JPH07169342A - Multi-filament oxide superconducting wire - Google Patents

Multi-filament oxide superconducting wire

Info

Publication number
JPH07169342A
JPH07169342A JP5313456A JP31345693A JPH07169342A JP H07169342 A JPH07169342 A JP H07169342A JP 5313456 A JP5313456 A JP 5313456A JP 31345693 A JP31345693 A JP 31345693A JP H07169342 A JPH07169342 A JP H07169342A
Authority
JP
Japan
Prior art keywords
superconducting wire
oxide superconducting
filament
alloy
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5313456A
Other languages
Japanese (ja)
Inventor
Sukeyuki Kikuchi
祐行 菊地
Masanao Mimura
正直 三村
Yasuzo Tanaka
靖三 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP5313456A priority Critical patent/JPH07169342A/en
Publication of JPH07169342A publication Critical patent/JPH07169342A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To provide a multi-filament oxide superconducting wire capable of increasing crossing resistance between filaments and applying to alternating current by arranging a high resistant Ag-Al alloy layer or Ag-Mg alloy layer between a filament and a stabilizing material layer. CONSTITUTION:In a multi-filament oxide superconducting wire in which a plurality of filaments made of oxide superconducting material are arranged in a stabilizing material layer 3, a layer 2 made of an Ag-Al alloy or Ag-Mg alloy is arranged between the filament 1 and the stabilizing material layer 3. As the stabilizing material layer 3, a material superior to heat conductivity and electric conductivity, such as Ag and Cu is used. By the multi-filament oxide superconducting wire, crossing resistance between filaments 1 is increased, and coupling current flowing between filaments 1 when alternating current is passed is shut off, and coupling loss is decreased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電力ケーブル、マグネッ
ト等に適用可能な酸化物超電導線材に関し、主として交
流用に適した多芯酸化物超電導線材に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide superconducting wire applicable to power cables, magnets and the like, and more particularly to a multi-core oxide superconducting wire suitable for alternating current.

【0002】[0002]

【従来の技術】Y系、Bi系、Tl系に代表される臨界
温度が液体窒素温度を越えるいわゆる酸化物超電導体
(以下超電導体と記す)を線材化、導体化して、マグネ
ット、コイル等種々の電力応用導体として使用する試み
がなされている。
2. Description of the Related Art So-called oxide superconductors (hereinafter referred to as superconductors) whose critical temperature exceeds the liquid nitrogen temperature, represented by Y-type, Bi-type, and Tl-type, are made into wire rods and conductors, and various magnets, coils, etc. Attempts have been made to use it as an electric power application conductor.

【0003】従来の酸化物超電導線材(以下超電導線材
と記す。)は、酸化物超電導材料からなるフィラメント
の外周がAg、Cu等の安定化材層により被覆されてい
る。前記安定化材層は、通電中のフィラメントにおきる
磁束の急激な移動であるフラックス・ジャンプに起因し
た発熱に対してヒートシンクの作用をしたり、電流のバ
イパスとしての作用をなすものである。このような超電
導線材を作製する方法としては一般に金属シース法が用
いられている。この方法は、安定化材として好適なAg
等からなるパイプ内に、超電導体またはその前駆物質を
充填する。ついで前記パイプに断面を減少させる加工を
施して超電導体またはその前駆物質の外周に安定化材層
が形成されたビレットとなす。しかる後このビレットに
所定の熱処理を施して超電導線材とするものである。こ
のような超電導線材を電力ケーブル用、コイル用、電流
リード用等の導体として使用する場合、曲げ等の機械的
な歪みが導体に加わるため、その改善を目的として図2
に示すような超電導線材の多芯化が図られている。
In a conventional oxide superconducting wire (hereinafter referred to as a superconducting wire), a filament made of an oxide superconducting material has an outer periphery covered with a stabilizing material layer such as Ag or Cu. The stabilizing material layer functions as a heat sink for heat generation due to a flux jump, which is a rapid movement of a magnetic flux generated in a filament during energization, and as a current bypass. A metal sheath method is generally used as a method for producing such a superconducting wire. This method is suitable for stabilizing Ag.
A superconductor or its precursor is filled in a pipe made of, for example. Next, the pipe is processed to reduce its cross section to obtain a billet having a stabilizing material layer formed on the outer periphery of the superconductor or its precursor. Thereafter, the billet is subjected to a predetermined heat treatment to obtain a superconducting wire. When such a superconducting wire is used as a conductor for a power cable, a coil, a current lead, etc., mechanical strain such as bending is added to the conductor.
The superconducting wire rod has a multi-core structure as shown in FIG.

