JPH0358123B2 - - Google Patents

Info

Publication number
JPH0358123B2
JPH0358123B2 JP58047729A JP4772983A JPH0358123B2 JP H0358123 B2 JPH0358123 B2 JP H0358123B2 JP 58047729 A JP58047729 A JP 58047729A JP 4772983 A JP4772983 A JP 4772983A JP H0358123 B2 JPH0358123 B2 JP H0358123B2
Authority
JP
Japan
Prior art keywords
filament
wire
compound
diameter
compound superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58047729A
Other languages
Japanese (ja)
Other versions
JPS59173903A (en
Inventor
Yasuzo Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP58047729A priority Critical patent/JPS59173903A/en
Publication of JPS59173903A publication Critical patent/JPS59173903A/en
Publication of JPH0358123B2 publication Critical patent/JPH0358123B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、極細多芯化合物超電導導体の改良に
関する。 [従来の技術及び課題] 極細多芯化合物超電導導体は、一般に次のよう
に大別される。 (1) ブロンズ法連続多芯線。 (2) 内部及び外部拡散法連続線。 (3) In−Situ法及びPowder法不連続線。 しかしながら、前記各超電導導体においては次
のような問題があつた。 前記(1)の化合物超電導線においては、化合物フ
イラメントが線材の一端から他端まで連続してい
るため電気的に不連続部はなく電流損失のない材
料ではある。しかしながら、線材の単位断面積当
りに含まれるフイラメントの数に製造上限界があ
るため、電流密度が低い欠点を有する。この線材
(例えばNb3Sn線)の場合は、ブロンズとニオブ
との複合加工によつて得られるもので、多数回の
中間焼鈍を行つて減面加工率を高くしても断線せ
ずに連続フイラメントの状態を維持するためには
最少3μm程度のフイラメント径までが限度であ
り、これにより細く加工すると断線してしまう。 また、ブロンズとニオブとの固体拡散によつて
Nb3Snを形成させるためには高濃度のSnまたは
高温度での拡散熱処理が必要である。しかしなが
ら、ブロンズにおけるSn濃度は14.0wt%が上限
である。このため、3μmのフイラメント全体を
Nb3Sn層にするには高温度での熱処理を選択せざ
るをえない。一方、高温度での拡散熱処理によつ
てはNb3Sn層の結晶粒径が粗大化して有効なピニ
ング力(臨界電流密度を支配する因子の一つ)が
少くなり電流密度を高くすることができないもの
である。 前記(2)の化合物超電導線においては、前記(1)の
化合物フイラメントと同様に連続していると共に
ブロンズ法よりもSn濃度を30wt%程度に高くす
ることが可能であるため、電流密度を高くするこ
とができるものである。しかしながら、前記(1)及
び(2)の化合物超電導線に共通した最大の欠点は化
合物フイラメントが線材の一端から他端まで連続
しているため、製造工程でのハンドリングや巻線
工程における線材に加わる曲げ歪がそのまま化合
物フイラメントに負荷される。その結果、0.2〜
0.5%の歪率で破壊し、超電導線としての機能を
発揮しえないものとなる。従つて、前記(1)及び(2)
の化合物超電導線は0.2%以上の歪が加わる用途
に対しては不適当な線材である。 前記(3)の化合物超電導線は、化合物フイラメン
トが不連続であるため、外部から負荷された歪を
フイラメントの不連続部で十分変形しうるマトリ
ツクス材で大部分を吸収する。その結果、フイラ
メントに前記歪が僅かしか伝般されないため歪に
対する敏感性が緩和される。また、電流密度に関
しても高くすることができる。その理由は、フイ
ラメントの直径が高さ1.5μmと比較的細いことに
より拡散距離の低下に基づく低温度での拡散熱処
理が可能なことと、Sn濃度の調整が自由で高Sn
濃度にすることが可能にするためである。しかし
ながら、前記化合物超電導線における最大の欠点
はフイラメントの長さを全くコントロールできな
いことである。In−Sutu法及びPowder法におけ
るフイラメントの長さは、通常10mm〜1000mmと広
範囲に分布されているが、このフイラメントの長
さは線材外径(マトリツクス材外直径)と関係し
て、電流密度に大きく影響を及ぼすものである。 即ち、線材外径に比較して化合物フイラメント
長さが短い場合にはフイラメント間の電流移行
(current transfer)に多大な電流ロスが発生し
て線材の電流密度を著しく低下させる。従つて、
線材外径を太くしたい場合にはフイラメントの長
さを長くする必要があるが、In−Situ法における
急冷インゴツトの外径やPowder粒径には最終線
材の太さに関係なく制約があるため、最終線材径
の大小に適合する長さのフイラメントのものしか
できない。かかる理由から前記(3)の化合物超電導
線は、特に線外径を太くすると超電導状態での線
材としては電気抵抗がかなり高いものであり、高
精度なマグネツト、精密な機器及び交流的操作条
件での用途には不適当である。 本発明は、前記従来の問題点を解決するために
なされたもので、化合物フイラメントの等価直
径、フイラメントの長さ及び線材外径が夫々限定
された構造を有し、電流密度が高くかつ歪を加わ
つた場合でも臨界電流密度の低下を抑制すること
が可能な化合物超電導導体を提供しようとするも
のである。 [課題を解決するための手段] 本発明は、マトリツクス金属材中に多数本の不
連続極細化合物超電導フイラメントが埋込まれた
化合物超電導導体において、前記化合物超電導フ
イラメントの等価直径が0.1〜1.0μmであり、か
つ同一フイラメント上の不連続部間に位置するフ
イラメントの長さが前記マトリツクス材の等価直
径の70倍以上であることを特徴とする化合物超電
導導体である。 前記マトリツクス金属材としては、例えばCu
又はCu−Sn、Cu−Ga、Cu−Ga−Sn、Cu−Sn
−Tiなどの銅基合金、Sn−CuなどのSn基合金、
Ga基合金、Al基合金、銀基合金を挙げることが
できる。 前記化合物超電導体は、Nb3Sn、V3Ga、
Nb3Ga、Nb3Al、V3Siなど複合加工法と拡散熱
処理によつて形成されるすべての化合物超電導体
である。 なお、前記等価直径とは最終線材におけるフイ
ラメント又はマトリツクス材の断面積と等しい面
積を持つ円の直径を意味するものである。 [実施例] 以下、本発明の実施例を図面を参照して詳細に
説明する。 第1図Aおよび同図Bに示すように多数本の
Nb3Sn化合物超電導フイラメント1をブロンズマ
トリツクス2の中に内蔵せしめ、その外側に拡散
バリヤー3を介して安定化銅4を被覆してなる
Nb3Sn化合物超電導線について、以下に説明する
実験(実験例1および実験例2)を行つた。 実験例 1 実験例1では、フイラメントの長さが、Jc値に
どのように影響するかについて行つた。 まず、フイラメントの直径(Df)を一定(Df
〜0.3μm)とし、フイラメントの不連続部5,
5′間に伝達するフイラメントの長さ(lf)を線
材のマトリツクス材の外径Dbの10倍〜100倍の範
囲で変化させた種々の試料を作製し、4.2〓にお
いて線材に検出される電圧から臨界電流をρ=
10-10Ωcm、ρ=10-11Ωcm及びρ=10-12Ωcmの抵
抗の下で測定し、その測定値に基づいてバリヤー
材3と安定化銅4を除外した線材断面積で除して
