JP2573491B2 - Nb Lower 3 Method for Manufacturing Sn Superconducting Wire - Google Patents

Nb Lower 3 Method for Manufacturing Sn Superconducting Wire

Info

Publication number
JP2573491B2
JP2573491B2 JP62105479A JP10547987A JP2573491B2 JP 2573491 B2 JP2573491 B2 JP 2573491B2 JP 62105479 A JP62105479 A JP 62105479A JP 10547987 A JP10547987 A JP 10547987A JP 2573491 B2 JP2573491 B2 JP 2573491B2
Authority
JP
Japan
Prior art keywords
tube
superconducting wire
heat treatment
alloy
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62105479A
Other languages
Japanese (ja)
Other versions
JPS63271819A (en
Inventor
英元 鈴木
政光 市原
良昌 神定
智幸 熊野
青木  伸夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP62105479A priority Critical patent/JP2573491B2/en
Publication of JPS63271819A publication Critical patent/JPS63271819A/en
Application granted granted Critical
Publication of JP2573491B2 publication Critical patent/JP2573491B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、Nb3Sn超電導線の製造方法にかかわり、特
にパイプ法によるNb3Sn超電導線の製造方法の改良に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a method for producing an Nb 3 Sn superconducting wire, and more particularly to an improvement in a method for producing an Nb 3 Sn superconducting wire by a pipe method.

(従来の技術) Nb3Sn超電導線の製造方法として、従来よりパイプ法
によるものが知られている(特開昭52−16977号公
報)。
(Prior Art) As a method for producing an Nb 3 Sn superconducting wire, a method using a pipe method has been conventionally known (JP-A-52-16977).

このパイプ法は、Snロッドの外周にCu管、Nb管および
安定材からなるCu管を順次被覆した複合線の複数本を、
さらにCu管中に収容して冷間加工を施した後、Nb3Sn生
成の熱処理を施すもので、Cu−Sn合金を用いるいわゆる
ブロンズ法の欠点である多数回の中間焼鈍を不要とする
利点を有する。
In this pipe method, a plurality of composite wires in which the outer periphery of a Sn rod is sequentially coated with a Cu tube, an Nb tube, and a Cu tube made of a stabilizer,
Furthermore, after being housed in a Cu tube and subjected to cold working, it is subjected to a heat treatment of Nb 3 Sn generation, and the advantage of eliminating many times of intermediate annealing which is a drawback of the so-called bronze method using a Cu-Sn alloy is advantageous. Having.

しかしながら、上記のパイプ法においては、減面加工
度が104を越えるような高加工度の場合にNb管の管壁の
破断や断線を生じ易く、熱処理の際にSnがマトリックス
中に拡散し、臨界電流値の低下や冷却不安定化を招くと
いう問題を生ずる。
However, in the above-mentioned pipe method, when the surface reduction degree is as high as 10 4 or more, the tube wall of the Nb tube is easily broken or disconnected, and Sn diffuses into the matrix during the heat treatment. This causes a problem that a critical current value is lowered and cooling becomes unstable.

さらに高加工度の際のNb管の破断や断線を生じなくと
も、Nb管の全量がNb3Sn層に反応した場合には、同様にS
nによるマトリックスの汚染の問題を生ずる。
Further, even if the Nb tube does not break or break at a high working degree, if the entire amount of the Nb tube reacts with the Nb 3 Sn layer,
This causes the problem of matrix contamination by n.

このため従来はNb管の内側のSn量を18〜30wt%とし、
Nb3Sn生成の熱処理を675〜800℃で10〜400時間施し、Nb
管の一部を未反応部として残し、これを拡散障壁として
機能させることが行われている。
For this reason, conventionally, the amount of Sn inside the Nb tube was set to 18 to 30 wt%,
Heat treatment for Nb 3 Sn generation at 675-800 ° C for 10-400 hours,
It has been practiced to leave a part of the tube as an unreacted portion and to function as a diffusion barrier.

近年、加工技術等の向上によりNb管内側のSn濃度を最
大90wt%程度まで加工し得るようになってきている。Sn
濃度を高くすることは非銅の臨界電流密度を高くし得る
効果がある。
In recent years, it has become possible to process the Sn concentration inside the Nb tube up to a maximum of about 90 wt% by improving processing techniques and the like. Sn
Increasing the concentration has the effect of increasing the critical current density of non-copper.