【0004】[0004]

【発明が解決しようとする課題】しかしながら多芯酸化
物超電導線材は、曲げ特性には優れた線材であるが、交
流用としては適していない。例えばケーブルとして使用
する場合では、フィラメント1に交流を通電すると、外
部磁場が変動し磁束が出入りする過程で、フィラメント
1間に安定化材層3を介して結合電流が流れる。このと
きに発生するジュール損を結合損失(Pc)と呼んでお
り、Pcは一般に、 Pc=B2 (2πf)2 τ/μ0 τ=(1/2)(μ/ρ)(l0 /2π)2 (B:外部磁場、f:周波数、τ:磁束が超電導体に侵
入する時定数、μ0 :真空の透磁率、ρ:超電導体間横
断抵抗率、l0 :ツイストピッチ)で求めることができ
る。このような結合損失のために液体窒素等の冷媒の蒸
発量が多くなったり、それに伴ってフィラメント1がク
エンチするなどの問題がある。
However, although the multi-core oxide superconducting wire is a wire excellent in bending characteristics, it is not suitable for alternating current. For example, when used as a cable, when an alternating current is applied to the filament 1, a coupling current flows between the filaments 1 through the stabilizing material layer 3 in the process of changing the external magnetic field and flowing in and out of the magnetic flux. The Joule loss generated at this time is called a coupling loss (Pc), and Pc is generally Pc = B 2 (2πf) 2 τ / μ 0 τ = (1/2) (μ / ρ) (l 0 / 2π) 2 (B: external magnetic field, f: frequency, τ: time constant of magnetic flux penetrating into superconductor, μ 0 : permeability of vacuum, ρ: cross resistance between superconductors, l 0 : twist pitch) be able to. Due to such a coupling loss, there is a problem that the evaporation amount of the refrigerant such as liquid nitrogen increases and the filament 1 is quenched accordingly.

【0005】本発明は上記従来技術の問題点に鑑み鋭意
検討の結果なされたもので、その目的とするところは、
交流用として好適な多芯酸化物超電導線材を提供するこ
とにある。
The present invention has been made as a result of extensive studies in view of the above problems of the prior art.
It is to provide a multi-core oxide superconducting wire suitable for alternating current.

【0006】[0006]

【課題を解決するための手段】本発明では、酸化物超電
導材料からなるフィラメント1を安定化材層3中に複数
配置した多芯酸化物超電導線材であり、前記フィラメン
ト1と安定化材層3との間にAg−Al合金またはAg
−Mg合金からなる層2が設けられている多芯酸化物超
電導線材により前記課題の解決を図った。
According to the present invention, there is provided a multi-core oxide superconducting wire in which a plurality of filaments 1 made of an oxide superconducting material are arranged in a stabilizing material layer 3, and the filament 1 and the stabilizing material layer 3 are provided. Between Ag-Al alloy or Ag
The multi-core oxide superconducting wire provided with the layer 2 made of —Mg alloy is intended to solve the above problems.

【0007】前記安定化材層3としては、熱伝導性、電
気伝導性に優れた材料であるAg、Cuの他、Au、P
d、Ir、Rh等が好適に使用できるが、酸素透過性、
耐酸化性の点でAgがより好適に使用できる。
The stabilizing material layer 3 includes Au and P in addition to Ag and Cu, which are materials having excellent thermal conductivity and electrical conductivity.
d, Ir, Rh and the like can be preferably used, but oxygen permeability,
Ag is more preferably used in terms of oxidation resistance.