Jc値を求めた。その結果を第2図に示す。 第2図から明らかなようにフイラメント長さが
lf<70Dbでは何れの抵抗の場合においてもJc値
が低下する。これは、主として不連続フイラメン
ト相互の電流移行の現象に起因するものと考えら
れる。即ち、lfが短いものでは電流移行に際して
抵抗が発生するためである。従つて、フイラメン
トの長さはlf≧70Dbであることが必要であるこ
とを確認した。しかしながら、フイラメントの長
さの上限は無限大、つまり連続にする必要はなく
lf〜100Db程度で十分に実用に供することが出来
るものであることをも明らかになつた。 実験例 2 実験例2では、フイラメント径とJc値との関係
について検討を行つた。 第3図に示すようにフイラメント長lfを一定
(30Db)とし、フイラメント径Dfを0.01〜100μm
の範囲で変化させた種々のNb3Sn化合物超電導線
を作製した。 また、フイラメント長が夫々lf=70Db、及びlf
=90Dbである各場合についても前記と同様にフ
イラメント径を変化させた種々の超電導線を作製
した。 前記各超電導線を4.2〓、ε=0.9%、ρ=−
1011Ωcmの条件において電流密度を測定した。そ
の結果を第3図に示す。 第3図より明らかなようにフイラメント径Df
=0.1〜1.0μm、フイラメント長lf=70Db及びlf=
90Dbにて高電流密度のものを得た。しかしなが
ら、Df<0.1μm又は得るf<70DbではJc値が低
下することが認められた。 従つて、フイラメントの等価直径は0.1〜1.0μ
mの範囲に限定したものである。 次に、前述した実験例を基にして具体的な実施
例を説明する。 実施例 まず、外径45mmのCu−13.5wt%Sn合金に直径
3.1mmの貫通孔を37本穿設し、前記各貫通孔に直
径3mmの純Nb棒をそれぞれ挿入した後、約500℃
で中間焼鈍を施しながら、外径0.2mmまで減面加
工を施して素線を作製した。 また、外径45mm、内径38.1mmのCu管中に外径38
mm、内径35mmのNb管をセツトした。 次いで、前記直径0.2mmの素線を100mmの長さに
切断した約21000本の素線を、前記Cu管中にセツ
トされたNb管内に組み込んだ。この組込み工程
において、前記複数本の素線のうち50本につき1
本の素線の2箇所を1mmの長さとなるように切断
し、これら複数本の素線を切断部が順次ずれるよ
うに前記Nb管内に組み込んだ。このようにして
組込まれた複合体を中間焼鈍を施しながら外径
2.7mmまで減面加工した。この線材を600℃、20時
間加熱してNb3Sn超電導線を製造した。かかる
Nb3Sn超電導線のフイラメントは約0.8μmであつ
た。また、切断部間の長さであるフイラメント長
さ(lf)は約278mmであつた。 比較例 1 (ブロンズ法) まず、外径45mmのCu−13.5wt%Sn合金に直径
3.1mmの貫通孔を37本穿設し、前記各貫通孔に直
径3mmの純Nb棒をそれぞれ挿入した後、約500℃
で中間焼鈍を施しながら、外径1.5mmまで減面加
工を施して素線を作製した。 また、外径45mm、内径38.1mmのCu管中に外径38
mm、内径35mmのNb管をセツトした。 次いで、前記直径1.5mmの素線を100mmの長さに
切断した約380本の素線を、実施例と同様なCu管
中にセツトされたNb管内に組み込んだ。このよ
うにして組込まれた複合体を中間焼鈍を施しなが
ら外径2.7mmまで減面加工した。この線材を600
℃、20時間加熱してNb3Sn超電導線を製造した。 比較例 2 (In−situ法) まず、外径35mm、長さ250mmのCu−40wt%Nb
複合体を電極として消耗アーク炉において溶製
し、内径45mmの水冷銅鋳型中で凝固させた。前記
鋳型から取出した外径45mmのインゴツトは、Cu
中に約0.18〜1.8mmのNbデンドライトが分散した
ものであつた。つづいて、前記インゴツトを外径
2.7mmまで減面加工し、約150μm厚さのSnメツキ
を施した後、200℃、400℃、600℃のステツプ加
熱にによつてSnを内部に拡散させてNb3Sn超電
導線を製造した。 しかして、本実施例および比較例1、2の
Nb3Sn超電導線について、10Tおよび12Tの磁場
での無歪状態における臨界電流密度(Jc)を測定
した。その結果を下記表1に示す。
[Industrial Application Field] The present invention relates to improvements in ultrafine multicore compound superconducting conductors. [Prior Art and Problems] Ultrafine multicore compound superconducting conductors are generally classified into the following types. (1) Bronze process continuous multicore wire. (2) Internal and external diffusion method continuous line. (3) In-Situ method and Powder method discontinuous line. However, each of the above-mentioned superconducting conductors had the following problems. In the compound superconducting wire of (1), the compound filament is continuous from one end of the wire to the other, so there is no electrical discontinuity and the material is free of current loss. However, since there is a manufacturing limit to the number of filaments included per unit cross-sectional area of the wire, it has the disadvantage of low current density. In the case of this wire (for example, Nb 3 Sn wire), it is obtained by composite processing of bronze and niobium, and even if the area reduction processing rate is increased by performing multiple intermediate annealing, it will continue without breaking. In order to maintain the condition of the filament, the diameter of the filament is limited to a minimum of about 3 μm, and if it is processed to be thinner, it will break. Also, by solid diffusion of bronze and niobium
In order to form Nb 3 Sn, a high concentration of Sn or a diffusion heat treatment at high temperature is required. However, the upper limit of the Sn concentration in bronze is 14.0 wt%. For this reason, the entire 3μm filament
