JPH01321033A - Manufacture of nb3x series superconducting material - Google Patents

Manufacture of nb3x series superconducting material

Info

Publication number
JPH01321033A
JPH01321033A JP63155755A JP15575588A JPH01321033A JP H01321033 A JPH01321033 A JP H01321033A JP 63155755 A JP63155755 A JP 63155755A JP 15575588 A JP15575588 A JP 15575588A JP H01321033 A JPH01321033 A JP H01321033A
Authority
JP
Japan
Prior art keywords
diameter
alloy
wire
superconducting
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63155755A
Other languages
Japanese (ja)
Inventor
Masaru Sugimoto
優 杉本
Tsukasa Kono
河野 宰
Yoshimitsu Ikeno
池野 義光
Nobuyuki Sadakata
伸行 定方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP63155755A priority Critical patent/JPH01321033A/en
Publication of JPH01321033A publication Critical patent/JPH01321033A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Wire Processing (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain Nb3X series superconducting material having fine crystal grains agreeing with the stoichiometric composition and excellent in superconducting properties by heat-treating Nb and an element at a specified temperature to make diffusion-reaction on them in a base composed of Ag. CONSTITUTION:A rod composed of Nb is inserted into a pipe composed of Ag-Ga alloy and this compound material is deduced in diameter to obtain a primary element wire 14. Plural element wires 14 are collected, inserted into a pipe body 15 composed of Ag-Ga alloy and contracted in diameter to obtain a secondary element wire 16. Plural secondary element wires are collected, inserted into a pipe body 17 composed of Ag-Ga alloy and reduced further in diameter to create a compound material 18. Plural compound materials 18 are collected, inserted into a diffusion prevention pipe 19 and reduced in diameter by covering the outside with a pure copper coated pipe 20. This wire is heat-treated at 600-1,000 deg.C under the atmosphere of vacuum or under the atmosphere or inert gas. In this way, Ga makes diffusion-reaction on an extrafine Nb filament in the base composed of Ag-Ga alloy in the core part to generate an Nb-Ga superconductive filament.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、臨界温度と臨界磁界が高いことで知られてい
るNb5Ga系あるいはNb、Al系の超電導材の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Industrial Application Field" The present invention relates to a method for producing Nb5Ga-based or Nb, Al-based superconducting materials, which are known to have high critical temperatures and critical magnetic fields.

「従来の技術」 臨界温度と臨界磁界が高い優れた化合物超電導体として
、従来から、N bs S n、 V s G a、 
N bs G asNb3A1などのA15型化合物が
知られている。
"Prior art" N bs S n, V s Ga,
A15 type compounds such as N bs G asNb3A1 are known.

これらのA15型化合物超電導体において、Nb。In these A15 type compound superconductors, Nb.

5nSVsGaなどの化合物超電導体を用いた超電導線
は、外部拡散法あるいは内部拡散法などを応用した種々
の製造方法の開発により実用化が進められ、Nb5Sn
系あるいはVsGa系の超電導線、または超電導マグネ
ットとして実用に供されるに至っている。
Superconducting wires using compound superconductors such as 5nSVsGa have been put into practical use through the development of various manufacturing methods that apply external diffusion methods or internal diffusion methods, and Nb5Sn
It has come to be put to practical use as superconducting wire or superconducting magnet of VsGa-based or VsGa-based superconducting wires.

ところが、前記A15型化合物超電導体において、Nb
5GaSNb3Alなどの化合物超電導体は、平衡状態
ではその組成が化学量論比よりもGaあるいはAlが少
ない方にずれる傾向があるために、従来知られている平
衡状態における拡散法を利用した製造方法を実施した場
合、化学量論組成比に合致しない組成であって、著しく
臨界温度の低い化合物超電導体が生成される問題があっ
た。
However, in the A15 type compound superconductor, Nb
In compound superconductors such as 5GaSNb3Al, in an equilibrium state, the composition tends to deviate toward less Ga or Al than the stoichiometric ratio. When carried out, there was a problem in that a compound superconductor with a composition that did not match the stoichiometric composition and a significantly low critical temperature was produced.

従って従来、Nb、GaあるいはNb+Al化合物超電
導体を製造する場合は、蒸着法などの特別な製造方法を
用いて強制的に組成を揃えるか、あるいは、前記化合物
超電導体が1600℃以上の高温で安定な相であること
を利用して1600℃以上の高温における溶融反応を行
ってこれらの化合物超電導体を生成することが可能であ
った。
Therefore, conventionally, when manufacturing Nb, Ga, or Nb+Al compound superconductors, the composition was forcibly made uniform using a special manufacturing method such as vapor deposition, or the compound superconductor was stable at high temperatures of 1600°C or higher. It was possible to generate these compound superconductors by performing a melting reaction at a high temperature of 1,600° C. or higher by taking advantage of the fact that they are in a phase of 1,600° C. or higher.

