JPH0211733A - Manufacture of nb3 sn superconducting wire by internal diffusing method - Google Patents

Manufacture of nb3 sn superconducting wire by internal diffusing method

Info

Publication number
JPH0211733A
JPH0211733A JP63160304A JP16030488A JPH0211733A JP H0211733 A JPH0211733 A JP H0211733A JP 63160304 A JP63160304 A JP 63160304A JP 16030488 A JP16030488 A JP 16030488A JP H0211733 A JPH0211733 A JP H0211733A
Authority
JP
Japan
Prior art keywords
tube
copper
superconducting wire
housed
nb3sn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63160304A
Other languages
Japanese (ja)
Inventor
Hidemoto Suzuki
鈴木 英元
Masamitsu Ichihara
市原 政光
Yoshimasa Kamisada
神定 良昌
Nobuo Aoki
伸夫 青木
Tomoyuki Kumano
智幸 熊野
Toshihisa Ogaki
大垣 俊久
Haruto Noro
治人 野呂
Ichiro Noguchi
一朗 野口
Yukihiko Wada
幸彦 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP63160304A priority Critical patent/JPH0211733A/en
Publication of JPH0211733A publication Critical patent/JPH0211733A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To manufacture the title wire of multicore structure having high residual resistance ratio by disposing tin and an Nb tube in a copper member, subjecting a composite body of which copper or Al having specific purity is housed to the Nb tube to reduction working and thereafter subjecting it to heat treatment at specific temp. CONSTITUTION:A copper member is housed to an Nb3SN superconducting wire of multicore structure in which shielding materials are closely disposed. Tin and a niobium tube are disposed into the copper member. Copper or aluminum having >=99.9999% purity is housed into the niobium tube to form a composite body. The composite body is subjected to reduction wording and is thereafter subjected to heat treatment at <=660 deg.C to generate an Nb3Sn layer outside of the niobium tube. By this method, the Nb3Sn superconducting wire of multicore structure having high residual resistance ratio can be manufactured.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はNb3 Sn超電導線の製造方法に係り、特に
高い残留抵抗比(以下I?RRと称する。)を有する多
心構造のNb3Sn超電導線の改善された製造方法に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing an Nb3Sn superconducting wire, and in particular a multicore Nb3Sn superconducting wire having a high residual resistance ratio (hereinafter referred to as I?RR). The present invention relates to an improved manufacturing method.

[従来の技術] 超電導線の製造方法の一つとして内部拡散法によるもの
が知られている。この方法は、Cuマトリックス中に拡
散源となるSnロッドと複数本のNl線を配置した複合
体に減面加工を施した後、拡散熱処理を施してNb線の
外側にNb3Sn層を生成させるものであるか、Cuマ
トリックスがSnで汚染されるため、通常外周に遮蔽刊
を介して安定化材が配置される。この安定化材の役割は
、超電導フィラメントの局部的な常電導への転移による
クウェンチの発生を抑え、安定な超電導状態を維持する
ことにあり、比抵抗値が小さい程より安定な導体である
といえる。
[Prior Art] A method using an internal diffusion method is known as one of the methods for manufacturing superconducting wires. This method involves reducing the area of a composite body in which a Sn rod serving as a diffusion source and multiple Nl wires are arranged in a Cu matrix, and then performing diffusion heat treatment to generate an Nb3Sn layer on the outside of the Nb wires. Otherwise, since the Cu matrix is contaminated with Sn, a stabilizing material is usually placed on the outer periphery via a shield. The role of this stabilizing material is to suppress the occurrence of quenching due to the local transition of the superconducting filament to normal conductivity, and to maintain a stable superconducting state.The smaller the resistivity value, the more stable the conductor is. I can say that.

[発明が解決しようとする課題] 上記の方法においては、安定化材として一般に無酸素銅
か使用されているが、そのR1?Rすなわち、(室温で
の抵抗/臨界温度(Tc )直上での抵抗)の値が10
0程度までか限度であり、これ以上の値を必要とする場
合には十分な安定性が得られないという問題があった。
[Problems to be Solved by the Invention] In the above method, oxygen-free copper is generally used as a stabilizing material, but R1? In other words, the value of (resistance at room temperature/resistance just above the critical temperature (Tc)) is 10
There is a limit to about 0, and if a value higher than this is required, there is a problem that sufficient stability cannot be obtained.