【0008】本発明の多芯酸化物超電導線材(以下多芯
超電導線材と記す。)の長手方向に直交する断面は特に
限定はなく、円形、あるいはテープ状、多角形等とする
ことができ、臨界電流密度を向上させるために断面をテ
ープ状にするのが好ましい。
The cross section of the multifilamentary oxide superconducting wire of the present invention (hereinafter referred to as multifilamentary superconducting wire) orthogonal to the longitudinal direction is not particularly limited, and may be circular, tape-shaped, polygonal, or the like. In order to improve the critical current density, it is preferable to taper the cross section.

【0009】また本発明の多芯超電導線材には、線材の
長手方向にねじり(ツイスト)を与える加工(以下ツイ
スト加工と記す。)が施されているのが好ましい。多芯
超電導線材に交流磁界が加わった場合に、結合電流によ
る結合損失が生じるのを低減するためである。
Further, it is preferable that the multifilamentary superconducting wire of the present invention is processed to give a twist in the longitudinal direction of the wire (hereinafter referred to as "twisting"). This is to reduce the occurrence of coupling loss due to the coupling current when an AC magnetic field is applied to the multi-core superconducting wire.

【0010】[0010]

【作用】本発明の多芯酸化物超電導線材は、フィラメン
ト1と安定化材層3との間に、前記安定化材層3に比し
て高抵抗のAg−Al合金層2またはAg−Mg合金層
2が設けられている。よって、フィラメント1間の横断
抵抗率が大きくなるので、交流通電時にフィラメント1
間に結合電流が流れるのを遮断して結合損失を低減する
ことができる。
The multi-core oxide superconducting wire of the present invention has the Ag-Al alloy layer 2 or Ag-Mg between the filament 1 and the stabilizing material layer 3 which has a higher resistance than the stabilizing material layer 3. The alloy layer 2 is provided. Therefore, the transverse resistance between the filaments 1 is increased, and the filaments 1 are not energized when an alternating current is applied.
The coupling loss can be reduced by blocking the flow of the coupling current between them.

【0011】[0011]

【実施例】以下、本発明を実施例に基づいて詳しく説明
する。 (実施例1)Bi2 3 、PbO、SrCO3 、CaC
3 、及びCuOの粉末をモル比でBi:Pb:Sr:
Ca:Cu=1.6:0.4:2:2:3となるように
配合、混合した混合粉を大気中で800℃、80時間仮
焼した後粉砕し、前駆物質とする。ついでこの前駆物質
を外径が20mm、内径が15mmであるAg92mo
l%、Al8mol%合金からなるパイプ内に充填す
る。ついでこの合金製パイプを外径が25mm、内径が
20.4mmであるAg製パイプ内に挿入する。ついで
このAg製パイプを静水圧押出しして外径8mmに仕上
げ、さらに引き抜き加工を施して外径3mmの一次ビレ
ットとする。このようにして得られる一次ビレットを3
7本束ね、外径25mm、内径21mmのAg製パイプ
内に挿入する。ついでこの一次ビレットを挿入したAg
製パイプを静水圧押出しして外径8mmとし、さらに引
き抜き加工を施して外径1mmの二次ビレットとする。
得られた二次ビレットにピッチが3mmとなるようにツ
イスト加工と圧延加工を施す。ついでこの二次ビレット
に大気中で835℃、50時間の熱処理を2回繰り返し
て施し、図1に示すような厚さ0.25mm、幅約2m
mの多芯超電導線材を得る。
EXAMPLES The present invention will be described in detail below based on examples. (Example 1) Bi 2 O 3, PbO , SrCO 3, CaC
O 3 and CuO powders were mixed at a molar ratio of Bi: Pb: Sr:
The mixed powder mixed and mixed so that Ca: Cu = 1.6: 0.4: 2: 2: 3 is calcined in the air at 800 ° C. for 80 hours and then pulverized to obtain a precursor. This precursor is then Ag92mo with an outer diameter of 20 mm and an inner diameter of 15 mm.
It is filled in a pipe made of 1% and Al 8 mol% alloy. Then, this alloy pipe is inserted into an Ag pipe having an outer diameter of 25 mm and an inner diameter of 20.4 mm. Next, this Ag pipe is hydrostatically extruded to have an outer diameter of 8 mm and further drawn to obtain a primary billet having an outer diameter of 3 mm. 3 primary billets obtained in this way
7 bundles are inserted into an Ag pipe having an outer diameter of 25 mm and an inner diameter of 21 mm. Then Ag with this primary billet inserted
The pipe is hydrostatically extruded to have an outer diameter of 8 mm, and further drawn to obtain a secondary billet having an outer diameter of 1 mm.
The obtained secondary billet is twisted and rolled so that the pitch becomes 3 mm. Then, this secondary billet was repeatedly subjected to heat treatment at 835 ° C. for 50 hours in the atmosphere twice, and the thickness was 0.25 mm and the width was about 2 m as shown in FIG.
A multifilamentary superconducting wire of m is obtained.