「発明が解決しようとする課題」 ところが前述の蒸着法では、製造できる化合物超電導体
の大きさに限界があり、線材などの長尺物には適用でき
ない欠点がある。
``Problem to be Solved by the Invention'' However, the above-mentioned vapor deposition method has the disadvantage that there is a limit to the size of the compound superconductor that can be manufactured, and it cannot be applied to long objects such as wire rods.

また、1600℃以上の高温に加熱して溶融反応を生じ
させる製造方法では、安定化母材などを含めた線材化を
考慮した場合、1600℃以上の高温の熱処理に耐えう
る構造材が見当たらない問題がある。しかもこのような
高温に加熱することにより生成させた化合物超電導体の
結晶粒は、高温熱処理の影響で粗大化しているために臨
界電流密度が低い間層がある。
In addition, with the manufacturing method that involves heating to a high temperature of 1600°C or higher to cause a melting reaction, it is difficult to find a structural material that can withstand heat treatment at a high temperature of 1600°C or higher when considering the production of wire rods including stabilizing base materials. There's a problem. Furthermore, the crystal grains of the compound superconductor produced by heating to such a high temperature have become coarse due to the influence of the high temperature heat treatment, so there is an interlayer with a low critical current density.

ところで、例えば、N bs G a系の化合物超電導
線を溶融反応法を応用して製造しようとする場合、第1
θ図と第1!図を基に以下に説明する方法を実施できる
ことが想定できる。
By the way, for example, when trying to manufacture a N bs Ga-based compound superconducting wire by applying the melt reaction method, the first
θ diagram and 1st! It can be assumed that the method described below can be implemented based on the figures.

まず、Nb製の管体lの内部にGa製のロッド2を挿入
して複合体3を作成し、この複合体3を1600℃以上
で加熱してNbとGaとの間←溶融拡散反応を生じさせ
、管体lとロッド2の境界部分に第11図に示すように
Nb3Gaからなる化合物超電導層4を生成させること
によりNb5Ga系の超電導線5を製造することができ
る。
First, a rod 2 made of Ga is inserted into the inside of a tube l made of Nb to create a composite 3, and this composite 3 is heated at 1600°C or higher to cause a melt-diffusion reaction between Nb and Ga. A Nb5Ga-based superconducting wire 5 can be manufactured by forming a compound superconducting layer 4 made of Nb3Ga at the boundary between the tube 1 and the rod 2 as shown in FIG.

ところが前述の方法で製造されたNb5Ga系の超電導
線5においては、管体1とロッド2の境界部分に化合物
超電導層4を生成できるものの、線材の中心部側には未
反応のGaが残留し、しかも未反応Gaの内部にボイド
6が生成されてしまう問題がある。なお、線材の中心部
に残留するGaの融点は29.78℃であるので線材の
内部にこのような低融点物質が残留すること自体好まし
くない。
However, in the Nb5Ga-based superconducting wire 5 manufactured by the method described above, although a compound superconducting layer 4 can be generated at the boundary between the tube 1 and the rod 2, unreacted Ga remains in the center of the wire. Moreover, there is a problem that voids 6 are generated inside the unreacted Ga. Note that since the melting point of Ga remaining in the center of the wire is 29.78° C., it is not desirable that such a low melting point substance remains inside the wire.

一方、Nb5Ga系のテープ状の超電導導体を製造しよ
うとする場合、第12図と第13図を基に以下に説明す
る方法を実施できることが想定できる。
On the other hand, when attempting to manufacture a tape-shaped Nb5Ga-based superconducting conductor, it can be assumed that the method described below can be implemented based on FIGS. 12 and 13.

まず、第12図に示すように、Nbからなるテープ材7
の上面にGaからなるメツキ層8を形成し、両者を16
00℃以上に加熱して溶融反応を生じさせることにより
、テープ材7の上部に第12図に示すようにNb+Ga
からなる化合物超電導層9を生成できる。
First, as shown in FIG. 12, a tape material 7 made of Nb
A plating layer 8 made of Ga is formed on the upper surface of the
By heating above 00°C to cause a melting reaction, Nb+Ga is formed on the upper part of the tape material 7 as shown in FIG.
A compound superconducting layer 9 consisting of the following can be produced.

