JPH06196030A - Manufacture of nb3 al compound - Google Patents

Manufacture of nb3 al compound

Info

Publication number
JPH06196030A
JPH06196030A JP3242369A JP24236991A JPH06196030A JP H06196030 A JPH06196030 A JP H06196030A JP 3242369 A JP3242369 A JP 3242369A JP 24236991 A JP24236991 A JP 24236991A JP H06196030 A JPH06196030 A JP H06196030A
Authority
JP
Japan
Prior art keywords
alloy
solid solution
based solid
composite
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3242369A
Other languages
Japanese (ja)
Inventor
Takao Takeuchi
孝夫 竹内
Michio Kosuge
通雄 小菅
Yasuo Iijima
安男 飯嶋
Tsukasa Kiyoshi
司 木吉
Tadashi Inoue
廉 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Original Assignee
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals filed Critical National Research Institute for Metals
Priority to JP3242369A priority Critical patent/JPH06196030A/en
Publication of JPH06196030A publication Critical patent/JPH06196030A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To improve a characteristic of high temperature heat resistance excellent in ferromagnetic field and AC characteristic by heat treating a compound, composed of Ag-Al group solid solution and Nb(alloy), after wire drawing work. CONSTITUTION:An Nb or Nb-alloy bar, adding lat% or less Ag and 0.1 to 10at% Ge or Si, is inserted into an Ag-Al group solid solution pipe of 0.1 to 20at% Al content, to obtain a compound. This compound, after wire drawing work, is heat treated at 600 to 960 deg.C in a vacuum, inert gas or the atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】この発明は、Nb3 Al化合物の
製造方法に関するものである。さらに詳しくは、この発
明は、強磁界および交流特性に優れたNb3 Al超電導
線材や高温耐熱特性に優れた構造材料として有用なNb
3 Al化合物を簡便かつ容易に製造することのできる新
しい製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an Nb 3 Al compound. More specifically, the present invention is useful as a Nb 3 Al superconducting wire excellent in strong magnetic field and AC characteristics and a structural material excellent in high temperature heat resistance.
The present invention relates to a new production method capable of simply and easily producing an Al compound.