【0012】このようにして得られた多芯超電導線材の
横断面形状の観察と分析を行った結果、フィラメント1
とAg−Al合金層2との反応は見られなかった。この
多芯超電導線材の全交流損失を測定するために、外径1
8mmのステンレス(SUS)製パイプにピッチが約2
50mmとなるように多芯超電導線材を螺旋状に巻き付
けたものを作製した。ここで1層当たりの線材数は25
〜26本で計3層巻き付けた。このような多芯超電導線
材の全交流損失(ヒステリシス損失、結合損失、渦電流
損失)を蒸発法により測定した。
As a result of observing and analyzing the cross-sectional shape of the multifilamentary superconducting wire thus obtained, filament 1
No reaction was observed with the Ag—Al alloy layer 2. To measure the total AC loss of this multifilamentary superconducting wire, the outer diameter 1
8mm stainless (SUS) pipe with a pitch of about 2
A spirally wound multifilamentary superconducting wire having a length of 50 mm was produced. Here, the number of wire rods per layer is 25
A total of 3 layers were wound with ~ 26 pieces. The total AC loss (hysteresis loss, coupling loss, eddy current loss) of such a multicore superconducting wire was measured by the evaporation method.

【0013】(蒸発法) (1)真空断熱あるいはスーパーインシュレーション等
が施されている液体窒素容器内に線材を挿入する。そし
てこの容器を流量計に接続し全体を密閉状態にして測定
装置とする。 (2)線材に交流500Aを通電して窒素の蒸発量(l
/min)を測定する。 (3)つぎに線材を挿入しないで蒸発量(外部からの熱
侵入)を測定し、(2)で測定した値から差し引く。 (4)このようにして求められた蒸発量から発熱量、す
なわち全交流損失が求められる。
(Evaporation Method) (1) Insert the wire into a liquid nitrogen container that is vacuum-insulated or super-insulated. Then, this container is connected to a flow meter and the whole is hermetically sealed to form a measuring device. (2) Amount of nitrogen evaporation (l
/ Min) is measured. (3) Next, measure the amount of evaporation (heat intrusion from the outside) without inserting the wire rod, and subtract it from the value measured in (2). (4) The calorific value, that is, the total AC loss is obtained from the evaporation amount thus obtained.

【0014】その結果、1.9kW/m3 の優れた値が
得られた。なお蒸発法により測定した値(kW/m3
は小さいほど交流損失、中でも結合損失が少ないことを
示す。
As a result, an excellent value of 1.9 kW / m 3 was obtained. The value measured by the evaporation method (kW / m 3 )
Indicates that the smaller the value, the smaller the AC loss, and the less the coupling loss.