(発明が解決しようとする問題点) しかしながら、上記の方法において、Nb管の全量がNb
3Sn層に反応する場合を生じ易くなりSnがマトリックス
中へ拡散し、安定化Cuとして機能しなくなるとともに、
短留抵抗比(以下、RRRと称する。)が低下するという
超電導コイルを形成した場合に好ましくない現象を生ず
る。
(Problems to be Solved by the Invention) However, in the above method, the total amount of Nb
3 It is likely to react with the Sn layer, Sn diffuses into the matrix, and does not function as stabilized Cu,
An undesirable phenomenon occurs when a superconducting coil is formed in which the short retention resistance ratio (hereinafter, referred to as RRR) decreases.

このような点を防ぐために、熱処理時間を短縮した
り、熱処理温度を低くしたりする等の消極的方法が採用
されているが、この場合臨界電流密度(以下、Jcと称す
る。)が低下するという問題を生ずる。
In order to prevent such a point, a passive method such as shortening the heat treatment time or lowering the heat treatment temperature is employed, but in this case, the critical current density (hereinafter, referred to as Jc) is reduced. The problem arises.

本発明は、以上述べたパイプ法の難点を解消するため
になされたもので、高いJcを有するパイプ法によるNb3S
n超電導線の製造方法を提供することをその目的とす
る。
The present invention has been made in order to solve the above-mentioned drawbacks of the pipe method, and Nb 3 S by the pipe method having a high Jc.
It is an object of the present invention to provide a method for manufacturing a superconducting wire.

[発明の構成] (問題点を解決するための手段と作用) 本発明のNb3Sn超電導線の製造方法は、NbあるいはNb
系合金管の内側に、CuおよびSnをSn濃度40wt%以上とな
るように収容し、この外周にCuあるいはCu系合金管を順
次被覆してなる複合体に、断面減少加工を施した複合線
の複数本を、内側にSnと非反応性のVあるいはTaあるい
はこれらのいずれか一方の元素を主成分とする合金より
なる遮蔽層を有するCu安定化材巾に収容した後減面加工
を施し、次いでNb3Sn生成の熱処理を施すことにより前
記NbあるいはNb系合金管のほぼ全量をNb3Sn層に変化せ
しめ、熱処理時にNb管から安定化銅巾へのSnの拡散を防
止し、RRRの低下を防ぐとともにJcを向上させるように
したものである。
[Structure of the Invention] (Means and Actions for Solving the Problems) The method for producing an Nb 3 Sn superconducting wire of the present invention comprises Nb or Nb.
A composite wire in which Cu and Sn are accommodated inside the system alloy pipe so that the Sn concentration is 40 wt% or more, and the outer periphery of the composite is coated with Cu or Cu series alloy pipe, and the cross section is reduced. Are placed in a Cu stabilizing material width having a shielding layer made of V or Ta or an alloy containing one of these elements as a main component inside of Sn, and then subjected to surface reduction processing. Then, by performing a heat treatment for generating Nb 3 Sn, almost the entire amount of the Nb or Nb-based alloy tube is changed to a Nb 3 Sn layer, and diffusion of Sn from the Nb tube to the stabilized copper width during the heat treatment is prevented. In addition, Jc is prevented from decreasing and Jc is improved.

本発明において、CuおよびSnは、Cu−Sn合金としてNb
(系合金)管中に収容するか、あるいはCu(系合金)で
被覆されたSn(系合金)ロッドをNb(系合金)管中に収
容することもできる。
In the present invention, Cu and Sn are Nb as Cu-Sn alloy.
A (alloy) tube may be housed in a Nb (system alloy) tube, or a Sn (system alloy) rod coated with Cu (system alloy) may be accommodated in the tube.

また、遮蔽層としては、VあるいはTaあるいはこれら
のいずれか一方の元素を主成分とする合金が用いられる
が、これは以下の理由による。
Further, as the shielding layer, V or Ta or an alloy containing any one of these elements as a main component is used for the following reason.

すなわち、遮蔽層として、例えばNbを用いた場合に
は、Nb3Sn生成の熱処理時に遮蔽層の内側にもNb3Snが生
成され、実質的なフィラメント径の増大を招くことによ
り、磁束跳躍(flax jump)を生じ易くなるため臨界電
流密度が低下する。
That is, when, for example, Nb is used as the shielding layer, Nb 3 Sn is also generated inside the shielding layer during the heat treatment for generating Nb 3 Sn, causing a substantial increase in the filament diameter. The flax jump is apt to occur, so that the critical current density decreases.