To create a Nb 3 Sn layer, high temperature heat treatment must be selected. On the other hand, diffusion heat treatment at high temperatures coarsens the crystal grain size of the Nb 3 Sn layer, reducing the effective pinning force (one of the factors governing critical current density), making it difficult to increase the current density. It is something that cannot be done. The compound superconducting wire in (2) above is continuous like the compound filament in (1) above, and it is possible to increase the Sn concentration to about 30 wt% higher than in the bronze method, so it is possible to increase the current density. It is something that can be done. However, the biggest drawback common to the compound superconducting wires mentioned in (1) and (2) is that the compound filament is continuous from one end of the wire to the other, so it does not add to the wire during handling or winding during the manufacturing process. Bending strain is directly applied to the compound filament. As a result, 0.2~
It breaks down at a strain rate of 0.5% and becomes unable to function as a superconducting wire. Therefore, (1) and (2) above
Compound superconducting wire is unsuitable for applications where strain of 0.2% or more is applied. In the compound superconducting wire (3), since the compound filament is discontinuous, most of the strain applied from the outside is absorbed by the matrix material, which can be sufficiently deformed at the discontinuous portions of the filament. As a result, only a small amount of the strain is transmitted to the filament, thereby reducing its sensitivity to strain. Furthermore, the current density can also be increased. The reason for this is that the diameter of the filament is relatively thin with a height of 1.5 μm, which makes it possible to perform diffusion heat treatment at low temperatures based on a reduction in the diffusion distance, and that the Sn concentration can be freely adjusted, resulting in high Sn content.
This is to make it possible to increase the concentration. However, the biggest drawback of the compound superconducting wire is that the length of the filament cannot be controlled at all. The length of the filament in the In-Sutu method and the Powder method is usually distributed over a wide range of 10 mm to 1000 mm, but the length of the filament is related to the outer diameter of the wire (outer diameter of the matrix material) and depends on the current density. This has a major impact. That is, when the length of the compound filament is shorter than the outer diameter of the wire, a large amount of current loss occurs in current transfer between the filaments, significantly reducing the current density of the wire. Therefore,
If you want to increase the outer diameter of the wire, it is necessary to increase the length of the filament, but there are restrictions on the outer diameter of the quenched ingot and the powder particle size in the In-Situ method, regardless of the thickness of the final wire. Only filament lengths suitable for the final wire diameter can be produced. For this reason, the compound superconducting wire described in (3) above has a considerably high electrical resistance as a wire in a superconducting state, especially when the outer diameter of the wire is increased, and it is difficult to use with high-precision magnets, precision equipment, and AC operating conditions. It is unsuitable for this purpose. The present invention was made in order to solve the above-mentioned conventional problems, and has a structure in which the equivalent diameter of the compound filament, the length of the filament, and the outer diameter of the wire are limited, so