【従来の技術とその課題】従来より、強磁界および交磁
界用の超電導線材についは、Nb3 SnとV3 Gaの2
つのA15型化合物線材が、たとえばブロンズ法に代表
されるように、銅の拡散促進作用を利用して製造され、
実用化されてきている。ブロンズ法においては、Cu−
Sn(Cu−Ga)合金マトリックスとNb(V)芯か
らなる複合加工線をたとえば800 ℃以下の低温で熱処理
する。これによって、Sn(Ga)に富んだ中間相を経
由せずに、微細な結晶粒組織を有する臨界電流密度の高
いNb3 Sn(V3 Ga)を直接拡散生成することがで
きる。しかしながら、Nb3 SnおよびV3 Gaと同じ
A15型化合物に属するNb3 Al超電導線材について
は、上記したブロンズ法をその製造に適用すると、銅を
多量に含むNb−Al−Cu3元化合物が優先的に拡散
生成し、目的とするNb3 Alは生成しないという欠点
がある。また、NbとAlをたとえば1000℃以下の低温
で直接拡散反応させても、NbAl3 やNb2 Alなど
のAlに富んだ中間層が、通常、安定に生成し、Nb3
Alは生成しない。一方、NbとAlの複合線を高温熱
処理すると、Nb3 Alを厚く生成させることができる
ことが知られている。しかしながら、この場合には、結
晶粒が粗大化するため、臨界電流密度が極めて小さくな
るという問題がある。このため、レーザー・電子ビーム
照射法や融体急冷法などにより高温で反応させた後に、
急冷却する製造方法が提案されてもいるが、この製造方
法においては、大型で特殊な急加熱・急冷却装置が必要
となり、しかも現状では長手方向に性能のばらつきが大
きいため、実用化に至るまでにはなっていない。これに
対し、Nb粉とAl粉をNb管に充填し冷間加工する粉
末冶金法、Nb箔とAl箔を重ね、銅棒を中心として巻
き込み、これを銅管と複合して冷間加工するジェリーロ
ール法、Nb粉末の焼結体の隙間にAl融液を浸透させ
た後に冷間加工する液体浸透法、Al−Nb−Al3層
クラッド薄板をチップ状に切断し、ビレットに充填した
後に押し出し、冷間加工するクラッドチップ押し出し
法、あるいは、Nb管にAl合金棒を挿入し冷間加工す
るニオブチューブ法などの各種の方法によりNb/Al
拡散対をたとえば0.1 μm以下程度にまで極めて薄くす
ることにより、1000℃以下の低温熱処理でも高磁界まで
臨界電流密度の大きいNb3 Al線材を製造することが
可能となっている。しかしながら、これらの方法におい
ては、極めて薄いNb/Al拡散対を実現するめには、
加工率で105 から1010程度という極めて大きな冷間
加工を施さなければならず、しかもそのように大きな伸
線加工率を確保し、かつ電磁気的擾乱に対して安定な多
芯線構造とするためには、多数の素線を管に束ねて挿入
するスタック工程が加工途中で数回必要となる。スタッ
クされた各素線の一体化を促進するためには、一般的
に、静水圧押し出しや中間焼鈍などによる拡散接合が有
効であるが、上記した方法においては、拡散対がある程
度薄くなった段階で押し出し等を行うと、加工熱などに
よりNbAl3 が生成し、かえってその後の伸線加工に
おける断線の原因となるという欠点がある。このため、
スタック工程中での各素線の一体化は、実質的に困難で
あり、長尺の多芯線を製造することは難しいという問題
があった。また、安定化材である銅の被覆が困難でもあ
った。さらには、熱処理雰囲気についても、NbやCu
が酸化しやすいため、大気中での熱処理は不可能であ
り、真空または不活性ガス雰囲気での熱処理が不可欠で
あった。またさらに、Nb3 Al化合物は、Ni基合金
等に代替する次世代の高温用構造材料としても注目され
ている。しかしながら、バルク材を溶解により製造する
場合は、Nb3 Alの融点が2000℃付近と高くてAlが
激しく蒸発する事などの理由により、目標組成の調整が
困難であり、また、その場合、得られるインゴットは脆
いので、これを任意の形状に成形するのは容易でなかっ
た。この発明は、以上の通りの事情に鑑みてなされたも
のであり、従来のNb3 Al化合物の製造方法の欠点を
解消し、NbとAlの拡散反応を銀(Ag)の介在によ
り促進させて、強磁界および交流磁界特性に優れたNb
3 Al超電導線材や高温耐熱特性に優れた構造材料とし
て有用なNb3 Al化合物を簡便かつ容易に製造するこ
とのできる新しい製造方法を提供することを目的として
いる。
2. Description of the Related Art Conventionally, for superconducting wire rods for strong magnetic fields and alternating magnetic fields, two types of Nb 3 Sn and V 3 Ga have been used.
One A15 type compound wire is manufactured by utilizing the diffusion promoting action of copper, as represented by the bronze method,
It has been put to practical use. In the bronze method, Cu-
A composite processed wire composed of an Sn (Cu-Ga) alloy matrix and an Nb (V) core is heat-treated at a low temperature of, for example, 800 ° C or lower. As a result, Nb 3 Sn (V 3 Ga) having a fine grain structure and a high critical current density can be directly diffused without passing through an intermediate phase rich in Sn (Ga). However, for the Nb 3 Al superconducting wire belonging to the same A15 type compound Nb 3 Sn and V 3 Ga, Applying the bronze process described above for its production, preferentially the Nb-Al-Cu3 element compound containing copper in a large amount However, there is a drawback in that the target Nb 3 Al is not formed by diffusion. Even when Nb and Al are directly diffused at a low temperature of, for example, 1000 ° C. or less, an Al-rich intermediate layer such as NbAl 3 or Nb 2 Al is usually stably formed, and Nb 3
Al is not generated. On the other hand, it is known that Nb 3 Al can be thickly formed by heat-treating a composite wire of Nb and Al at high temperature. However, in this case, since the crystal grains are coarsened, there is a problem that the critical current density becomes extremely small. Therefore, after reacting at high temperature by laser / electron beam irradiation method or melt quenching method,
Although a rapid cooling manufacturing method has been proposed, this manufacturing method requires a large-scale and special rapid heating / cooling device, and at the present time, there is a large variation in performance in the longitudinal direction, leading to practical application. Not up to. On the other hand, a powder metallurgy method of filling Nb powder and Al powder into an Nb pipe and cold working, stacking Nb foil and Al foil, winding them around a copper rod, and cold working by compounding this with a copper pipe Jelly roll method, liquid infiltration method in which Al melt is infiltrated into the gap between sintered bodies of Nb powder and then cold working, Al-Nb-Al three-layer clad thin plate is cut into chips, filled into billets, and then extruded Nb / Al by various methods such as a cold-worked clad chip extrusion method or a cold-worked niobium tube method in which an Al alloy rod is inserted into an Nb tube.
By making the diffusion pair extremely thin, for example, to about 0.1 μm or less, it is possible to manufacture an Nb 3 Al wire having a large critical current density even in a high magnetic field even at a low temperature heat treatment of 1000 ° C. or less. However, in these methods, in order to realize an extremely thin Nb / Al diffusion pair,
In order to obtain a very large cold drawing work rate of 10 5 to 10 10 and to secure such a large drawing work rate, and to make a multi-core wire structure that is stable against electromagnetic disturbance. For this reason, a stacking step of bundling and inserting a large number of strands into a tube is required several times during processing. In order to promote the integration of the stacked wires, generally, diffusion bonding such as hydrostatic extrusion or intermediate annealing is effective, but in the above method, the diffusion pair is thinned to some extent. However, there is a drawback in that NbAl 3 is generated by working heat and the like, which causes wire breakage in the subsequent wire drawing, if extruded or the like. For this reason,
There is a problem that it is substantially difficult to integrate the individual wires in the stacking process, and it is difficult to manufacture a long multifilamentary wire. Also, it was difficult to coat copper as a stabilizing material. Furthermore, regarding the heat treatment atmosphere, Nb and Cu are also used.
Since it is easily oxidized, heat treatment in the atmosphere is impossible, and heat treatment in a vacuum or an inert gas atmosphere is indispensable. Further, the Nb 3 Al compound has been attracting attention as a next-generation high-temperature structural material that substitutes for a Ni-based alloy or the like. However, when a bulk material is manufactured by melting, it is difficult to adjust the target composition because the melting point of Nb 3 Al is as high as around 2000 ° C. and the Al evaporates violently. Since the ingot obtained is brittle, it was not easy to shape it into an arbitrary shape. The present invention has been made in view of the above circumstances, and solves the drawbacks of the conventional method for producing an Nb 3 Al compound and accelerates the diffusion reaction of Nb and Al by interposing silver (Ag). , Nb excellent in strong magnetic field and AC magnetic field characteristics
It is an object of the present invention to provide a new production method capable of easily and easily producing an Nb 3 Al compound useful as a 3 Al superconducting wire or a structural material excellent in high temperature heat resistance.