ところがこのような方法では、Gaの融点が極めて低い
関係から1600℃以上に加熱する熱処理時のGaの蒸
気圧は極めて高くなり、熱処理中にGaが蒸発して消失
する傾向があるために、生成されたNb5Ga超電導体
においてGa含有量が著しく不足し、Nb5Ga超電導
体の化学量論組成がくずれ、結果的に優れた超電導特性
を得ることができない問題がある。
However, in this method, since the melting point of Ga is extremely low, the vapor pressure of Ga during heat treatment heated to 1,600°C or higher becomes extremely high, and Ga tends to evaporate and disappear during heat treatment, resulting in less generation. There is a problem in that the Ga content in the Nb5Ga superconductor produced is significantly insufficient, the stoichiometric composition of the Nb5Ga superconductor is distorted, and as a result, excellent superconducting properties cannot be obtained.

以上のような背景からNb5Ga系あるいはNb。Based on the above background, Nb5Ga series or Nb.

Al系の超電導線の製造方法が種々試みられてはいるが
、1000℃以下の温度で行う熱処理により特性の優れ
た超電導線を製造する有効な方法は未だ開発されていな
いのが現状である。ところが最近本発明者らはAg基地
の内部で拡散反応を生じさせることにより、特性の優れ
たNb、GaあるいはNb、Alを生成できることを知
見した。
Although various methods for producing Al-based superconducting wires have been attempted, an effective method for producing superconducting wires with excellent characteristics by heat treatment at a temperature of 1000° C. or less has not yet been developed. However, the present inventors have recently discovered that Nb, Ga, Nb, and Al having excellent properties can be produced by causing a diffusion reaction inside the Ag base.

本発明は前記背景に鑑みるとともに本発明者らが知見し
た内容に基いてなされたもので、化学量論組成に合致し
た組成であって臨界温度と臨界磁場の高いNb5x系超
電導材を製造できる方法を提供することを目的とする。
The present invention has been made in view of the above background and based on the findings of the present inventors, and is a method for producing an Nb5x-based superconducting material having a composition that matches the stoichiometric composition and a high critical temperature and critical magnetic field. The purpose is to provide

「課題を解決するための手段」 請求項1に記載した発明は前記課題を解決するために、
Nb3X(ただしXはGaあるいはA1を示す)系の超
電導材の製造方法において、Nb芯材をAg−X合金層
で覆ってなる素線を作成し、次にこの素線を複数本集合
してAg−X合金からなる管体に挿入し、更に縮径加工
を施すとともに、前記素線を集合して管体に挿入する処
理と縮径加工を1回以上繰り返し行って複合体を作成し
、次にこの複合体を600〜1000℃で熱処理するも
のである。
"Means for solving the problem" In order to solve the problem, the invention described in claim 1 has the following features:
In the method for manufacturing Nb3X (where X represents Ga or A1) based superconducting material, a wire is created by covering a Nb core material with an Ag-X alloy layer, and then a plurality of these wires are assembled. Insert into a tube made of Ag-X alloy, further perform diameter reduction processing, and repeat the process of collecting the strands and inserting them into the tube and diameter reduction processing one or more times to create a composite, Next, this composite is heat treated at 600 to 1000°C.

また、請求項2に記載した発明は前記課題を解決するた
めに、Nb3X系超電導材の製造方法において、Nb芯
材をAg−X合金層で被覆してなる素線を作成し、次に
この素線を複数本集合してAg−X合金からなる管体に
挿入し、更に縮径加工を施すとともに、前記素線を集合
して管体に挿入する処理と縮径加工処理を1回以上繰り
返し行って複合体を作成し、次にこの複合体を複数本集
合してTaあるいはNbなどからなる拡散防止管に挿入
するとともに拡散防止管の外方に安定化材からなる管体
を被せ、次いで全体を縮径した後に600〜1000℃
で熱処理を行って複合体の内部にNb3X超電導体を生
成させるものである。
In addition, in order to solve the above-mentioned problem, the invention described in claim 2 provides a method for manufacturing a Nb3X-based superconducting material, in which a wire is prepared by covering a Nb core material with an Ag-X alloy layer, and then this Collecting a plurality of strands of wire and inserting them into a tube made of Ag-X alloy, and further performing diameter reduction processing, and performing the process of collecting and inserting the strands into the tube and diameter reduction processing at least once. Repeat this process to create a composite, then assemble a plurality of these composites and insert them into a diffusion prevention tube made of Ta or Nb, etc., and cover the outside of the diffusion prevention tube with a tube made of a stabilizing material. Then, after reducing the diameter of the whole, 600-1000℃
A heat treatment is performed to generate Nb3X superconductor inside the composite.