超電導線を用いて超電導コイルを形成する場合、超電
導線内部で電流と磁界とで形成されるローレンツ力が、
ピン止め力を越えない状態で使用する必要があるため、
電流密度を増加して発生磁界を大きくするためには、ピ
ン止め力を増加させねばならない。
When a superconducting coil is formed using a superconducting wire, the Lorentz force formed by a current and a magnetic field inside the superconducting wire is
Because it is necessary to use it without exceeding the pinning force,
In order to increase the current density and the generated magnetic field, the pinning force must be increased.

従来より、ピン止め力により磁束跳躍を防止して超電
導線を安定化させるために、マトリックス中に多数のフ
ィラメントを配置してフィラメント径を小さくし、線内
部で生ずる磁束密度の傾きや温度変化の傾きを減少させ
ることが一般に行われているが、上記したように、遮蔽
層の内側にNb3Snが生成されると、実質的なフィラメン
ト径は遮蔽層の径とほぼ同等となるため、フィラメント
径の実質的な増大を招き臨界電流密度が低下してしま
う。
Conventionally, in order to stabilize a superconducting wire by preventing magnetic flux jumping by pinning force, a large number of filaments are arranged in a matrix to reduce the diameter of the filament, and to reduce the gradient of magnetic flux density and temperature change generated inside the wire. Although it is generally performed to reduce the inclination, as described above, when Nb 3 Sn is generated inside the shielding layer, the actual filament diameter is substantially equal to the diameter of the shielding layer. The diameter is substantially increased, and the critical current density is reduced.

しかしながら、本発明において遮蔽層として用いたV
あるいはTaあるいはこれらのいずれか一方の元素を主成
分とする合金は、Snと非反応性であり、Nb3Sn生成の熱
処理時に遮蔽層の内側に金属間化合物が形成されること
がないため、超電導コイルを形成したときの臨界電流密
度の低下を防ぐことができる。
However, V used as a shielding layer in the present invention
Alternatively, Ta or an alloy containing any one of these elements as a main component is non-reactive with Sn, and since no intermetallic compound is formed inside the shielding layer during heat treatment of Nb 3 Sn generation, It is possible to prevent a decrease in critical current density when a superconducting coil is formed.

(実施例) 以下、本発明の一実施例について説明する。(Example) Hereinafter, an example of the present invention will be described.

第2図は、本発明の方法による熱処理前の複合部材の
断面を示したもので、Nb管1の内側にCu2を被覆したSn
ロッド3を収容した複合体4をCuマトリックス5中に配
置し、その外側に遮蔽層6および安定化Cu7を順次配置
した構造を有する。
FIG. 2 shows a cross section of the composite member before the heat treatment by the method of the present invention.
It has a structure in which a composite 4 containing a rod 3 is arranged in a Cu matrix 5, and a shielding layer 6 and a stabilized Cu 7 are sequentially arranged on the outside thereof.

この複合部材は減面加工後、Snの拡散熱処理およびNb
3Sn生成の熱処理が施され、第1図に示すようにCuマト
リックス5中にNb3Sn層8が環状に生成される。
This composite member is subjected to Sn diffusion heat treatment and Nb
A heat treatment for 3 Sn generation is performed, and an Nb 3 Sn layer 8 is formed in the Cu matrix 5 in a ring shape as shown in FIG.

なお、第1図で符号9はCu−Sn合金部を示す。 In FIG. 1, reference numeral 9 indicates a Cu—Sn alloy part.

具体例 Nb管の内側に50wt%SnとなるようにCu被覆Snロッドを
配置し、外側にCu管を配置して複合体を形成した。この
複合体に減面加工を施して対辺間距離2.13mmの断面正六
角形の線材を製造した。この線材の745本を束ねて外径6
6.5mm、厚さ2mmのTa管中に収容し、さらに外側に外径80
mmφ、内径67mmφのCu管を配置した後、静水圧押出加工
および伸線加工を施して外径1.0mmφの多心線を製造し
た。
Specific Example A Cu-coated Sn rod was arranged inside a Nb tube so as to be 50 wt% Sn, and a Cu tube was arranged outside to form a composite. The composite was subjected to surface reduction to produce a regular hexagonal wire having a distance between opposite sides of 2.13 mm. Outer diameter 6
It is housed in a 6.5 mm, 2 mm thick Ta tube, and the outside diameter is 80
After arranging a Cu tube having an mmφ and an inner diameter of 67 mmφ, a multifilamentary wire having an outer diameter of 1.0 mmφ was manufactured by performing hydrostatic extrusion and drawing.