【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、Ag−Al基固溶体とNbまた
はNb合金とから構成される複合体を線状に伸線加工
し、熱処理することを特徴とするNb3 Al超電導線材
の製造方法を提供する。すなわち、この発明は、Ag−
Al基固溶体とNbまたはNb合金とから構成される種
々の形状の複合体を中間焼鈍、冷間加工などを繰り返し
て線状に伸線加工し、銀(Ag)の介在によりNbとA
lの拡散反応を促進させ、1000℃程度の比較的低温での
熱処理でも強磁界特性および交流特性の優れたNb3
l超電導線材等を製造することができるものである。こ
の発明においてAg−Al基固溶体とNbまたはNb合
金との複合体を用いる場合には、複合体を構成する各素
材の形状、大きさ、配置などについては特に限定的では
ない。たとえば、Ag−Al基固溶体管にNb棒または
Nb−Ag合金棒を挿入する複合加工法、Nb管または
Nb−Ag合金管にAg−Al基固溶体棒を挿入するニ
オブチューブ法、Ag−Al基固溶体箔とNb箔または
Nb−Al合金箔を交互に重ねて銅棒等の芯材の周囲に
巻き付けるジェリーロール法、Nb粉またはNb−Al
合金粉とAg−Al基固溶体粉を混合してNb管等の管
材に充填する粉末冶金法、Ag−Al基固溶体板とNb
板またはNb−Al合金板を圧延接着した後にチップ状
に切断し、Nb管等の管材に充填して押し出すクラッド
チップ押し出し法などの各種の方法により複合体を作成
することができる。Ag−Al基固溶体中のAl濃度
は、優れた超電導特性を得るために0.1at.%以上、ま
た、良好な冷間加工性を保持する観点から20at. %以
下の範囲とする。Ag−Al基固溶体またはNb合金へ
のGeまたはSiの添加は、Nb3 Al基化合物の高磁
界特性を改善する。その添加量は、特性を改善するため
に0.1at.%以上、また、良好な冷間加工性を保持するた
めに10at. %以下の範囲とする。銀(Ag)の介在の
仕方としては、Ag−Al基固溶体の利用だけでなく、
Nb側にAgを添加したNb−Ag合金を用いることも
可能である。NbにAgを添加する場合には、良好な冷
間加工性を保持する上からAgの添加量は1at. %以下
としなければならない。そして、この発明では、たとえ
ば以上に示した複合体に中間焼鈍、冷間加工などを繰り
返し施し、線状に伸線し、熱処理してNb3 Alを生成
させる。熱処理温度としては、Nb3 Alを拡散生成さ
せるためには600 ℃以上、また、銀合金の融点を超えな
いために960 ℃以下の範囲とする。また、熱処理雰囲気
は、真空、不活性ガス雰囲気の他、大気雰囲気中も可能
である。これは、酸化しやすいNbが耐酸化性の優れた
銀(Ag)合金に被覆された構造となるためである。
[Means for Solving the Problems] In order to solve the above problems, the present invention linearly draws a composite composed of an Ag-Al based solid solution and Nb or an Nb alloy and heat-treats the composite. A method for manufacturing an Nb 3 Al superconducting wire, which is characterized by the above. That is, this invention is Ag-
Various shapes of composites composed of an Al-based solid solution and Nb or Nb alloy are subjected to linear wire drawing by repeating intermediate annealing, cold working, etc., and Nb and A are intercalated by interposing silver (Ag).
Nb 3 A, which promotes the diffusion reaction of 1, and has excellent strong magnetic field characteristics and AC characteristics even in heat treatment at a relatively low temperature of about 1000 ° C.
l Superconducting wire and the like can be manufactured. When a composite of an Ag-Al based solid solution and Nb or an Nb alloy is used in the present invention, the shape, size, arrangement, etc. of each material forming the composite are not particularly limited. For example, a composite processing method of inserting an Nb rod or an Nb-Ag alloy rod into an Ag-Al base solid solution tube, a niobium tube method of inserting an Ag-Al base solid solution rod into an Nb pipe or an Nb-Ag alloy pipe, an Ag-Al base Jelly roll method in which solid solution foil and Nb foil or Nb-Al alloy foil are alternately stacked and wound around a core material such as a copper rod, Nb powder or Nb-Al
Powder metallurgical method of mixing alloy powder and Ag-Al-based solid solution powder and filling the pipe material such as Nb pipe, Ag-Al-based solid solution plate and Nb
A composite can be prepared by various methods such as a clad chip extrusion method in which a plate or an Nb-Al alloy plate is roll-bonded, cut into chips, filled in a pipe material such as an Nb pipe and extruded. The Al concentration in the Ag-Al based solid solution is set to 0.1 at.% Or more in order to obtain excellent superconducting properties, and 20 at.% Or less from the viewpoint of maintaining good cold workability. The addition of Ge or Si to Ag-Al based solid solution or Nb alloy improves the high magnetic field characteristics of the Nb 3 Al group compound. The amount of addition is 0.1 at.% Or more for improving the characteristics, and 10 at.% Or less for maintaining good cold workability. As a method of interposing silver (Ag), not only the use of Ag-Al-based solid solution but also
It is also possible to use an Nb-Ag alloy in which Ag is added on the Nb side. When Ag is added to Nb, the amount of Ag added must be 1 at.% Or less in order to maintain good cold workability. Then, in the present invention, for example, the composite shown above is repeatedly subjected to intermediate annealing, cold working, etc., drawn into a linear shape, and heat-treated to generate Nb 3 Al. The heat treatment temperature is in the range of 600 ° C. or higher for the diffusion formation of Nb 3 Al, and 960 ° C. or lower for not exceeding the melting point of the silver alloy. Further, the heat treatment atmosphere may be a vacuum atmosphere, an inert gas atmosphere, or an air atmosphere. This is because Nb, which is easily oxidized, has a structure coated with a silver (Ag) alloy having excellent oxidation resistance.