「作用」 Agからなる基地の内部でNbと元素Xを拡散反応させ
るために、600〜1000℃で行う熱処理により化学
量論組成に合致した結晶粒の微細な超電導特性の優れた
Nb5Ga系あるいはNb3Al系の超電導フィラメン
トが生成する。また、熱処理時に拡散する元素Xは拡散
防止管により拡散を阻止されて外方の安定化材製の被覆
管まで到達しないので、最外周に設ける安定化材は元素
Xで汚染されることがない。
"Action" In order to cause a diffusion reaction between Nb and element A system of superconducting filaments is produced. In addition, element .

「実施例」 第1図ないし第9図は、Nb5Ga系の超電導線の製造
方法に本発明方法を適用した例を示すもので、超電導線
を製造するには、まず、第1図に示すようにNbからな
るロッド10をA g−G a合金からなるバイブ11
に挿入して複合材13を作成する。なお、パイプ!■は
図面に示すような単管状のものに限るものではなく、柱
状体゛に複数の透孔が形成された形状のものなどを用い
、複数の透孔の各々にロッドIOを挿入して複合材を形
成することもできる。
``Example'' Figures 1 to 9 show examples in which the method of the present invention is applied to the manufacturing method of Nb5Ga-based superconducting wire. A rod 10 made of Nb is attached to a vibrator 11 made of an Ag-Ga alloy.
to create a composite material 13. In addition, the pipe! (2) is not limited to a single tube as shown in the drawing, but a columnar body with multiple through holes formed therein, and a rod IO inserted into each of the multiple through holes to create a composite structure. It can also be used to form materials.

次にこの複合材13をスウェージング加工、引抜加工な
どの縮径加工によって所望の直径まで縮径して第2図に
示す一次素線14を得る。この−次素線14はNbから
、なる芯材の外周面をA g−G a谷金層で覆ってな
る構造となっている。
Next, this composite material 13 is reduced to a desired diameter by a diameter reduction process such as swaging or drawing to obtain a primary strand 14 shown in FIG. This -order strand 14 has a structure in which the outer peripheral surface of a core material made of Nb is covered with an Ag-Ga valley metal layer.

次に、前記−次素線14を複数本集合してAg−Ga合
金からなる管体15に第3図に示すように挿入し、更に
縮径加工を施して第4図に示す二次素線16を得る。
Next, a plurality of the secondary strands 14 are assembled and inserted into a tube 15 made of Ag-Ga alloy as shown in FIG. We get line 16.

次いでこの二次素線I6を第5図に示すように複数本集
合してAg−Ga合金からなる管体17に挿入し、更に
縮径加工を施して第6図に示す複合体18を作成する。
Next, as shown in FIG. 5, a plurality of the secondary wires I6 are assembled and inserted into a tube body 17 made of Ag-Ga alloy, and further diameter-reduced to create a composite body 18 shown in FIG. 6. do.

この複合体18の内部構造は、Ag−Ga合金からなる
基地の内部にNbからなる極細のフィラメントが多数分
散された構造となっている。なお、前記二次素線16を
更に複数本集合してAg−Ga合金管に挿入し、縮径す
る処理を必要に応じて複数回行って複合体を作成しても
良い。
The internal structure of the composite body 18 is such that a large number of extremely thin filaments made of Nb are dispersed inside a base made of an Ag-Ga alloy. Incidentally, a plurality of the secondary strands 16 may be further assembled and inserted into the Ag-Ga alloy tube, and the diameter reduction process may be performed multiple times as necessary to create a composite body.

次に前記複合体18を複数本集合して第7図に示すよう
にTaあるいはNbからなる拡散防止管I9に挿入し、
拡散防止管19の外方に安定化材となるべき純銅製の被
覆管20を被せ、更に全体を最終的に得るべき直径まで
縮径して第8図に示す線材2!を得る。この線材21は
、複合体!8を圧密化した芯部22と、この芯部22の
外方に被覆された拡散バリア層23と、この拡散バリア
層23の外方に被覆された純銅からなる安定化層24と
から購成されている。なお、芯部22はAg−Ga合金
からなる基地の内部にNbからなる極細フィラメントが
多数分散された構造となっている。
Next, a plurality of the composites 18 are assembled and inserted into a diffusion prevention tube I9 made of Ta or Nb as shown in FIG.
A pure copper cladding tube 20 to serve as a stabilizing material is placed on the outside of the diffusion prevention tube 19, and the whole is further reduced in diameter to the final diameter to obtain the wire rod 2 shown in FIG. 8! get. This wire 21 is a composite! 8, a diffusion barrier layer 23 coated on the outside of this core 22, and a stabilizing layer 24 made of pure copper coated on the outside of this diffusion barrier layer 23. has been done. The core portion 22 has a structure in which a large number of ultrafine filaments made of Nb are dispersed inside a base made of an Ag-Ga alloy.