すなわち、超電導線の構造は主として超電導部分の面積
と安定化銅の面積で決定されるか、安定化銅の比抵抗は
ほぼ一定であるため、高磁界コイルにおいては、コイル
の安定性をある程度犠牲にして高磁界特性を優先した設
計か行イツれる。このため銅比を1.0程度とし、コイ
ルの蓄積エネルギーをできるたけ外部に放出し、導体の
温度上昇を小さ(するように製作されるか、この場合に
は十分な安定性か得られない。
In other words, the structure of the superconducting wire is mainly determined by the area of the superconducting part and the area of the stabilizing copper, or because the resistivity of the stabilizing copper is almost constant, in high magnetic field coils, the stability of the coil must be sacrificed to some extent. It is possible to create a design that prioritizes high magnetic field characteristics. For this reason, the copper ratio is set to about 1.0, and the energy stored in the coil is released to the outside as much as possible, and the temperature rise of the conductor is minimized. In this case, sufficient stability cannot be obtained. .

本発明は上記の問題を解決するためになされたもので、
多心構造のNb3Sn超電導線のJcを低下させずにI
?R+?を向上させることのできる内部拡散法による改
良された製造方法を提供することをその目的とする。
The present invention was made to solve the above problems,
I without reducing Jc of Nb3Sn superconducting wire with multi-core structure
? R+? The purpose is to provide an improved manufacturing method using an internal diffusion method that can improve the

[課題を解決するための手段] 本発明の内部拡散法によるNb3 Sn超電導線の製造
方法は、内側に遮蔽材を密接配置した銅管の内部に銅部
材を収容し、この銅部材の内部に錫および複数のニオビ
ウム管を配置するとともに、前記ニオビウム管の内部に
99.9999%以上の純度を有する銅またはアルミニ
ウムを収容した複合体に減面加工を施した後、660℃
以下の温度で熱処理を施して前記ニオビウム管の外側に
Nb3Sn層を生成させることを特徴としている。
[Means for Solving the Problems] The method of manufacturing an Nb3 Sn superconducting wire using the internal diffusion method of the present invention includes accommodating a copper member inside a copper tube in which a shielding material is closely arranged inside, and After arranging tin and a plurality of niobium tubes and accommodating copper or aluminum with a purity of 99.9999% or more inside the niobium tube, the composite is subjected to area reduction processing, and then heated at 660°C.
The present invention is characterized in that a Nb3Sn layer is formed on the outside of the niobium tube by performing heat treatment at a temperature below.

本発明における遮蔽材としては、Nb、 Taあるいは
これらの合金を用いることかできる。また銅部材、すな
わち7トリツクスには通常無酸素銅か用いられるが、N
b管には11等の元素を添加した合金を用いることもで
きる。
As the shielding material in the present invention, Nb, Ta, or an alloy thereof can be used. In addition, oxygen-free copper is usually used for copper parts, ie, 7 trix, but N
An alloy to which elements such as 11 are added can also be used for the b-tube.

さらに7トリツクス内に配置されるSnは複数箇所に配
置したり、あるいはCu被覆Sn線の複数本を集合して
配置することも可能である。
Further, the Sn arranged within the 7-trix can be arranged at a plurality of locations, or a plurality of Cu-coated Sn wires can be arranged in a group.

[作用] 本発明においては、マトリックス内に配置される複数の
Nb管の内部に同純度のCuまたはA1を収容すること
により、複合体の加工性も良好であり線材としてのl?
 I? Rを向上させることかできる。すなわち、一般
に無酸素銅ではl? RRは100程度であるが、6N
 (99,9999%)以上の高純度のCuまたはA1
では5000以上の値が得られる。
[Function] In the present invention, by accommodating Cu or Al of the same purity inside the plurality of Nb tubes arranged in the matrix, the processability of the composite is also good, and the l?
I? It is possible to improve R. That is, in general, in oxygen-free copper, l? RR is about 100, but 6N
(99,9999%) or higher purity Cu or A1
In this case, a value of 5000 or more can be obtained.

また内部拡散法では純A1の融点である660℃より低
い温度でNb3 Snを生成させることができるため、
高純度A1を使用しても溶融等による問題は生しない。
Furthermore, with the internal diffusion method, Nb3Sn can be generated at a temperature lower than 660°C, which is the melting point of pure A1.
Even if high purity A1 is used, problems such as melting will not occur.