上記の多心線に725℃で、200時間の熱処理を施して、
Nb管のほぼ全量をNb3Sn層に変化させたNb3Sn超電導線の
非銅のJc臨界電流密度は14.5Tで526A/mmと高い値を示し
た。
The above multi-core wire is subjected to heat treatment at 725 ° C for 200 hours,
The non-copper Jc critical current density of the Nb 3 Sn superconducting wire in which almost all of the Nb tube was changed to the Nb 3 Sn layer showed a high value of 526 A / mm at 14.5 T.

[発明の効果] 以上述べたように本発明の方法によれば、次のような
効果が得られる。
[Effects of the Invention] As described above, according to the method of the present invention, the following effects can be obtained.

(イ)熱処理時に安定化材中へSnが拡散することを防止
できることによりRRRの低下を抑えることができる。
(A) Since the diffusion of Sn into the stabilizing material during the heat treatment can be prevented, the reduction in RRR can be suppressed.

(ロ)NbあるいはNb系合金管の全量をNb3Snに変えるこ
とができるための熱処理条件の選定がきわめて容易とな
り、均一なNb3Sn層の生成が可能になる。
(B) It is extremely easy to select heat treatment conditions for changing the entire amount of Nb or Nb-based alloy tube to Nb 3 Sn, and it is possible to form a uniform Nb 3 Sn layer.

(ハ)遮蔽層として、Snと非反応性のVあるいはTaある
いはこれらのいずれか一方の元素を主成分とする合金を
用いることにより、実質的なフィラメント径の増大を防
止して臨界電流密度の低下を防ぐことができる。
(C) By using V or Ta, which is non-reactive with Sn, or an alloy containing any one of these elements as a main component, a substantial increase in the filament diameter is prevented, and the critical current density is reduced. Drop can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の方法によって製造されるNb3Sn超電導
線の一実施例を示す断面図、第2図はその熱処理前の状
態を示す断面図である。 1……Nb管 2……Cu管 3……Snロッド 4……複合体 5……Cuマトリックス 6……遮蔽層 8……Nb3Sn層 9……Cu−Sn合金
FIG. 1 is a cross-sectional view showing one embodiment of the Nb 3 Sn superconducting wire manufactured by the method of the present invention, and FIG. 2 is a cross-sectional view showing a state before the heat treatment. 1 ...... Nb tube 2 ...... Cu pipe 3 ...... Sn rod 4 ...... complex 5 ...... Cu matrix 6 ...... shielding layer 8 ...... Nb 3 Sn layer 9 ...... Cu-Sn alloy

───────────────────────────────────────────────────── フロントページの続き (72)発明者 熊野 智幸 川崎市川崎区小田栄2丁目1番1号 昭 和電線電纜株式会社内 (72)発明者 青木 伸夫 川崎市川崎区小田栄2丁目1番1号 昭 和電線電纜株式会社内 (56)参考文献 特開 昭59−173903(JP,A) 特開 昭52−66997(JP,A) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tomoyuki Kumano 2-1-1 Oda Sakae, Kawasaki-ku, Kawasaki City Inside Showa Electric Wire & Cable Co., Ltd. (72) Inventor Nobuo Aoki 2-1-1 Oda Ei, Kawasaki-ku, Kawasaki-shi No. 1 Inside Showa Electric Cable Co., Ltd. (56) References JP-A-59-173903 (JP, A) JP-A-52-66997 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】NbあるいはNb系合金管の内側に、Cuおよび
SnをSn濃度40wt%以上となるように収容し、この外周に
CuあるいはCu系合金管を順次被覆してなる複合体に、断
面減少加工を施した複合線の複数本を、内側にSnと非反
応性のVあるいはTaあるいはこれらのいずれか一方の元
素を主成分とする合金よりなる遮蔽層を有するCu安定化
材中に収容した後、減面加工を施し、次いでNb3Sn生成
の熱処理を施すことにより前記NbあるいはNb系合金管の
ほぼ全量をNb3Sn層に変化せしめることを特徴とするNb3
Sn超電導線の製造方法。
(1) Cu and Nb are contained inside an Nb or Nb-based alloy tube.
Sn is contained so that the Sn concentration becomes 40 wt% or more, and around this
A composite of copper or Cu-based alloy pipes sequentially coated, a plurality of composite wires subjected to cross-section reduction processing, and V or Ta or one of these elements, which are non-reactive with Sn, are mainly placed inside. after accommodated in the Cu stable Kazai having a shielding layer made of an alloy whose components, subjected to reduction process, and then Nb 3 almost all of the by heat treatment of the Sn generator Nb or Nb alloy tube Nb 3 Nb 3 characterized by changing to Sn layer
Manufacturing method of Sn superconducting wire.
【請求項2】前記CuおよびSnは、CuまたはCu系合金で被
覆されたSnまたはSn系合金ロッドであることを特徴とす
る特許請求の範囲第1項記載のNb3Sn超電導線の製造方
法。
2. The method for producing an Nb 3 Sn superconducting wire according to claim 1, wherein said Cu and Sn are Sn or Sn-based alloy rods coated with Cu or Cu-based alloy. .
【請求項3】前記CuおよびSnは、Cu−Sn合金であること
を特徴とする特許請求の範囲第1項記載のNb3Sn超電導
線の製造方法。
3. The method for producing an Nb 3 Sn superconducting wire according to claim 1, wherein said Cu and Sn are Cu—Sn alloys.
JP62105479A 1987-04-28 1987-04-28 Nb Lower 3 Method for Manufacturing Sn Superconducting Wire Expired - Lifetime JP2573491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62105479A JP2573491B2 (en) 1987-04-28 1987-04-28 Nb Lower 3 Method for Manufacturing Sn Superconducting Wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62105479A JP2573491B2 (en) 1987-04-28 1987-04-28 Nb Lower 3 Method for Manufacturing Sn Superconducting Wire