that the current density is high and the strain is low. The object of the present invention is to provide a compound superconducting conductor that can suppress a decrease in critical current density even when the current density is increased. [Means for Solving the Problems] The present invention provides a compound superconducting conductor in which a large number of discontinuous ultrafine compound superconducting filaments are embedded in a matrix metal material, in which the equivalent diameter of the compound superconducting filaments is 0.1 to 1.0 μm. The compound superconducting conductor is characterized in that the length of the filaments located between the discontinuous portions on the same filament is 70 times or more the equivalent diameter of the matrix material. As the matrix metal material, for example, Cu
Or Cu-Sn, Cu-Ga, Cu-Ga-Sn, Cu-Sn
-Copper-based alloys such as Ti, Sn-based alloys such as Sn-Cu,
Examples include Ga-based alloys, Al-based alloys, and silver-based alloys. The compound superconductor includes Nb 3 Sn, V 3 Ga,
All compound superconductors formed by composite processing methods such as Nb 3 Ga, Nb 3 Al, and V 3 Si and diffusion heat treatment. The term "equivalent diameter" means the diameter of a circle having an area equal to the cross-sectional area of the filament or matrix material in the final wire. [Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings. As shown in Figures 1A and 1B, a large number of
A Nb 3 Sn compound superconducting filament 1 is embedded in a bronze matrix 2, and the outside thereof is coated with stabilizing copper 4 via a diffusion barrier 3.
Experiments described below (Experimental Examples 1 and 2) were conducted on Nb 3 Sn compound superconducting wires. Experimental Example 1 In Experimental Example 1, we investigated how the length of the filament affects the Jc value. First, the filament diameter (Df) is kept constant (Df
~0.3 μm), and the filament discontinuity 5,
Various samples were prepared in which the length (lf) of the filament transmitting between The critical current from ρ=
Measured under resistances of 10 -10 Ωcm, ρ = 10 -11 Ωcm and ρ = 10 -12 Ωcm, and based on the measured values, divided by the cross-sectional area of the wire excluding barrier material 3 and stabilizing copper 4.
The Jc value was determined. The results are shown in FIG. As is clear from Figure 2, the filament length is
When lf<70Db, the Jc value decreases for any resistance. This is considered to be mainly due to the phenomenon of current transfer between discontinuous filaments. That is, if lf is short, resistance occurs during current transfer. Therefore, it was confirmed that the length of the filament must be lf≧70Db. However, the upper limit of the length of the filament is infinite, that is, it does not need to be continuous.
It has also become clear that lf ~ 100Db is sufficient for practical use. Experimental Example 2 In Experimental Example 2, the relationship between the filament diameter and the Jc value was investigated. As shown in Figure 3, the filament length lf is constant (30Db) and the filament diameter Df is 0.01 to 100μm.
We fabricated various Nb 3 Sn compound superconducting wires with varying values. In addition, the filament lengths are lf = 70Db and lf
=90Db, various superconducting wires with different filament diameters were produced in the same manner as above. Each superconducting wire is 4.2〓, ε=0.9%, ρ=-
The current density was measured under the condition of 10 11 Ωcm. The results are shown in FIG. As is clear from Figure 3, the filament diameter Df