し実施例] 外径8IIIIIlφ、内径5mmφのNb管内に外径
4.9mmφ、純度99.99995%の高純度AIを
挿入し、これを外径10mmφ、内径8.Immφの無
酸素銅管内へ収容した後、伸線加工を施して対辺間距離
2.27nvの断面正六角形の複合線を製造した。
Example] High purity AI with an outer diameter of 4.9 mmφ and a purity of 99.99995% was inserted into a Nb tube with an outer diameter of 8IIIlφ and an inner diameter of 5 mmφ, and this was inserted into a Nb tube with an outer diameter of 10 mmφ and an inner diameter of 8. After being housed in an oxygen-free copper tube of Immφ, wire drawing was performed to produce a composite wire with a regular hexagonal cross section and a distance between opposite sides of 2.27 nv.

一方、Cu管内にSnロッドを収容し、これに伸線加工
を施して対辺間距離2.27mmの断面正六角形のCu
被覆Sn線を製造した。この線材のCuとSnの比は、
拡散後Cu−70wt%S口となるように選定した。
On the other hand, a Sn rod was housed in a Cu tube, and wire drawing was performed on the Sn rod to form a Cu tube with a regular hexagonal cross section with a distance between opposite sides of 2.27 mm.
A coated Sn wire was manufactured. The ratio of Cu and Sn in this wire is
It was selected so that it would become Cu-70wt%S after diffusion.

次いで、Cu被覆Sn線の91本をその側面を当接して
集合し、さらにこの外側に複合線の210本を稠密に配
置し、さらにその外側に外径45mmφ、内径43.5
mmφのTa管および外径55mmφ、内径4[imm
φの無酸素銅管を順に配置して複合体を構成した。
Next, 91 Cu-coated Sn wires were brought together with their sides touching, and 210 composite wires were densely arranged on the outside of the wires, and a wire with an outer diameter of 45 mmφ and an inner diameter of 43.5 mm was placed on the outside.
mmφ Ta tube, outer diameter 55mmφ, inner diameter 4[imm]
A composite was constructed by sequentially arranging oxygen-free copper tubes of φ.

この複合体に静水圧押出加工、伸線加工等の減面加工を
施して外径1 、0mmφの線材を製造した後、300
℃×48時間および550°C×48時間のCu−Sn
合金生成の拡散熱処理を施し、次いで650°CX 2
40時間のNb3 Sn生成の熱処理を施して超電導線
を製造した。この超電導線の臨界電流密度Jcは13.
5Tで250A/mm2、RRRは200の値を示した
。これらの値は、従来法に比較してJcはほぼ同等で旧
?Rは約2倍である。
This composite was subjected to area reduction processing such as hydrostatic extrusion processing and wire drawing processing to produce a wire rod with an outer diameter of 1.0 mmφ.
Cu-Sn at ℃×48 hours and 550℃×48 hours
Diffusion heat treatment for alloy formation followed by 650°C
A superconducting wire was manufactured by performing a heat treatment to generate Nb3Sn for 40 hours. The critical current density Jc of this superconducting wire is 13.
At 5T, the RRR showed a value of 250A/mm2 and 200. These values indicate that Jc is almost the same compared to the conventional method. R is approximately twice as large.

[発明の効果] 以上述べたように、本発明によれば、内部拡散法により
、加工性およびJcを低下させることなく、高いl?R
Rを有する多心構造のNb3 Sn超電導線を製造する
ことかできる。
[Effects of the Invention] As described above, according to the present invention, high l? R
It is possible to manufacture a multicore Nb3Sn superconducting wire having R.

Claims (1)

【特許請求の範囲】[Claims] 内側に遮蔽材を密接配置した銅管の内部に銅部材を収容
し、この銅部材の内部に錫および複数のニオビウム管を
配置するとともに、前記ニオビウム管の内部に99.9
999%以上の純度を有する銅またはアルミニウムを収
容した複合体に減面加工を施した後、660℃以下の温
度で熱処理を施して前記ニオビウム管の外側にNb_3
Sn層を生成させることを特徴とする内部拡散法による
Nb_3Sn超電導線の製造方法。
A copper member is housed inside a copper tube with a shielding material closely arranged inside, tin and a plurality of niobium tubes are arranged inside the copper member, and 99.9% is placed inside the niobium tube.
After reducing the area of the composite containing copper or aluminum with a purity of 999% or more, heat treatment is performed at a temperature of 660°C or less to form Nb_3 on the outside of the niobium tube.
A method for manufacturing a Nb_3Sn superconducting wire by an internal diffusion method, characterized by forming a Sn layer.
JP63160304A 1988-06-28 1988-06-28 Manufacture of nb3 sn superconducting wire by internal diffusing method Pending JPH0211733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63160304A JPH0211733A (en) 1988-06-28 1988-06-28 Manufacture of nb3 sn superconducting wire by internal diffusing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63160304A JPH0211733A (en) 1988-06-28 1988-06-28 Manufacture of nb3 sn superconducting wire by internal diffusing method

