JPH02253521A - Manufacture of nb3al multicore superconducting wire - Google Patents

Manufacture of nb3al multicore superconducting wire

Info

Publication number
JPH02253521A
JPH02253521A JP1075514A JP7551489A JPH02253521A JP H02253521 A JPH02253521 A JP H02253521A JP 1075514 A JP1075514 A JP 1075514A JP 7551489 A JP7551489 A JP 7551489A JP H02253521 A JPH02253521 A JP H02253521A
Authority
JP
Japan
Prior art keywords
aluminum alloy
superconducting wire
nb3al
matrix
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1075514A
Other languages
Japanese (ja)
Inventor
Hidemoto Suzuki
鈴木 英元
Masamitsu Ichihara
市原 政光
Yoshimasa Kamisada
神定 良昌
Nobuo Aoki
伸夫 青木
Tomoyuki Kumano
智幸 熊野
Haruto Noro
治人 野呂
Masaru Kawakami
勝 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP1075514A priority Critical patent/JPH02253521A/en
Publication of JPH02253521A publication Critical patent/JPH02253521A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To improve processability and superconductive characteristic by performing a degressive process for a complex for which a number of Nb lines are arranged in an aluminum alloy matrix to which added one or more elements among Ge, Si, Mg, Ag, Zn, and Cu, and then, by performing heat treatment for the formation of Nb3Al. CONSTITUTION:After a degressive process is performed for a complex for which a number of Nb lines are arranged in an aluminum alloy matrix to which one or more elements are to be added among Ge, Si, Mg, Ag, Zn, and Cu, heat treatment is performed for the formation of Nb3Al. For the Al ally matrix, to improve characteristic, mainly an alloy to which Ge or/and Si is added, is used. In this case, its compositions is Al-(0.5-30)at%Ce, Al-(0.1-10)at%Si; for the Al-Ge-Si alloy, the range is determined as (Ge+Si)=0.1-30at%.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は超電導線の製造方法に係り、特に複合加工法に
よる第三元素の添加された多心構造のNb3 Al超電
導線の製造方法の改良に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a superconducting wire, and in particular to an improvement in the method for manufacturing a multicore Nb3 Al superconducting wire to which a third element is added by a composite processing method. Regarding.

[従来の技術] NJ SnやNb3 A1等の化合物系の超電導材料は
、一般にNb−Tl合金等の合金系超電導材料に比較し
て優れた超電導特性を有しており、特にNb3 Alは
Nb3 Snに比較して上部臨界磁界(Hc2)が高い
上、機械的性質に優れる等の利点を有するが、Nb3 
Alの生成温度が高く、かつ長時間の熱処理を必要とす
る難点がある。Nb−Al系合金の拡散過程に関する研
究によれば、Nb−Alの拡散速度は極めて小さく、た
とえば800℃前後で数μ鵡のNb5A層を生成するた
めに極めて長時間の拡散時間を要することが知られてい
る。
[Prior Art] Compound-based superconducting materials such as NJ Sn and Nb3 A1 generally have superior superconducting properties compared to alloy-based superconducting materials such as Nb-Tl alloy. Compared to Nb3, it has advantages such as a higher upper critical magnetic field (Hc2) and superior mechanical properties.
There are disadvantages in that the temperature at which Al is generated is high and a long heat treatment is required. According to research on the diffusion process of Nb-Al alloys, the diffusion rate of Nb-Al is extremely slow, and for example, it takes an extremely long diffusion time to generate an Nb5A layer of several micrometers at around 800°C. Are known.

しかしながら、NbがAl中に微細に多数存在すれば、
粒界拡散が支配的となり熱処理条件を改善することがで
きるため、実用レベルの超電導線を製造することが可能
となる。
However, if a large number of fine Nb exist in Al,
Since grain boundary diffusion becomes dominant and the heat treatment conditions can be improved, it becomes possible to manufacture a practical level superconducting wire.

このような観点から、現在Nb3Al超電導線の製遣方
法の一つとして複合加工法が知られている。
From this point of view, a composite processing method is currently known as one of the methods for manufacturing Nb3Al superconducting wires.