次いでこの線材21を真空雰囲気あるいは不活性ガス雰
囲気などにおいて600〜1000℃に数時間〜数十時
間加熱する熱処理を施す。この熱処理により芯部22に
おいては、Ag−Ga合金からなる基地内の極細のNb
フィラメントに、基地を構成するGaが拡散して反応し
、Nb5Ga超電導フイラメントが生成する。なお、こ
のようにAg−Gaからなる基地の内部でGaを拡散さ
せて超電導フィラメントを生成させた場合に600〜1
000℃の加熱温度でも化学量論組成に合致したNb5
Gaを生成させることができる。これは基地を構成する
Agが何等かの触媒効果を発揮したためと推定される。
Next, this wire 21 is subjected to heat treatment in which it is heated to 600 to 1000° C. for several hours to several tens of hours in a vacuum atmosphere or an inert gas atmosphere. Through this heat treatment, in the core part 22, the ultrafine Nb in the base made of Ag-Ga alloy
Ga constituting the base diffuses into the filament and reacts, producing a Nb5Ga superconducting filament. In addition, when a superconducting filament is generated by diffusing Ga inside a base made of Ag-Ga, 600 to 1
Nb5 matches the stoichiometric composition even at a heating temperature of 1,000°C
Ga can be generated. This is presumed to be because Ag constituting the base exerted some kind of catalytic effect.

また、拡散熱処理時において芯部22の外方には拡散バ
リア層23が形成されているので、最外周の安定化層2
4までGaが拡散することがなく、Gaの拡散による安
定化層24の汚染は防止される。このため熱処理後にお
いても最外周には純銅製の安定化層24が残留する。
In addition, since the diffusion barrier layer 23 is formed outside the core portion 22 during the diffusion heat treatment, the outermost stabilizing layer 23
Ga does not diffuse up to 4, and contamination of the stabilizing layer 24 due to Ga diffusion is prevented. Therefore, even after the heat treatment, the pure copper stabilizing layer 24 remains on the outermost periphery.

以上の熱処理により第9図に示すNb5Ga系超電導線
Aを得ることができる。この超電導線Aは液体ヘリウム
などの冷媒によって臨界温度以下に冷却して使用される
。この超電導線AはNb5Ga超電導フイラメントを備
えているために、臨界温度が高い。また、600〜10
00℃で行う熱処理によりNb5Ga超電導体を生成さ
せているので、結晶粒の粗大化を抑制して従来より微細
な結晶粒のNb、Ga超電導体を生成させることができ
る。
Through the above heat treatment, the Nb5Ga-based superconducting wire A shown in FIG. 9 can be obtained. This superconducting wire A is used after being cooled to below a critical temperature using a coolant such as liquid helium. Since this superconducting wire A includes a Nb5Ga superconducting filament, its critical temperature is high. Also, 600 to 10
Since the Nb5Ga superconductor is generated by the heat treatment performed at 00° C., it is possible to suppress coarsening of crystal grains and to generate a Nb, Ga superconductor with finer crystal grains than conventional ones.

従って10T(テスラ)を超える高い磁場中においても
臨界電流密度の高い超電導線が得られる。また、超電導
線Aの最外周には純銅製の安定化層24が形成され、こ
の層は極低温で十分に電気抵抗が低いので、安定化層2
4は超電導線Aの安定化材として作用する。即ち、超電
導フィラメントが何等かの原因で常電導状態に転位しよ
うとした場合に安定化層24が電流パスとなって発熱を
防止し、超電導状態を安定化するとともに、超電導フィ
ラメントが常電導状態に転位した場合に電流パスとなる
Therefore, a superconducting wire with a high critical current density can be obtained even in a high magnetic field exceeding 10 T (Tesla). In addition, a stabilizing layer 24 made of pure copper is formed on the outermost periphery of the superconducting wire A, and since this layer has sufficiently low electrical resistance at extremely low temperatures, the stabilizing layer 24
4 acts as a stabilizing material for the superconducting wire A. That is, when the superconducting filament attempts to transition to a normal conductive state for some reason, the stabilizing layer 24 serves as a current path, prevents heat generation, stabilizes the superconducting state, and causes the superconducting filament to transition to a normal conductive state. When dislocated, it becomes a current path.