Publications (1)

Publication Number Publication Date
JPH0211733A true JPH0211733A (en) 1990-01-16

Family

ID=15712062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63160304A Pending JPH0211733A (en) 1988-06-28 1988-06-28 Manufacture of nb3 sn superconducting wire by internal diffusing method

Country Status (1)

Country Link
JP (1) JPH0211733A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422506A (en) * 1990-05-15 1992-01-27 Hitachi Cable Ltd High-purity aluminum stabilized material for superconductive conductor
US7162816B2 (en) 2002-10-23 2007-01-16 Komatsu Ltd. Work vehicle with tilt floor
KR100761607B1 (en) * 2005-03-10 2007-09-27 가부시키가이샤 고베 세이코쇼 Precursor for fabricating ??3?? superconducting wire, and ??3?? superconducting wire, and method for fabricating same
CN102543311A (en) * 2012-02-23 2012-07-04 西南交通大学 Method for manufacturing composite Nb3Al/Nb multi-core superconducting wire
GB2490423A (en) * 2011-04-28 2012-10-31 Kek High Energy Accelerator Thermal conductor for superconductor made from high purity aluminium alloy
GB2490424A (en) * 2011-04-28 2012-10-31 Kek High Energy Accelerator Magnetic shield made from aluminium alloy with a purity of a least 99.999 %

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422506A (en) * 1990-05-15 1992-01-27 Hitachi Cable Ltd High-purity aluminum stabilized material for superconductive conductor
US7162816B2 (en) 2002-10-23 2007-01-16 Komatsu Ltd. Work vehicle with tilt floor
KR100761607B1 (en) * 2005-03-10 2007-09-27 가부시키가이샤 고베 세이코쇼 Precursor for fabricating ??3?? superconducting wire, and ??3?? superconducting wire, and method for fabricating same
GB2490423A (en) * 2011-04-28 2012-10-31 Kek High Energy Accelerator Thermal conductor for superconductor made from high purity aluminium alloy
GB2490424A (en) * 2011-04-28 2012-10-31 Kek High Energy Accelerator Magnetic shield made from aluminium alloy with a purity of a least 99.999 %
US9103005B2 (en) 2011-04-28 2015-08-11 Inter-University Research Institute Corporation High Energy Accelerator Research Organization Magnetic shielding material for superconducting magnet
CN102543311A (en) * 2012-02-23 2012-07-04 西南交通大学 Method for manufacturing composite Nb3Al/Nb multi-core superconducting wire

Similar Documents

Publication Publication Date Title
US4743713A (en) Aluminum-stabilized NB3SN superconductor
JPH0768605B2 (en) Nb (bottom 3) Method for manufacturing Sn-based superconducting wire
JPS6150136B2 (en)
JPH0211733A (en) Manufacture of nb3 sn superconducting wire by internal diffusing method
US3836404A (en) Method of fabricating composite superconductive electrical conductors
JP2007311126A (en) Compound superconductor, and its manufacturing method
JPH0211732A (en) Manufacture of nb3sn multicore superconducting wire
JP3059570B2 (en) Superconducting wire and its manufacturing method
JPH04277416A (en) Manufacture of nb3sn superconducting wire
JPS602728B2 (en) Method for manufacturing compound composite superconductor
JP2573491B2 (en) Nb Lower 3 Method for Manufacturing Sn Superconducting Wire
JPH03283320A (en) Manufacture of nb3sn multicore superconductor
JPH024931A (en) Manufacture of nb3x super conducting material
JP3046828B2 (en) Nb Lower 3 Method for Manufacturing Sn Composite Superconductor
JPH04301322A (en) Manufacture of niobium-tin superconducting wire
JPS62270756A (en) Manufacture of superconductive nb3sn wire
JPH04137411A (en) Manufacture of nb3 sn multicore superconducting wire
JPS62270755A (en) Manufacture of superconductive nb3sn wire
JPH01321033A (en) Manufacture of nb3x series superconducting material
JPH03230421A (en) Manufacture of nb3al superconducting wire
JPS61279662A (en) Production of nb3sn multi-cored superconductive wire
JPH02234313A (en) Manufacture of compound superconducting wire material
JPS62243745A (en) Manufacture of superconductive electric wire containing dispersed fiber
JPS63245826A (en) Manufacture of compound superconductive wire
JPH0349163B2 (en)