【作用】この発明の製造方法においては、上記の特徴に
よって従来法のように極めて薄いNb/Al拡散対を作
成する必要がないため、強度の伸線加工を行わなくてす
む。Ag−Al基固溶体をマトリックス材や多芯線化の
ためのスタック材などに用いる場合、静水圧押し出しや
拡散接合などのための中間焼鈍が可能なことから、数回
以上のスタック工程を含む多芯線の伸線加工が極めて容
易となり、ヒステリシス損失の小さいたとえば芯径が1
μm以下の多芯線を製造することができる。また、Al
濃度等を調整することにより、銀基合金のマトリックス
材やスタック材がフィラメント間の高電気抵抗材を兼ね
て結合損失を小さくすることもできる。また、高電導抵
抗材としてのキュプロニッケル等を導入する必要もなく
なり、導体の製造工程が簡略化され、製造コストを低減
させることができる。この発明の製造方法により製造さ
れるNb−Al超電導線材は、従来のNb−Ti超電導
線材と比較して臨界温度が高いため、余裕をもった設計
が可能となり、超電導マグネットなどの小型化を図るこ
とができ、冷却コストを節減することも可能となる。ま
た、熱処理が1000℃以下の低温で、しかも大気中で行う
ことが可能なため、連続融体急冷装置や電子ビーム発生
器などの大型で特殊な装置を必要としない。たえばコイ
ル状に巻いた後に、熱処理(Wind & React法)する必要
のある超電導コイルについては、従来の超電導線材の場
合には大気雰囲気での熱処理が不可能で大型の真空熱処
理炉を必要とするため、特殊な用途に限定されていた
が、この発明より大気雰囲気での熱処理が可能となり、
超電導コイルの用途などが拡大される。さらに、Agに
少量のAlを含有する溶融体(Ag−Al基固溶体)を
Alの拡散源として用いる場合には、その構造が従来の
Nb3 Sn,V3 Ga超電導線材製造に用いる複合体と
類似した構造を有することから、従来使用していた溶
解、伸線加工、熱処理装置をそのままを利用することが
可能でもある。このように、簡便かつ容易にNb3 Al
超電導線材を製造することができる。なお、上記した複
合体を任意の形状に成形加工した後に熱処理すると、比
較的低温で、しかも短時間の内にNbとAlの拡散反応
が終了し、Nb3 Al基化合物を任意の形状で合成でき
るため、この発明の製造方法は、高温耐熱特性に優れた
構造材料の製造方法としても有望となる。
In the manufacturing method of the present invention, it is not necessary to prepare an extremely thin Nb / Al diffusion pair as in the conventional method due to the above characteristics, so that strong wire drawing is not required. When an Ag-Al based solid solution is used as a matrix material or a stack material for forming a multifilamentary wire, it is possible to perform intermediate annealing for hydrostatic extrusion, diffusion bonding, etc. Wire drawing is extremely easy, and the hysteresis loss is small, for example, the core diameter is 1
It is possible to manufacture a multifilamentary wire having a size of μm or less. Also, Al
By adjusting the concentration and the like, the matrix material and the stack material of the silver-based alloy can also serve as the high electrical resistance material between the filaments and reduce the coupling loss. Further, it is not necessary to introduce cupro-nickel or the like as the high-conductivity resistance material, the conductor manufacturing process is simplified, and the manufacturing cost can be reduced. Since the Nb-Al superconducting wire manufactured by the manufacturing method of the present invention has a higher critical temperature than the conventional Nb-Ti superconducting wire, it is possible to design with a margin and to downsize the superconducting magnet. Therefore, it is possible to reduce the cooling cost. Moreover, since the heat treatment can be performed at a low temperature of 1000 ° C. or less and in the atmosphere, a large-scale special device such as a continuous melt quenching device or an electron beam generator is not required. For a superconducting coil that needs to be heat-treated (Wind & React method) after being wound into a coil, for example, conventional superconducting wire cannot be heat-treated in the atmosphere and requires a large vacuum heat treatment furnace. Therefore, although it was limited to a special application, it becomes possible to perform heat treatment in the atmosphere from the present invention,
Applications of superconducting coils will be expanded. Furthermore, when a melt containing a small amount of Al in Ag (Ag-Al-based solid solution) is used as a diffusion source of Al, the structure is the same as that of a composite used in conventional Nb 3 Sn, V 3 Ga superconducting wire production. Since it has a similar structure, it is also possible to use the melting, wire drawing, and heat treatment equipment that has been conventionally used as it is. Thus, Nb 3 Al can be easily and easily
A superconducting wire can be manufactured. If the composite is heat-treated after being formed into an arbitrary shape, the diffusion reaction of Nb and Al is completed at a relatively low temperature within a short time, and the Nb 3 Al-based compound is synthesized in an arbitrary shape. Therefore, the manufacturing method of the present invention is promising as a manufacturing method of a structural material having excellent high temperature heat resistance.