=0.1~1.0μm, filament length lf=70Db and lf=
A high current density one was obtained at 90Db. However, it was observed that the Jc value decreased when Df<0.1 μm or obtained f<70Db. Therefore, the equivalent diameter of the filament is 0.1~1.0μ
The range is limited to m. Next, specific examples will be described based on the experimental examples described above. Example First, a Cu-13.5wt%Sn alloy with an outer diameter of 45mm was
After drilling 37 through holes of 3.1 mm and inserting pure Nb rods of 3 mm in diameter into each of the through holes, the temperature was heated to approximately 500°C.
While performing intermediate annealing, the wire was subjected to area reduction processing to an outer diameter of 0.2 mm to produce a wire. In addition, an outer diameter of 38mm is inserted into a Cu tube with an outer diameter of 45mm and an inner diameter of 38.1mm.
A Nb pipe with an inner diameter of 35 mm was set. Next, about 21,000 strands obtained by cutting the 0.2 mm diameter strands into lengths of 100 mm were incorporated into the Nb tube set in the Cu tube. In this assembly process, one wire per 50 of the plurality of wires is
Two parts of the main wire were cut to a length of 1 mm, and the plurality of wires were assembled into the Nb tube so that the cut portions were sequentially shifted. The composite thus assembled is subjected to intermediate annealing while the outer diameter is
The surface was reduced to 2.7mm. This wire was heated at 600°C for 20 hours to produce a Nb 3 Sn superconducting wire. It takes
The filament of the Nb 3 Sn superconducting wire was approximately 0.8 μm. Further, the filament length (lf), which is the length between the cut parts, was about 278 mm. Comparative Example 1 (Bronze method) First, a Cu-13.5wt%Sn alloy with an outer diameter of 45mm was
After drilling 37 through holes of 3.1 mm and inserting pure Nb rods of 3 mm in diameter into each of the through holes, the temperature was heated to approximately 500°C.
While performing intermediate annealing, the wire was subjected to area reduction processing to an outer diameter of 1.5 mm to produce a wire. In addition, an outer diameter of 38mm is inserted into a Cu tube with an outer diameter of 45mm and an inner diameter of 38.1mm.
A Nb pipe with an inner diameter of 35 mm was set. Next, approximately 380 strands obtained by cutting the 1.5 mm diameter strands into lengths of 100 mm were assembled into an Nb tube set in the same Cu tube as in the example. The thus assembled composite was subjected to intermediate annealing while reducing its outer diameter to 2.7 mm. 600 pieces of this wire
℃ for 20 hours to produce a Nb 3 Sn superconducting wire. Comparative example 2 (In-situ method) First, Cu-40wt%Nb with an outer diameter of 35 mm and a length of 250 mm.
The composite was melted as an electrode in a consumable arc furnace and solidified in a water-cooled copper mold with an internal diameter of 45 mm. The ingot with an outer diameter of 45 mm taken out from the mold was made of Cu.
Nb dendrites of approximately 0.18 to 1.8 mm were dispersed inside. Next, the outer diameter of the ingot is
After reducing the area to 2.7 mm and applying Sn plating to a thickness of approximately 150 μm, Sn was diffused inside by step heating at 200°C, 400°C, and 600°C to produce Nb 3 Sn superconducting wire. . However, in this example and comparative examples 1 and 2,
The critical current density (Jc) of the Nb 3 Sn superconducting wire in the strain-free state was measured in magnetic fields of 10T and 12T. The results are shown in Table 1 below.