なお、前記実施例では、複合体I8を集合した後に拡散
防止管I9と被覆管20を被覆し、縮径した後に熱処理
を行っているが、複合体18を直接熱処理して複合体1
8の内部にNb5Ga超電導フイラメントを生成させて
超電導線を製造することも可能である。
In the above embodiment, the diffusion prevention tube I9 and the cladding tube 20 are coated after the composite I8 is assembled, and the heat treatment is performed after the diameter is reduced.
It is also possible to produce a superconducting wire by producing a Nb5Ga superconducting filament inside the 8.

なおまた、前記実施例ではNb5Ga系の超電導線に本
発明を適用した例について説明したが、Nb3Al系の
超電導線に本発明を適用することも可能である。Nb3
Al系に適用する場合は、Ag−Al合金管にNbロッ
ドを挿入して複合体を作成し、この複合体を出発物とし
て前記と同様の工程を行うことによりNb、Al系の超
電導線を製造することができる。
Furthermore, in the above embodiment, an example in which the present invention is applied to a Nb5Ga-based superconducting wire has been described, but it is also possible to apply the present invention to a Nb3Al-based superconducting wire. Nb3
When applied to Al-based wires, a Nb rod is inserted into an Ag-Al alloy tube to create a composite, and the same steps as above are performed using this composite as a starting material to create Nb and Al-based superconducting wires. can be manufactured.

「製造例1」 Ag−10at%Ga合金からなり、外径10mm。"Manufacturing example 1" Made of Ag-10at%Ga alloy, outer diameter 10mm.

内径7mmのパイプに、直径6.7IIIIlのNbロ
ッドを挿入し、全体を外径0.8m+nまで縮径して一
次素線を作成した。次に、この−次素線を91本集合し
、Ag−10at%Ga合金からなる管体の内部に挿入
し、線引加工を施して直径ト■の二次素線を得た。次い
でこの二次素線を91本集合し、Ag−10at%Ga
合金からなる外径13ma+、内径12mmの管体の内
部に集合し、線引加工を行って直径1.0mmの複合体
を作成した。
A Nb rod with a diameter of 6.7III was inserted into a pipe with an inner diameter of 7 mm, and the entire diameter was reduced to an outer diameter of 0.8 m+n to prepare a primary wire. Next, 91 of these secondary strands were assembled, inserted into a tube made of an Ag-10 at% Ga alloy, and subjected to wire drawing to obtain a secondary strand of diameter T. Next, 91 of these secondary strands were assembled, and Ag-10at%Ga
They were gathered inside a tube made of an alloy with an outer diameter of 13 ma+ and an inner diameter of 12 mm, and wire-drawn to create a composite body with a diameter of 1.0 mm.

次いでこの複合体を91本集合して、外径131111
、内径12mmのTa管に挿入し、更にこのTa管の外
方に外径18ma+、内径14a+mの純銅製の安定化
パイプを被せて縮径加工を行い、直径1.Ommの線材
を作成した。
Next, 91 pieces of this complex were assembled to have an outer diameter of 131111
, is inserted into a Ta tube with an inner diameter of 12 mm, and a pure copper stabilizing pipe with an outer diameter of 18 ma+ and an inner diameter of 14 a+ m is placed on the outside of this Ta tube to reduce the diameter. A wire rod of 0 mm was made.

続いて前記線材をArガス雰囲気中において800℃で
24時間加熱する熱処理を行って超電導線を作成した。
Subsequently, the wire was heat-treated at 800° C. for 24 hours in an Ar gas atmosphere to produce a superconducting wire.

得られた超電導線の臨界温度(Tc)を測定したところ
、T c(mid point)= 18 、5 Kの
優秀な値を示し、IOTの磁場中で臨界電流密度(Jc
)を測定したところ、J c== 2 X 10 ’A
/cII’を示した。
When the critical temperature (Tc) of the obtained superconducting wire was measured, it showed an excellent value of Tc (mid point) = 18, 5 K, and the critical current density (Jc) in the magnetic field of IOT was found to be excellent.
) was measured and found that J c == 2 x 10 'A
/cII' was shown.

従って以上の方法を実施することにより超電導特性の優
れたNb5Ga系超電導線を製造できることが判明した
Therefore, it has been found that by carrying out the above method, a Nb5Ga-based superconducting wire with excellent superconducting properties can be manufactured.

