30w of Sb.
By using a CuSn-based alloy containing t% or less,
The electrical resistance of the matrix increases and the AC loss is significantly reduced.
h, can be superior to Sn compound superconducting wires.

〔実施例〕〔Example〕

実施例 1 まず、母相がOu−5w1%Sb合金(3)でこの母相
に1800本のNbフィラメント(4)が埋設され8中
夫に中空部を持つ複合多芯チューブを用意した。次に、
8n(5)を用意し、これをチューブの中空部に挿入し
、第1図にその断面を示すような複合棒を作成した。そ
して、この複合棒をすべて冷間引抜加工で直径0.1 
rmまで伸線した。伸線加工は中間焼鈍の必要もなく安
定になされた。また、最終寸法でNbフィラメントの径
は約1μ悔であっfcoさらに、この線を素線として7
本からなる同心撚線を作成した。
Example 1 First, a composite multicore tube was prepared in which the parent phase was an Ou-5w1%Sb alloy (3), 1800 Nb filaments (4) were embedded in the parent phase, and the tube had a hollow part in 8 cores. next,
8n (5) was prepared and inserted into the hollow part of the tube to create a composite rod whose cross section is shown in FIG. Then, all of these composite rods were cold drawn to a diameter of 0.1 mm.
The wire was drawn to rm. The wire drawing process was stable without the need for intermediate annealing. In addition, the diameter of the Nb filament in the final dimension was about 1 μm, and this wire was used as a bare wire with a diameter of 7 μm.
Created a concentric strand consisting of books.

次に、この撚線を不活性ガス雰囲気中で675゛Cで3
0時間熱処理することによって、8nをCurb合金母
相中に拡散させ、Nbフィラメントの表面にNb3Sn
化合物を生成させた。第2図に熱処理後の素線の横断面
を示す。母相はSnの拡散によって0u−8n  sb
金合金6)になっており1組成分析の結果では、Ou−
4wt%an−4.6wt%sbで6った。
Next, this twisted wire was heated at 675°C for 3 hours in an inert gas atmosphere.
By heat-treating for 0 hours, 8n is diffused into the Curb alloy matrix, and Nb3Sn is formed on the surface of the Nb filament.
The compound was produced. FIG. 2 shows a cross section of the wire after heat treatment. The matrix becomes 0u-8n sb due to the diffusion of Sn.
It is a gold alloy6), and according to the results of compositional analysis, Ou-
It was 6 at 4wt%an-4.6wt%sb.

このようにして得られた線について、液体ヘリウム温度
での印加磁界中の臨界電流を測定した。これによると、
臨界電流は、7Tで53Aでめった。この値は従来の母
相がブロンズ(CU−4wt%Sn合金)である同一寸
法の線に比べると約12チ増加していた。
For the lines thus obtained, the critical current in an applied magnetic field at liquid helium temperature was measured. according to this,
The critical current was 53A at 7T. This value increased by about 12 inches compared to a conventional wire of the same size in which the parent phase was bronze (CU-4wt%Sn alloy).

次に、交流損失を知るために、  501b の周波数
の交流電流を通電して結合損失時定数を測定したところ
、従来の約iという小さい値となり、この発明の一実施
例の線が、交流損失が極めて小さく、商用周波数の交流
に対して安定であることがわかった。これは、交流を通
電した場合、従来の線では、第3図に示すように、超電
導フィラメント間の母相は比較的電気抵抗の低い0u−
8n合金であるためフィラメント同志の電気的結合が起
こって損失が大きくなったが。
Next, in order to find out the AC loss, when an AC current with a frequency of 501b was applied and the coupling loss time constant was measured, it was a smaller value of about i than the conventional value. was found to be extremely small and stable against commercial frequency alternating current. This means that when current is applied to a conventional wire, the parent phase between the superconducting filaments has a relatively low electrical resistance, as shown in Figure 3.
Since it was an 8n alloy, electrical coupling occurred between the filaments, resulting in a large loss.

上記実施V」の線では、0u−an合金にsbが固溶す
ることによって電気抵抗が約3倍高くなったため電気的
結合が起こりにくくなって交流損失が小さくなったと考
えられる。このようにこの発明の実施例の超電導線は交
流発電機、トランス、a気エネルギー貯蔵装置などの電
力機器流用超電導コイルの巻線材として特に優れている
In the line of "Example V" above, it is considered that the electric resistance became about three times higher due to the solid solution of sb in the 0u-an alloy, making it difficult for electrical coupling to occur and reducing the AC loss. As described above, the superconducting wire of the embodiment of the present invention is particularly excellent as a winding material for superconducting coils used in power equipment such as alternating current generators, transformers, and a-air energy storage devices.