【表】 また、実施例および比較例1、2のNb3Sn超電
導線を曲げることにより歪を加え、無歪状態での
臨界電流密度を基準とし、歪を加えた時の臨界電
流密度の相対値を測定した。その結果を第4図に
示す。なお、従来の内部拡散法で製造された
Nb3Sn超電導線は、比較例1のブロンズ法で製造
されたNb3Sn超電導線と同様な特性を示す。 前記表1および第4図より明らかなように本実
施例の不連続フイラメントよりなる化合物超電導
線は、臨界電流密度の絶対値がブロンズ法である
比較例1と同等で、かつIn−situ法である比較例
2に比べて著しく高いことがわかる。また、本実
施例は歪を加えた時の臨界電流密度の相対値の低
下度合がIn−situ法である比較例2と同等で、か
つブロンズ法である比較例1に比べて少ないこと
がわかる。 このように本発明の化合物超電導導体は、臨界
電流密度の絶対値が高く、かつ歪に対してその影
響をうけることが極めて少ない、つまり歪敏感性
ではないことがわかる。 なお、本発明では前述した化合物超電導導体中
で比較的大きな歪を受ける部分にフイラメント径
Dfが0.1〜1.0μmでかつフイラメント長lfが70Db
以上の化合物超電導フイラメントを配置し、その
他の部分には従来の化合物超電導連続フイラメン
トを配置してもよい。即ち、第5図Aに示すよう
に本発明を規定するフイラメント径及びフイラメ
ント長を有する化合物超電導フイラメント1を線
材に加わる歪率が比較的に大きい線材周辺部のマ
トリツクス材2中に配置し、歪率の小さい中央部
のマトリツクス材中に、歪に対し敏感な連続フイ
ラメント6を配置したり、また第5図Bのように
連続フイラメント6と箔状化合物超電導体6′を
配置し外部に拡散バリヤー3を介して安定化銅4
を配置した化合物超電導線にしてもよい。また、
断面形状は、第5図Aのように丸線にしたり、第
5図Bのようにテープにしたりするなどあらゆる
形状の導体に適用できるものである。 また、本発明の化合物超電導導体の製造方法に
ついては特に限定するものではない。例えば、第
6図Aに示すように粉末法、急冷鋳造法および複
合加工法などで作製された銅10中に本発明で規
定するフイラメント長及びフイラメント径を有す
るNbフイラメント9を埋込んだ素線Sを撚線と
し、外部からSn11をメツキした後、拡散熱処
理を行うことによつて、本発明で規定される
Nb3Snフイラメント1がブロンズ2に埋込まれた
第6図Bのような構造にしてもよい。 また、第7図Aに示すように銅10中にNb連
続フイラメント60を埋込んで素線を中心として
その囲りに、銅10中に本発明で規定するフイラ
メント長及びフイラメント径を有するNbフイラ
メント9を多数本内蔵する素線9を6本配置し
Sn11によつて固め、その外側にNbバリヤー3
を介して安定化銅4を配した複合本を拡散熱処理
を行うことによつて、本発明で規定されるNb3Sn
フイラメント1と中央部の太いNb3Snフイラメン
ト6がブロンズマトリツクス2中に共に埋込まれ
た第7図Bのような構造にしてもよい。 さらに、第8図Aに示すように本発明の規定に
よる素線Sの中心にSn11を埋込み、これらの
外側を拡散バリヤー3を介して安定化銅4を配し
た複合本を拡散熱処理を行つて、本発明規定の
Nb3Snフイラメント1をブロンズマトリツクス2
中に埋込んだ第8図Bのような構造にしてもよ
い。 [発明の効果] 以上詳述した如く、本発明の化合物超電導導体
によれば臨界電流密度の絶対値が高く、かつ歪が
加わつても臨界電流密度に低下が極めて少いため
巻線工程等における線材に加わる曲げに対し極め
て安定性を有する等顕著な効果を有する。
[Table] In addition, the Nb 3 Sn superconducting wires of Examples and Comparative Examples 1 and 2 were strained by bending, and the critical current density in the unstrained state was used as a reference, and the relative value of the critical current density when strain was applied was calculated. The value was measured. The results are shown in FIG. In addition, if the product was manufactured using the conventional internal diffusion method,
The Nb 3 Sn superconducting wire exhibits similar characteristics to the Nb 3 Sn superconducting wire manufactured by the bronze method of Comparative Example 1. As is clear from Table 1 and FIG. 4, the compound superconducting wire made of discontinuous filaments of this example has the same absolute value of critical current density as that of Comparative Example 1 using the bronze method, and the in-situ method. It can be seen that this is significantly higher than that of Comparative Example 2. In addition, it can be seen that in this example, the degree of decrease in the relative value of critical current density when strain is applied is the same as Comparative Example 2, which is an in-situ method, and is smaller than Comparative Example 1, which is a bronze method. . Thus, it can be seen that the compound superconducting conductor of the present invention has a high absolute value of critical current density and is extremely little affected by strain, that is, it is not strain sensitive. In addition, in the present invention, the filament diameter is
Df is 0.1 to 1.0μm and filament length lf is 70Db
The above compound superconducting filaments may be arranged, and conventional compound superconducting continuous filaments may be arranged in other parts. That is, as shown in FIG. 5A, a compound superconducting filament 1 having a filament diameter and a filament length that define the present invention is placed in a matrix material 2 in the periphery of the wire where the strain rate applied to the wire is relatively large. A continuous filament 6, which is sensitive to strain, is arranged in the matrix material in the central part, where the ratio is small, or a continuous filament 6 and a foil-like compound superconductor 6' are arranged as shown in Fig. 5B to provide a diffusion barrier to the outside. Stabilized copper 4 through 3
A compound superconducting wire may also be used. Also,