【実施例】以下、実施例を示し、この発明のNb3 Al
超電導線材の製造方法についてさらに詳しく説明する。実施例1〜4 Nbを3.8mm φの丸棒に加工して芯材とし、これをタン
マン炉で溶製後、7.6/3.9mm φに加工したAg−2,
5,10,15at. %Al合金マトリックスと複合し
(実施例1,2,3および4)、500 ℃の中間焼鈍を加
えながら0.7mm φ(Nb芯径:350 μm)まで伸線加工
した。マトリックスがAg−5at. %Alの試料(実施
例2)については、スタック工程を重ねることにより5
9芯(31μm)、59×59芯(3μm)、59×5
9×60芯(0.3 μm)の多伸線を断線を1回も発生さ
せずに伸線加工することができた。表1に示した条件で
熱処理すると、単芯線については、Ag−5at. %Al
を用いた場合(実施例2)に、15.0Kと最も高いTcが
得られた。なお、この試料のHc2 (4.2 K)は16T
であった。比較のために、ニオブチューブ法でNb3
l超電導線材を表1に示した条件で製造したが(比較例
1および2)、実施例1〜4の試料と同程度のTcを得
るためには、Nb/Alの拡散距離を実施例1〜4の試
料の100 分の1程度にまで短くする必要があった。一
方、SEM観によると、実施例1〜4の試料の化合物層
厚は1μm以下であり、このため単芯線のoverall Jc
は小さかったが、表2にAg−5at. %Alを用い、多
芯線とした超電導線材について示したように、多芯線化
によりNb3Alが生成する芯/マトリックス界面密度
を増加することができ、overall Jcを大幅に改善でき
ることが確認された。
EXAMPLES Examples are given below to illustrate the Nb 3 Al of the present invention.
The method for manufacturing the superconducting wire will be described in more detail. Examples 1 to 4 Nb was processed into a 3.8 mmφ round bar to prepare a core material, which was melted in a Tammann furnace and then processed into 7.6 / 3.9 mmφ Ag-2,
Composite with 5, 10, 15 at.% Al alloy matrix (Examples 1, 2, 3 and 4) and wire drawing to 0.7 mm φ (Nb core diameter: 350 μm) while applying intermediate annealing at 500 ° C. For the sample in which the matrix was Ag-5 at.% Al (Example 2), the stacking process was repeated to obtain 5
9 cores (31 μm), 59 x 59 cores (3 μm), 59 x 5
The 9 × 60 core (0.3 μm) multi-drawn wire was able to be drawn without any breakage. When heat-treated under the conditions shown in Table 1, for the single-core wire, Ag-5 at.% Al
The highest Tc of 15.0K was obtained when using (Example 2). The Hc 2 (4.2 K) of this sample is 16T
Met. For comparison, Nb 3 A was used by the niobium tube method.
1 superconducting wire was manufactured under the conditions shown in Table 1 (Comparative Examples 1 and 2), but in order to obtain Tc comparable to the samples of Examples 1 to 4, the diffusion distance of Nb / Al was set to Example 1. It was necessary to shorten to about 1/100 of the samples of ~ 4. On the other hand, according to the SEM view, the compound layer thickness of the samples of Examples 1 to 4 is 1 μm or less, and therefore the overall Jc of the single core wire is
Although was small, with Ag-5at.% Al in Table 2, as shown for superconducting wire was multifilamentary wire, Nb 3 Al it is possible to increase the core / matrix interface density produced by a multi-wire of , Overall Jc was confirmed to be significantly improved.