実施例 2 次に、実施例1と同様の構成で、母相はOu、また、中
心のSn芯の代わりに8n−20wt%sh合金棒を用
いた。伸線加工は非常に容易に熱 行うことができ、最終寸法でNb、8n生成処理を行な
って、Nb、an超電導線t−優之。この場合にも、実
施例1と同様に、臨界電流特性の向上と交流損失の低下
の効果があったが、特に。
Example 2 Next, the structure was the same as in Example 1, except that the parent phase was O and an 8n-20wt% SH alloy rod was used instead of the Sn core at the center. The wire drawing process can be carried out very easily by heat, and the final size can be subjected to Nb, 8n generation treatment to produce Nb, an superconducting wire T-Yuyuki. In this case as well, as in Example 1, there were effects of improving critical current characteristics and reducing AC loss, especially.

交流損失は実施例1より約30チ小さかつ友。The AC loss is about 30 inches smaller than that of Example 1.

これは、生成熱処理後の母相がOu−4wt%8n −
7,4wt%8bの4元合金となって、母相の電気抵抗
が実施例1よりもさらに約30チ低下していたためであ
る。
This means that the parent phase after the formation heat treatment is Ou-4wt%8n-
This is because a quaternary alloy containing 7.4 wt % 8b was formed, and the electrical resistance of the matrix was further reduced by about 30 inches compared to Example 1.

また、母相の電気抵抗を上げ、さらに交流損失を低下さ
せるために母相の(3u−8n−8b合金に添加する元
素としては、As、re、Niなど力5有効でおった。
In addition, in order to increase the electrical resistance of the matrix and further reduce AC loss, elements such as As, RE, and Ni were added to the matrix (3u-8n-8b alloy).

また、ベースとなる0u8n合金における8n (19
1度は、高いほど母相の電気抵抗が高くなり交流損失が
低下するが、臨界電流特性を考慮すると15wt%以下
が望ましい。
In addition, 8n (19
The higher the degree is, the higher the electric resistance of the matrix becomes and the lower the AC loss is, but in consideration of the critical current characteristics, it is preferably 15 wt% or less.

上記の実施例で述べたように、この発明の匁果は明らか
であるが、従来のNb、8n超電導線で臨界電流特性の
改善効果が認められているII、  Ga、  ’ra
、  T;などの元素をこの発明の実施例の線の8ng
、Cu母相、Nbフィラメントにさらに添加することは
従来の線と同様に効果がある。
As described in the above examples, the advantages of this invention are obvious, but the improvement effect of critical current characteristics has been recognized in conventional Nb, 8n superconducting wires.
, T; etc. in 8 ng of the wire of the embodiment of this invention.
, Cu matrix, and Nb filament are equally effective as conventional wires.

なお、交流損失及び臨界電流特性に対して。Regarding AC loss and critical current characteristics.

ausn系合金に含有するSbの量は30wt %J)
上でも交流損失は低下するが、臨界電流特性と伸線加工
性の大きな低下を招くので、  0u8n、1合金に含
有するsbは30wt%以下が適当でめる。ま7j、 
 As、  Fe、  Niについても、同様の理由で
10wt%以下が適当である。
The amount of Sb contained in the AUSN alloy is 30wt%J)
Although the AC loss is reduced in the above case, it causes a large decrease in critical current characteristics and wire drawability, so the sb contained in the 0u8n,1 alloy can be suitably 30 wt% or less. Ma7j,
As for As, Fe, and Ni, 10 wt% or less is also suitable for the same reason.

〔発明の効果〕〔Effect of the invention〕

母相と母相に埋設された複数のフィラメント状のNh、
an化合物からなるNb、an化合物超電導線において
、母相が、少なくともSbを30wt%以下含有する0
uan系合金であることを特徴とするものを用いること
により、従来よりも、さらに臨界電流特性が良好で、交
流損失の少ない超電導線が得られるようになったので。
The matrix and multiple filamentary Nh embedded in the matrix,
In the Nb, an compound superconducting wire made of an an compound, the parent phase contains at least 30 wt% or less of Sb.
By using a UAN-based alloy, it has become possible to obtain a superconducting wire with even better critical current characteristics and less AC loss than before.