The cross-sectional shape can be applied to conductors of any shape, such as a round wire as shown in FIG. 5A or a tape as shown in FIG. 5B. Furthermore, the method for manufacturing the compound superconducting conductor of the present invention is not particularly limited. For example, as shown in FIG. 6A, an strand in which an Nb filament 9 having a filament length and filament diameter specified in the present invention is embedded in copper 10 produced by a powder method, a rapid casting method, a composite processing method, etc. By using S as a stranded wire, plating it with Sn11 from the outside, and then performing diffusion heat treatment,
A structure as shown in FIG. 6B in which the Nb 3 Sn filament 1 is embedded in the bronze 2 may also be used. Further, as shown in FIG. 7A, an Nb continuous filament 60 is embedded in the copper 10, and around the strand, an Nb filament having a filament length and filament diameter specified in the present invention is placed in the copper 10. Six element wires 9 with many built-in wires 9 are arranged.
Solidified by Sn11, with Nb barrier 3 on the outside.
By performing a diffusion heat treatment on the composite plate on which stabilized copper 4 is arranged through the Nb 3 Sn
A structure as shown in FIG. 7B in which the filament 1 and the central thick Nb 3 Sn filament 6 are embedded together in the bronze matrix 2 may be used. Furthermore, as shown in FIG. 8A, a composite wire in which Sn 11 was embedded in the center of the wire S according to the provisions of the present invention and stabilized copper 4 was arranged on the outside through a diffusion barrier 3 was subjected to diffusion heat treatment. , according to the present invention
Nb 3 Sn filament 1 to bronze matrix 2
It may also have a structure embedded therein as shown in FIG. 8B. [Effects of the Invention] As detailed above, the compound superconducting conductor of the present invention has a high absolute value of critical current density, and even when strain is applied, the critical current density decreases very little, so it is suitable for wire rods in winding processes, etc. It has remarkable effects such as being extremely stable against bending applied to it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図Aは本発明に係わる化合物超電導導体の
縦断面図、同図Bは同図Aの側断面図、第2図は
フイラメントの長さと臨界電流密度との関係を示
す特性図、第3図はフイラメント径と臨界電流密
度との関係を示す特性図、第4図は歪率と臨界電
流密度(無歪状態に対する相対値)との関係を示
す特性図、第5図A,Bはそれぞれ本発明に係わ
る化合物超電導導体の他の例を示す断面図、第6
図乃至第8図は本発明に係わる化合物超電導導体
の1例の工程を示すものであり、第6図乃至第8
図のAは本発明化合物超電導導体を構成する前の
断面図、第6図乃至第8図のBは前記Aの構成複
合体を拡散熱処理した本発明の化合物超電導導体
の断面図である。 1……化合物超電導フイラメント、2……ブロ
ンズマトリツクス、3……バリヤー、4……安定
化銅、5,5′……フイラメントの不連続部、6
……連続フイラメント。
FIG. 1A is a longitudinal cross-sectional view of a compound superconducting conductor according to the present invention, FIG. B is a side cross-sectional view of FIG. A, FIG. 2 is a characteristic diagram showing the relationship between filament length and critical current density, and FIG. Figure 4 is a characteristic diagram showing the relationship between filament diameter and critical current density, Figure 4 is a characteristic diagram showing the relationship between strain rate and critical current density (relative value to the non-strain state), and Figure 5 A and B are respectively Cross-sectional view showing another example of the compound superconducting conductor according to the present invention, No. 6
FIGS. 6 to 8 show steps of one example of the compound superconducting conductor according to the present invention, and FIGS.
A in the figure is a cross-sectional view before constructing the compound superconducting conductor of the present invention, and B in FIGS. 6 to 8 is a cross-sectional view of the compound superconducting conductor of the present invention obtained by diffusion heat-treating the constituent composite of A. DESCRIPTION OF SYMBOLS 1... Compound superconducting filament, 2... Bronze matrix, 3... Barrier, 4... Stabilized copper, 5,5'... Discontinuous part of filament, 6
...Continuous filament.