【0015】(実施例2)実施例1のAg−Al合金製
パイプに換えてAg95mol%、Mg5mol%合金
からなるパイプを用いる。それ以外は実施例1と同様に
して多芯超電導線材を作製した。得られた多芯超電導線
材の横断面形状の観察と分析を行った結果、フィラメン
ト1とAg−Mg合金層2との反応は見られなかった。
この多芯超電導線材の全交流損失を実施例1と同様にし
て測定したところ、1.4kW/m3 と優れた値が得ら
れた。
(Example 2) Instead of the Ag-Al alloy pipe of Example 1, a pipe made of an alloy of 95 mol% Ag and 5 mol% Mg is used. A multifilamentary superconducting wire was produced in the same manner as in Example 1 except for the above. As a result of observing and analyzing the cross-sectional shape of the obtained multifilamentary superconducting wire, no reaction between the filament 1 and the Ag-Mg alloy layer 2 was observed.
When the total AC loss of this multifilamentary superconducting wire was measured in the same manner as in Example 1, an excellent value of 1.4 kW / m 3 was obtained.

【0016】(比較例1)実施例1のAg−Al合金製
パイプに換えてAg製のパイプを用いた以外は実施例1
と同様にして多芯超電導線材を作製した。得られた多芯
超電導線材の全交流損失を実施例と同様にして測定した
ところ、18kW/m3 と実施例に比して極めて劣るも
のであった。
(Comparative Example 1) Example 1 except that an Ag-Al alloy pipe of Example 1 was replaced with an Ag pipe.
A multifilamentary superconducting wire was produced in the same manner as. When the total AC loss of the obtained multifilamentary superconducting wire was measured in the same manner as in the example, it was 18 kW / m 3 , which was extremely inferior to the example.

【0017】[0017]

【発明の効果】本発明の多芯酸化物超電導線材は、フィ
ラメント1と安定化材層3との間に高抵抗のAg−Al
合金層2またはAg−Mg合金層2が設けられている。
よって、フィラメント1間の横断抵抗率が大きくなるの
で、交流通電時にフィラメント1間に結合電流が流れる
のを遮断して結合損失を低減することができる。従って
本発明によれば、交流用に適用可能な多芯酸化物超電導
線材を提供することができる。
The multicore oxide superconducting wire of the present invention has a high resistance Ag-Al between the filament 1 and the stabilizing material layer 3.
The alloy layer 2 or the Ag—Mg alloy layer 2 is provided.
Therefore, since the transverse resistivity between the filaments 1 becomes large, the coupling loss can be reduced by blocking the flow of the coupling current between the filaments 1 when the AC current is applied. Therefore, according to the present invention, it is possible to provide a multi-core oxide superconducting wire applicable to alternating current.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の多芯酸化物超電導線材を示す
概略図。
FIG. 1 is a schematic view showing a multi-core oxide superconducting wire according to the present invention.

【図2】図2は、従来の多芯酸化物超電導線材を示す概
略図。
FIG. 2 is a schematic view showing a conventional multi-core oxide superconducting wire.

【符号の説明】[Explanation of symbols]

1 フィラメント 2 Ag−Al合金層、Ag−Mg合金層 3 安定化材層 1 Filament 2 Ag-Al alloy layer, Ag-Mg alloy layer 3 Stabilizer layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸化物超電導材料からなるフィラメント
(1)を安定化材層(3)中に複数配置した多芯酸化物
超電導線材であり、前記フィラメント(1)と安定化材
層(3)との間にAg−Al合金層(2)またはAg−
Mg合金層(2)が設けられていることを特徴とする多
芯酸化物超電導線材。
1. A multi-core oxide superconducting wire comprising a plurality of filaments (1) made of an oxide superconducting material arranged in a stabilizing material layer (3), the filament (1) and the stabilizing material layer (3). Between the Ag-Al alloy layer (2) or Ag-
A multi-core oxide superconducting wire, characterized in that a Mg alloy layer (2) is provided.
JP5313456A 1993-12-14 1993-12-14 Multi-filament oxide superconducting wire Pending JPH07169342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5313456A JPH07169342A (en) 1993-12-14 1993-12-14 Multi-filament oxide superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5313456A JPH07169342A (en) 1993-12-14 1993-12-14 Multi-filament oxide superconducting wire