1  例えば変動磁界の大きい超電導コイルの運転が可
能になり、交流発電機、トランス、超電導磁気エネルギ
ー貯蔵装置などの各種電力用機器の効率化、小形化の推
進に役立つ。
1. For example, it becomes possible to operate a superconducting coil with a large fluctuating magnetic field, which helps promote efficiency and miniaturization of various power equipment such as alternating current generators, transformers, and superconducting magnetic energy storage devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、各々、この発明の一実施例に係わ
るNbsgn線の熱処理前と熱処理後の横断面、$3図
は従来の超電導線の横断面図である。 図において、(3)はCurb合金、(4)はNb フ
ィラメント、(6)は8n、(6)はC11−8n−8
b合金である。 なお、各図中同一符号は同−又は相当部分を示す。
FIGS. 1 and 2 are cross-sectional views of an NBSGN wire according to an embodiment of the present invention before and after heat treatment, respectively, and FIG. 3 is a cross-sectional view of a conventional superconducting wire. In the figure, (3) is Curb alloy, (4) is Nb filament, (6) is 8n, (6) is C11-8n-8
b alloy. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (3)

【特許請求の範囲】[Claims] (1)母相と母相に埋設された複数のフィラメント状の
Nb_3Sn化合物からなるNb_3Sn化合物超電導
線において、母相が、少なくともSbを30wt%以下
含有するCuSn系合金であることを特徴とするNb_
3Sn化合物超電導線。
(1) A Nb_3Sn compound superconducting wire consisting of a matrix and a plurality of filament-shaped Nb_3Sn compounds embedded in the matrix, characterized in that the matrix is a CuSn-based alloy containing at least 30 wt% or less of Sb.
3Sn compound superconducting wire.
(2)母相がSbの他に、As、Fe及びNiのうち少
なくとも一種を10wt%以下含有するCuSn系合金
である特許請求の範囲第1項記載のNb_3Sn化合物
超電導線。
(2) The Nb_3Sn compound superconducting wire according to claim 1, wherein the parent phase is a CuSn-based alloy containing 10 wt% or less of at least one of As, Fe, and Ni in addition to Sb.
(3)母相のCuSn系合金のSn濃度が15wt%以
下である特許請求の範囲第1項又は第2項記載のNb_
3Sn化合物超電導線。
(3) Nb_ according to claim 1 or 2, wherein the Sn concentration of the CuSn-based alloy of the matrix is 15 wt% or less
3Sn compound superconducting wire.
JP61315022A 1986-12-25 1986-12-25 Nb3sn compound superconductive wire Pending JPS63164116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61315022A JPS63164116A (en) 1986-12-25 1986-12-25 Nb3sn compound superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61315022A JPS63164116A (en) 1986-12-25 1986-12-25 Nb3sn compound superconductive wire

Publications (1)

Publication Number Publication Date
JPS63164116A true JPS63164116A (en) 1988-07-07

Family

ID=18060478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61315022A Pending JPS63164116A (en) 1986-12-25 1986-12-25 Nb3sn compound superconductive wire

Country Status (1)

Country Link
JP (1) JPS63164116A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002364A1 (en) * 1989-08-09 1991-02-21 Tokai University Superconductive wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002364A1 (en) * 1989-08-09 1991-02-21 Tokai University Superconductive wire
US5837941A (en) * 1989-08-09 1998-11-17 Tokai University Superconductor wire

Similar Documents

Publication Publication Date Title
Parrell et al. High field Nb/sub 3/Sn conductor development at oxford superconducting technology
JP3215697B2 (en) Superconducting coil that limits fault current
US5581220A (en) Variable profile superconducting magnetic coil
JP2897776B2 (en) Electrical conductor in wire or cable form
JPH0261764B2 (en)
US5604473A (en) Shaped superconducting magnetic coil
Pyon et al. Nb/sub 3/Sn conductors for high energy physics and fusion applications
Goldfarb et al. Hysteresis losses in fine filament internal-tin superconductors
JPS63164116A (en) Nb3sn compound superconductive wire
JPS63164115A (en) Nb3sn compound superconductive wire
Iwasa Recent developments in multifilament V 3 Ga & Nb 3 Sn wires in Japan
JPS63216212A (en) Nb3sn-based superconductive wire and production of it
Kreilick et al. Further improvements in current density by reduction of filament spacing in multifilamentary Nb Ti superconductors
JPH0377607B2 (en)
Scanlan et al. Multifilamentary Nb 3 Sn for superconducting generator applications
Tanaka et al. Multifilamentary stranded compound superconductor
JP2926774B2 (en) Nb for AC (3) Sn multi-core superconducting wire
JPH0146963B2 (en)
Petrovich et al. Critical current of multifilamentary Nb 3 Sn-insert coil and long sample bend tests
JPH09147635A (en) Type a15 superconducting wire and its manufacture
JPH09129043A (en) Nb3 al grouped multicore superconductive wire
Agatsuma et al. The forced cooled Nb 3 Sn superconductor and its magnet
Nagata et al. Development of a large high-current-density Nb 3 Sn superconductor made by solid-liquid diffusion method
Suenaga LOW TC SUPERCONDUCTOR R&D IN JAPAN
JPH07169342A (en) Multi-filament oxide superconducting wire