【表1】 [Table 1]

【表2】 実施例5 実施例2と同様にして作成した線径が0.7mm で、Nb芯
数が3500本(芯径が2.9 μm)のAg−5at. %Al/
Nb複合線について、825 ℃で1時間大気中で熱処理し
たところ、真空雰囲気で熱処理した試料と同程度のTc
とoverall Jcが得られた。実施例6 高磁界特性を改善するために、GeまたはSiを銀(A
g)合金マトリックス材に添加した。このマトリックス
材を用いて実施例2と同様にしてAg−5at.%Al−
2at. %Ge(Si)/Nb複合線を作成し、850 ℃で
熱処理した。GeおよびSiの添加によりTcおよびH
2 (4.2 K)が、それぞれ16.0K,18Tとなり、無
添加の場合と比べて1Kおよび2T向上した。実施例7 Nb管(7.6 /3.9mm φ)に、実施例2と同様にして作
成したAg−5at. %Al合金棒(3.8mm φ)を挿入し
て複合し、中間焼鈍(500 ℃)を加えながら0.7mm φ
(Ag−Al合金芯径:350 μm)まで伸線加工し、次
いで825 ℃で1時間大気中で熱処理した。その結果、実
施例2の単芯線試料(Nb芯径:350 μm)と同程度の
Tcとoverall Jcを得た。もちろんこの発明は以上の
例により限定されるものではない、細部については様々
な態様が可能であることはいうまでもない。
[Table 2] Example 5 A wire made in the same manner as in Example 2 with a wire diameter of 0.7 mm and an Nb core count of 3500 (core diameter 2.9 μm) Ag-5 at.% Al /
When the Nb composite wire was heat-treated in the air at 825 ° C for 1 hour, the Tc was about the same as that of the sample heat-treated in the vacuum atmosphere.
And overall Jc were obtained. Example 6 In order to improve the high magnetic field characteristics, Ge or Si was changed to silver (A
g) Added to alloy matrix material. Using this matrix material, in the same manner as in Example 2, Ag-5 at.% Al-
A 2 at.% Ge (Si) / Nb composite wire was prepared and heat-treated at 850 ° C. Tc and H due to addition of Ge and Si
c 2 (4.2 K) was 16.0 K and 18 T, which were improved by 1 K and 2 T as compared with the case of no addition. Example 7 An Ag-5 at.% Al alloy rod (3.8 mmφ) prepared in the same manner as in Example 2 was inserted into a Nb tube (7.6 / 3.9 mmφ) to be compounded, and an intermediate annealing (500 ° C.) was performed. 0.7mm φ while adding
(Ag-Al alloy core diameter: 350 μm) was drawn and then heat-treated at 825 ° C. for 1 hour in the atmosphere. As a result, the same Tc and overall Jc as those of the single core wire sample of Example 2 (Nb core diameter: 350 μm) were obtained. Of course, the present invention is not limited to the above examples, and it goes without saying that various aspects are possible in details.