「発明の効果」 以上説明したように本発明は、Ag−X合金製の基地の
内部に配したNbフィラメントにGaを拡散させるので
、化学量論組成に合致した臨界温度と臨界電流密度の高
いNb3X超電導フイラメントを生成させることができ
、更に600〜1000℃で熱処理を行うので、結晶粒
が微細で高磁界域においても臨界電流密度の高いNb3
X系超電導線を得ることができる。また、熱処理時の元
素Xの拡散を拡散防止管で阻止できるので、最外周に設
ける安定化材が元素Xで汚染されることがない。このた
め冷媒で冷却して超電導線に通電した場合、安定化材は
十分に電気抵抗が低い状態になるので超電導線の超電導
状態を安定化することができる。
"Effects of the Invention" As explained above, the present invention diffuses Ga into the Nb filament arranged inside the base made of Ag-X alloy, so that the critical temperature matching the stoichiometric composition and the high critical current density can be achieved. Nb3X superconducting filaments can be generated, and heat treatment is performed at 600 to 1000°C, so Nb3 has fine crystal grains and a high critical current density even in high magnetic field regions.
An X-based superconducting wire can be obtained. Furthermore, since diffusion of element Therefore, when the superconducting wire is cooled with a refrigerant and energized, the stabilizing material has a sufficiently low electrical resistance, so that the superconducting state of the superconducting wire can be stabilized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第9図は本発明の一実施例を示すもので、第1
図はNbロッドとAg−Gaバイブの複合状態を示す断
面図、第2図は一次素線の断面図、第3図は管体の内部
に一次素線を挿入した状態を示す断面図、第4図は二次
素線の断面図、第5図は二次素線を管体に挿入した状態
を示す断面図、第6図は複合体の断面図、第7図は管体
内に複合体を挿入した状態を示す断面図、第8図は複合
体を縮径した線材の断面図、第9図は超電導線の断面図
、第10図と第11図は従来の製造方法の一例を示すも
ので、第1O図は複合体の断面図、第11図は超電導線
の断面図、第12図と第13図は従来の製造方法の他の
例を示すもので、第12図はメツキ層を形成したテープ
材の断面図、第13図は超電導テープの断面図である。 A・・・超電導線、lO・・・ロッド、11・・・パイ
プ、13・・・複合体、14・・・−次素線、15・・
・管体、!6・・・二次素線、17・・・管体、18・
・・複合体、19・・・拡散防止管、20・・・被覆管
、21・・・線材、22・・・芯部、23・・・拡散バ
リア層、24・・・安定化層。
Figures 1 to 9 show one embodiment of the present invention.
The figure is a cross-sectional view showing a combined state of the Nb rod and Ag-Ga vibe, Figure 2 is a cross-sectional view of the primary wire, Figure 3 is a cross-sectional view showing the state where the primary wire is inserted into the tube body, Figure 4 is a sectional view of the secondary strand, Figure 5 is a sectional view showing the secondary strand inserted into the tube, Figure 6 is a sectional view of the composite, and Figure 7 is the composite inside the tube. Fig. 8 is a cross-sectional view of a wire with a reduced diameter composite, Fig. 9 is a cross-sectional view of a superconducting wire, and Figs. 10 and 11 show an example of a conventional manufacturing method. Fig. 10 is a cross-sectional view of the composite, Fig. 11 is a cross-sectional view of the superconducting wire, Fig. 12 and Fig. 13 show other examples of the conventional manufacturing method, and Fig. 12 shows the plating layer. FIG. 13 is a cross-sectional view of the superconducting tape. A...Superconducting wire, lO...rod, 11...pipe, 13...composite, 14...-order strand, 15...
・Pipe body! 6... Secondary wire, 17... Tube body, 18.
... Composite, 19... Diffusion prevention tube, 20... Covering tube, 21... Wire, 22... Core portion, 23... Diffusion barrier layer, 24... Stabilizing layer.

Claims (2)