Publications (2)

Publication Number Publication Date
JPS63271819A JPS63271819A (en) 1988-11-09
JP2573491B2 true JP2573491B2 (en) 1997-01-22

Family

ID=14408724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62105479A Expired - Lifetime JP2573491B2 (en) 1987-04-28 1987-04-28 Nb Lower 3 Method for Manufacturing Sn Superconducting Wire

Country Status (1)

Country Link
JP (1) JP2573491B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4728024B2 (en) * 2005-03-24 2011-07-20 株式会社神戸製鋼所 Powder method Nb3Sn superconducting wire manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216997A (en) * 1975-07-31 1977-02-08 Toshiba Corp Processing method of multi-superconductor
JPS59173903A (en) * 1983-03-22 1984-10-02 古河電気工業株式会社 Compound superconductive conductor

Also Published As

Publication number Publication date
JPS63271819A (en) 1988-11-09

Similar Documents

Publication Publication Date Title
KR101097714B1 (en) Method for producing NbTi3Sn wire by use of Ti source rods
US3996661A (en) Method for the manufacture of a superconductor having an intermetallic two element compound
US4055887A (en) Method for producing a stabilized electrical superconductor
US4665611A (en) Method of fabricating superconductive electrical conductor
JPH054766B2 (en)
US4135293A (en) Superconducting members and methods of manufacturing thereof
JPS5823110A (en) Method of producing nb3sn superconductive wire material
JP2573491B2 (en) Nb Lower 3 Method for Manufacturing Sn Superconducting Wire
US4153986A (en) Method for producing composite superconductors
US3996662A (en) Method for the manufacture of a superconductor having an intermetallic two element compound
JP2519035B2 (en) Nb (bottom 3) Method for manufacturing Sn superconducting wire
JPH0211733A (en) Manufacture of nb3 sn superconducting wire by internal diffusing method
JP2519034B2 (en) Nb (bottom 3) Method for manufacturing Sn superconducting wire
JP2878390B2 (en) Method of manufacturing Nb (3) Sn superconducting wire for superconducting generator
JP3273953B2 (en) Method for producing niobium-tin superconducting wire
JP2719155B2 (en) Superconducting stranded wire manufacturing method
JP2742421B2 (en) Superconducting wire and its manufacturing method
JPH03283320A (en) Manufacture of nb3sn multicore superconductor
JP3046828B2 (en) Nb Lower 3 Method for Manufacturing Sn Composite Superconductor
JPH0636331B2 (en) Nb (bottom 3) A1 compound superconducting wire manufacturing method
JPS59209210A (en) Nb3sn compound superconductive wire and production thereof
JPH08287752A (en) Manufacture of superconducting wire material
JPS62243745A (en) Manufacture of superconductive electric wire containing dispersed fiber
JPS5933653B2 (en) Method for producing stabilized superconductor
JPH06223653A (en) Manufacture of nb 3 sn compound superconducting wire