【発明の効果】以上詳しく説明した通り、この発明によ
って、NbとAlの拡散反応を銀(Ag)の介在により
促進させて、強磁界および交流磁界特性に優れたNb3
Al超電導線材や、耐熱特性に優れた構造材料としても
有望なNb3 Al化合物を簡便かつ容易に製造すること
ができる。
As described in detail above, according to the present invention, the diffusion reaction of Nb and Al is promoted by the interposition of silver (Ag), and Nb 3 excellent in strong magnetic field and AC magnetic field characteristics is obtained.
It is possible to easily and easily manufacture an Al superconducting wire and a promising Nb 3 Al compound as a structural material having excellent heat resistance.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木吉 司 茨城県つくば市千現1丁目2番1号 科学 技術庁金属材料技術研究所筑波支所内 (72)発明者 井上 廉 茨城県つくば市千現1丁目2番1号 科学 技術庁金属材料技術研究所筑波支所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tsuyoshi Kiyoshi 1-2-1 Sengen, Tsukuba-shi, Ibaraki Prefectural Government, Science and Technology Agency, Research Institute for Metals, Tsukuba Branch (72) Inventor Ren Inoue 1-1, Sengen, Tsukuba-shi, Ibaraki 2-1, No. 1 within the Tsukuba Branch of the Research Institute for Metals, Science and Technology Agency

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 Ag−Al基固溶体とNbまたはNb合
金とから構成される複合体を線状に伸線加工し、熱処理
することを特徴とするNb3 Al化合物の製造方法。
1. A method for producing an Nb 3 Al compound, which comprises subjecting a composite composed of an Ag—Al-based solid solution and Nb or an Nb alloy to linear drawing and heat treatment.
【請求項2】 0.1 −20at. %のAlを有するAg−
Al基固溶体を用いる請求項1の製造方法。
2. Ag-containing 0.1-20 at.% Al
The manufacturing method according to claim 1, wherein an Al-based solid solution is used.
【請求項3】 1at. %以下のAgを添加したNb合金
を用いる請求項1の製造方法。
3. The method according to claim 1, wherein an Nb alloy added with 1 at.% Or less of Ag is used.
【請求項4】 0.1 −10at. %のGeまたはSiを添
加したAg−Al基固溶体またはNb合金を用いる請求
項1の製造方法。
4. The method according to claim 1, wherein an Ag--Al based solid solution or Nb alloy added with 0.1-10 at.% Ge or Si is used.
【請求項5】 Ag−Al基固溶体管にNbまたはNb
−Ag合金棒を挿入した複合体、NbまたはNb−Ag
合金管にAg−Al基固溶体棒を挿入した複合体、Ag
−Al基固溶体箔とNbまたはNb−Ag合金箔を交互
に重ねて芯材の周囲に巻き付けた複合体、NbまたはN
b−Ag合金粉とAg−Al基固溶体粉を混合して管材
に充填した複合体、または、Ag−Al基固溶体板とN
bまたはNb−Ag合金板を圧延接着した後にチップ状
に切断し、管材に充填して押し出した複合体を用いる請
求項1、2、3または4の製造方法。
5. Nb or Nb is added to the Ag-Al based solid solution tube.
-Ag alloy rod inserted composite, Nb or Nb-Ag
Composite body in which Ag-Al based solid solution rod is inserted in alloy tube, Ag
-A composite body in which an Al-based solid solution foil and Nb or Nb-Ag alloy foil are alternately stacked and wound around a core material, Nb or N
A composite in which b-Ag alloy powder and Ag-Al-based solid solution powder are mixed and filled in a pipe material, or an Ag-Al-based solid solution plate and N
The manufacturing method according to claim 1, 2, 3 or 4, wherein a composite of b or Nb-Ag alloy sheet rolled and adhered, cut into chips, filled into a tubular material and extruded is used.
【請求項6】 真空、不活性ガスまたは大気雰囲気中に
おいて、600 〜960℃で熱処理する請求項1、2、3、
4または5の製造方法。
6. A heat treatment at 600 to 960 ° C. in a vacuum, an inert gas or an air atmosphere,
4 or 5 of the manufacturing method.
【請求項7】 請求項1、2、3、4、5または6の方
法によってNb3 Al化合物を製造することを特徴とす
るNb3 Al 超電導線材の製造方法。
7. A method for producing an Nb 3 Al superconducting wire, which comprises producing an Nb 3 Al compound by the method according to any one of claims 1, 2, 3, 4, 5 or 6.
JP3242369A 1991-08-29 1991-08-29 Manufacture of nb3 al compound Pending JPH06196030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3242369A JPH06196030A (en) 1991-08-29 1991-08-29 Manufacture of nb3 al compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3242369A JPH06196030A (en) 1991-08-29 1991-08-29 Manufacture of nb3 al compound