【特許請求の範囲】[Claims] (1)Nb_3X(ただしXはGaあるいはAlを示す
)系超電導材の製造方法において、 Nb芯材をAg−X合金層で被覆してなる素線を作成し
、次にこの素線を複数本集合してAg−X合金からなる
管体に挿入し、更に縮径加工を施すとともに、前記素線
を集合して管体に挿入する処理と縮径加工処理を1回以
上繰り返し行って複合体を作成し、次にこの複合体を6
00〜1000℃で熱処理することを特徴とするNb_
3X系超電導材の製造方法。
(1) In the method for manufacturing Nb_3X (where X represents Ga or Al) based superconducting material, a strand is created by covering a Nb core material with an Ag-X alloy layer, and then a plurality of strands of this strand are made. The strands are assembled and inserted into a pipe made of Ag-X alloy, and further subjected to diameter reduction processing, and the process of collecting the strands and inserting them into the pipe and diameter reduction processing is repeated one or more times to obtain a composite. and then convert this complex to 6
Nb_ characterized by heat treatment at 00~1000℃
Method for producing 3X superconducting material.
(2)Nb_3X系超電導材の製造方法において、Nb
芯材をAg−X合金層で被覆してなる素線を作成し、次
にこの素線を複数本集合してAg−X合金からなる管体
に挿入し、更に縮径加工を施すとともに、前記素線を集
合して管体に挿入する処理と縮径加工を1回以上繰り返
し行って複合体を作成し、次にこの複合体を複数本集合
してTaあるいはNbなどからなる拡散防止管に挿入す
るとともに拡散防止管の外方に安定化材からなる管体を
被せ、次いで全体を縮径した後に600〜1000℃で
熱処理を行って複合体の内部にNb_3X超電導体を生
成させることを特徴とするNb_3X系超電導材の製造
方法。
(2) In the method for manufacturing Nb_3X-based superconducting material, Nb
A wire is made by covering the core material with an Ag-X alloy layer, and then a plurality of these wires are assembled and inserted into a tube made of Ag-X alloy, and the diameter is further reduced. A composite body is created by repeating the process of gathering and inserting the strands into a tube body and diameter reduction process one or more times, and then assembling a plurality of this composite body to form a diffusion prevention tube made of Ta or Nb, etc. At the same time, a tube body made of a stabilizing material is placed on the outside of the diffusion prevention tube, and after the entire diameter is reduced, heat treatment is performed at 600 to 1000 °C to generate Nb_3X superconductor inside the composite. A method for producing a featured Nb_3X superconducting material.
JP63155755A 1988-06-23 1988-06-23 Manufacture of nb3x series superconducting material Pending JPH01321033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63155755A JPH01321033A (en) 1988-06-23 1988-06-23 Manufacture of nb3x series superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63155755A JPH01321033A (en) 1988-06-23 1988-06-23 Manufacture of nb3x series superconducting material

Publications (1)

Publication Number Publication Date
JPH01321033A true JPH01321033A (en) 1989-12-27

Family

ID=15612705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63155755A Pending JPH01321033A (en) 1988-06-23 1988-06-23 Manufacture of nb3x series superconducting material

Country Status (1)

Country Link
JP (1) JPH01321033A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196030A (en) * 1991-08-29 1994-07-15 Natl Res Inst For Metals Manufacture of nb3 al compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196030A (en) * 1991-08-29 1994-07-15 Natl Res Inst For Metals Manufacture of nb3 al compound

Similar Documents

Publication Publication Date Title
JPH0768605B2 (en) Nb (bottom 3) Method for manufacturing Sn-based superconducting wire
JPH0419918A (en) Nb3al-type superconductor wire manufacturing method and its apparatus
JP2007157590A (en) HIGH-PERFORMANCE MgB2 SUPERCONDUCTIVE WIRE, AND ITS MANUFACTURING METHOD
US6376099B1 (en) CU-containing NB3A1 multifilamentary superconductive wire and process for producing the same
JPH01321033A (en) Manufacture of nb3x series superconducting material
CA1036801A (en) Method for the manufacture of a superconductor having an intermetallic two element compound
JPH024931A (en) Manufacture of nb3x super conducting material
JPH0211733A (en) Manufacture of nb3 sn superconducting wire by internal diffusing method
JPH06158212A (en) Nb3al superconductor, its production, nb3al superconducting precursor composition and high magnetic field generating superconducting magnet
JP4009167B2 (en) Powder method Nb (3) Sn superconducting wire
JP3059570B2 (en) Superconducting wire and its manufacturing method
JP2874955B2 (en) Method of manufacturing Nb (3) Sn superconducting wire for superconducting generator
JPH10149729A (en) Oxide superconductive wire rod and manufacture thereof
JP2719155B2 (en) Superconducting stranded wire manufacturing method
JPH04301322A (en) Manufacture of niobium-tin superconducting wire
JPH04277409A (en) Compound superconducting wire and manufacture thereof
JPS60250510A (en) Method of producing nb3sn composite superconductive wire
JPS58189909A (en) Method of producing nb3sn superconductor
JPH04298914A (en) Compound superconductor
JPH03283320A (en) Manufacture of nb3sn multicore superconductor
JP2003223823A (en) Nb3Al-BASED COMPOUND SUPERCONDUCTING WIRE AND MANUFACTURING METHOD THEREFOR
JP2004241254A (en) Method of manufacturing superconducting oxide wire
JPH01319647A (en) Nb3x super conducting material and its manufacture
JP2001076560A (en) Method for manufacturing superconductive wire rod and its manufacturing material
JPS60250511A (en) Method of producing nb3sn composite superconductive wire