Publications (1)

Publication Number Publication Date
JPH07169342A true JPH07169342A (en) 1995-07-04

Family

ID=18041526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5313456A Pending JPH07169342A (en) 1993-12-14 1993-12-14 Multi-filament oxide superconducting wire

Country Status (1)

Country Link
JP (1) JPH07169342A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001035423A1 (en) * 1999-11-08 2001-05-17 Sumitomo Electric Industries, Ltd. High-temperature oxide superconductor wire and method for preparing the same
KR100779378B1 (en) * 2006-10-10 2007-11-23 성균관대학교산학협력단 Multi-filament super conductors wire for reducing ac loss and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001035423A1 (en) * 1999-11-08 2001-05-17 Sumitomo Electric Industries, Ltd. High-temperature oxide superconductor wire and method for preparing the same
AU777934B2 (en) * 1999-11-08 2004-11-04 Hiroshi Maeda High-temperature oxide superconductor wire and method for preparing the same
US6828508B1 (en) 1999-11-08 2004-12-07 Sumitomo Electric Industries, Ltd. Oxide high-temperature superconductor wire and method of producing the same
KR100779378B1 (en) * 2006-10-10 2007-11-23 성균관대학교산학협력단 Multi-filament super conductors wire for reducing ac loss and method for producing the same

Similar Documents

Publication Publication Date Title
US6038462A (en) Structure and method of manufacture for minimizing filament coupling losses in superconducting oxide composite articles
JP3356852B2 (en) Manufacturing method of oxide superconducting wire
JP2897776B2 (en) Electrical conductor in wire or cable form
US6510604B1 (en) Superconducting cables experiencing reduced strain due to bending
Hasegawa et al. HTS conductors for magnets
WO2008065781A1 (en) Oxide superconducting wire rod, superconducting structure, method for manufacturing oxide superconducting wire rod, superconducting cable, superconducting magnet, and product comprising superconducting magnet
JP2003331660A (en) Metal-sheathed superconductor wire, superconducting coil, and its manufacturing method
JPH07169342A (en) Multi-filament oxide superconducting wire
Huang et al. Development of Bi (2223) multifilamentary tapes with low ac losses
JP2023041520A (en) MgB2 SUPERCONDUCTIVE WIRE MATERIAL AND METHOD FOR MANUFACTURING THE SAME
JP4737094B2 (en) Oxide superconducting wire, superconducting structure, manufacturing method of oxide superconducting wire, superconducting cable, superconducting magnet, and product including superconducting magnet
JP4039049B2 (en) Multi-core oxide superconducting wire manufacturing method
KR100392511B1 (en) Fabrication method of MgB2 superconducting wire
JPH0765646A (en) Oxide superconducting cable and manufacture of strand
JP2005141968A (en) Compound superconducting wire material and its manufacturing method
JP4542240B2 (en) Oxide superconducting stranded conductor
JP2008282566A (en) Bismuth oxide superconducting element wire, bismuth oxide superconductor, superconducting coil, and manufacturing method of them
Soika et al. Fabrication and prototype testing of a strain-tolerant Bi-2212 cable
Scanlan et al. Multifilamentary Nb 3 Sn for superconducting generator applications
US6842634B2 (en) Integrated tape
JP3568767B2 (en) Superconducting cable and manufacturing method thereof
JPH11203960A (en) Oxide superconductive cable
Goldacker et al. Properties of internally stranded RBB (ring bundle barrier) low AC loss BSCCO tapes made by PITAR route
Watanabe et al. Oxidized Hastelloy Cloth Insulation for a Wind‐and‐React Processed Ag/Bi2Sr2CaCu2O8 Superconducting Magnet
JPH02126519A (en) Superconducting conductor