Publications (1)

Publication Number Publication Date
JPH06196030A true JPH06196030A (en) 1994-07-15

Family

ID=17088156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3242369A Pending JPH06196030A (en) 1991-08-29 1991-08-29 Manufacture of nb3 al compound

Country Status (1)

Country Link
JP (1) JPH06196030A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106834774A (en) * 2017-02-17 2017-06-13 南方科技大学 A kind of novel dental niobium silver alloy and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01321033A (en) * 1988-06-23 1989-12-27 Fujikura Ltd Manufacture of nb3x series superconducting material
JPH02253521A (en) * 1989-03-28 1990-10-12 Showa Electric Wire & Cable Co Ltd Manufacture of nb3al multicore superconducting wire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01321033A (en) * 1988-06-23 1989-12-27 Fujikura Ltd Manufacture of nb3x series superconducting material
JPH02253521A (en) * 1989-03-28 1990-10-12 Showa Electric Wire & Cable Co Ltd Manufacture of nb3al multicore superconducting wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106834774A (en) * 2017-02-17 2017-06-13 南方科技大学 A kind of novel dental niobium silver alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
US3838503A (en) Method of fabricating a composite multifilament intermetallic type superconducting wire
USRE32178E (en) Process for producing compound based superconductor wire
JPS6117325B2 (en)
US4094059A (en) Method for producing composite superconductors
JPH06196030A (en) Manufacture of nb3 al compound
KR940006616B1 (en) Super conductive wire
KR20070120497A (en) Process for producing superconducting wire rod
JP3161938B2 (en) Superconducting wire manufacturing method
JP2002033025A (en) Nb3Al SUPERCONDUCTING MULTI-CORE WIRE AND ITS MANUFACTURING METHOD
US4215465A (en) Method of making V3 Ga superconductors
JP3716309B2 (en) Manufacturing method of Nb3Sn wire
JPH01140521A (en) Manufacture of nb3al compound superconductive wire rod
JPH02148620A (en) Manufacture of nb3al superconductive wire
JPH0652743A (en) Manufacture of nb3al compound
JP2815373B2 (en) Method for producing third element-added Nb (3) A (1) superconducting member
JP3673831B2 (en) Manufacturing method of Nb3Sn wire
JPH02177217A (en) Manufacture of nb3al superconducting wire
JP2517867B2 (en) V3 Si superconducting ultra-fine multi-core wire manufacturing method
JP3046828B2 (en) Nb Lower 3 Method for Manufacturing Sn Composite Superconductor
JP2003115226A (en) MANUFACTURING METHOD OF Nb3Sn SUPERCONDUCTIVE WIRE
JPH0620536A (en) Nb3sn compound superconducting wire and manufacture thereof
JPS59108202A (en) Nb3sn compound superconductive wire and method of producing same
JPH0589731A (en) Manufacture of compound superconducting wire
JPS6366890B2 (en)
JPH06101001A (en) Compound superconductor