Claims (1)

【特許請求の範囲】[Claims] 1 マトリツクス金属材中に多数本の不連続極細
化合物超電導フイラメントが埋込まれた化合物超
電導線において、前記化合物超電導フイラメント
の等価直径が0.1〜1.0μmであり、かつ同一フイ
ラメント上の不連続部間に位置するフイラメント
の長さが前記マトリツクス材の等価直径の70倍以
上であることを特徴とする化合物超電導導体。
1. In a compound superconducting wire in which a large number of discontinuous ultrafine compound superconducting filaments are embedded in a matrix metal material, the equivalent diameter of the compound superconducting filaments is 0.1 to 1.0 μm, and there is no space between the discontinuous parts on the same filament. A compound superconducting conductor characterized in that the length of the filament located thereon is 70 times or more the equivalent diameter of the matrix material.
JP58047729A 1983-03-22 1983-03-22 Compound superconductive conductor Granted JPS59173903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58047729A JPS59173903A (en) 1983-03-22 1983-03-22 Compound superconductive conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58047729A JPS59173903A (en) 1983-03-22 1983-03-22 Compound superconductive conductor

Publications (2)

Publication Number Publication Date
JPS59173903A JPS59173903A (en) 1984-10-02
JPH0358123B2 true JPH0358123B2 (en) 1991-09-04

Family

ID=12783424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58047729A Granted JPS59173903A (en) 1983-03-22 1983-03-22 Compound superconductive conductor

Country Status (1)

Country Link
JP (1) JPS59173903A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2573491B2 (en) * 1987-04-28 1997-01-22 昭和電線電纜株式会社 Nb Lower 3 Method for Manufacturing Sn Superconducting Wire
JP2006253592A (en) * 2005-03-14 2006-09-21 Sumitomo Heavy Ind Ltd Superconducting coil and its manufacturing method

Also Published As

Publication number Publication date
JPS59173903A (en) 1984-10-02

Similar Documents

Publication Publication Date Title
US3983521A (en) Flexible superconducting composite compound wires
US4195199A (en) Superconducting composite conductor and method of manufacturing same
US3996661A (en) Method for the manufacture of a superconductor having an intermetallic two element compound
US4743713A (en) Aluminum-stabilized NB3SN superconductor
US4435228A (en) Process for producing NB3 SN superconducting wires
US20090305897A1 (en) Superconduting Composite Wire Made from Magnesium Diboride
US4363675A (en) Process for producing compound based superconductor wire
US3836404A (en) Method of fabricating composite superconductive electrical conductors
US4153986A (en) Method for producing composite superconductors
US4532703A (en) Method of preparing composite superconducting wire
JPH0358123B2 (en)
US3465429A (en) Superconductors
US7134181B2 (en) Method for producing Nb3Al superconductive wire
US3996662A (en) Method for the manufacture of a superconductor having an intermetallic two element compound
US3857173A (en) Method of producing a composite superconductor
KR940006616B1 (en) Super conductive wire
KR100201752B1 (en) Making device for super conductive wire
JP3753346B2 (en) Aluminum stabilized superconducting wire
US4215465A (en) Method of making V3 Ga superconductors
JPS602728B2 (en) Method for manufacturing compound composite superconductor
RU2088993C1 (en) Method of production of multiple-fiber alloyed super- conductor based on intermetallic compound nb*003sn
JP3070969B2 (en) Superconducting wire manufacturing method
JPH10321060A (en) Alminum-stabilized superconducting wire
JPS5933653B2 (en) Method for producing stabilized superconductor
JPS6212607B2 (en)