複合加工法はNb管内にAIロッドを収容して減面加工
を施した後、これらの複数本をNbまたはCu管内に挿
入し、この工程を必要に応じて複数回繰返した後、Nb
3 Al生成の熱処理を施すものである。
In the composite processing method, an AI rod is housed in a Nb pipe and subjected to area reduction processing, and then multiple of these rods are inserted into a Nb or Cu pipe, and after repeating this process multiple times as necessary, the Nb
3 Heat treatment is performed to generate Al.

[発明が解決しようとする課題] 本発明は上記の複合加工法の改良に関するもので、第三
元素をAl中に添加することにより加工性および超電導
特性の改善されたNb3 Al多心超電導線の製造方法
を提供することをその目的とする。
[Problems to be Solved by the Invention] The present invention relates to the improvement of the above-mentioned composite processing method, and relates to the improvement of the above-mentioned composite processing method. Its purpose is to provide a manufacturing method.

[課題を解決するための手段] 上記目的を達成するために、本発明のNb、 Al多心
超電導線の製造方法は、Ge、 81. Mg、 Ag
、 ZnおよびCuのいずれか一種以上を添加元素とす
るアルミニウム合金マトリックス中に多数のNb線を配
置した複合体(A)に減面加工を施した後、Nb3 A
l生成の熱処理を施すものであり、さらに多心化を図る
場合には、本願第2の発明、すなわちCuマトリックス
中に多数のNb管を配置し、このNb管内のアルミニウ
ム合金マトリックス中に多数のNbフィラメントを配置
した複合体(B)に減面加工を施した後、Nb3 Al
生成の熱処理を施す超電導線の製造方法において、前記
アルミニウム合金マトリックスとして、Ges Sl5
Mg、 Ag、 ZnおよびCuのいずれか一種以上を
添加元素とするアルミニウム合金を用いるものである。
[Means for Solving the Problems] In order to achieve the above object, the method for manufacturing a Nb, Al multi-core superconducting wire of the present invention includes Ge, 81. Mg, Ag
, After subjecting the composite (A) in which a large number of Nb wires are arranged in an aluminum alloy matrix containing one or more of Zn and Cu as an additive element to surface reduction processing, Nb3A
In order to further increase the number of cores, a large number of Nb tubes are placed in a Cu matrix, and a large number of Nb tubes are placed in an aluminum alloy matrix within this Nb tube. After reducing the area of the composite (B) in which Nb filaments are arranged, Nb3Al
In the method for manufacturing a superconducting wire that performs heat treatment for formation, the aluminum alloy matrix is GesSl5
An aluminum alloy containing one or more of Mg, Ag, Zn, and Cu as an additive element is used.

上記のA1合金マトリックスとしては、主として特性向
上のためにGeおよび/またはStを添加した合金が用
いられ、この場合、その組成は、AI−(0,5〜30
)at%Ge、 AI −(0,1〜10)at%S1
およびA−1−Ge−81合金に対しては(Ge+Si
) 〜0.1〜30at%の範囲であることが好ましい
。その理由は添加量がこの範囲未満では臨界電流密度(
Jc )や上部臨界磁界(He 2 )等の超電導特性
向上の効果が小さく、この範囲を越えると加工性が低下
するためである。
As the above A1 alloy matrix, an alloy to which Ge and/or St are added is mainly used to improve properties, and in this case, the composition is AI-(0.5~30
)at%Ge, AI-(0,1~10)at%S1
and for the A-1-Ge-81 alloy (Ge+Si
) It is preferably in the range of 0.1 to 30 at%. The reason is that if the amount added is less than this range, the critical current density (
This is because the effect of improving superconducting properties such as Jc ) and upper critical magnetic field (He 2 ) is small, and when this range is exceeded, workability deteriorates.

Geおよび/またはSlの添加量として上記範囲の高濃
度側を選択する場合には、急冷処理により共晶組織を微
細化して加工性を改善することが望ましい。
When selecting the high concentration side of the above range as the amount of Ge and/or Sl added, it is desirable to refine the eutectic structure by rapid cooling treatment to improve workability.

Ge581の添加量としては、特に l≦Ge≦9   (at%) 0.1≦St≦3  (at%) 0.1≦(Ge+81)≦9  (at%)が好適する
The addition amount of Ge581 is particularly preferably l≦Ge≦9 (at%), 0.1≦St≦3 (at%), 0.1≦(Ge+81)≦9 (at%).

同様に加工性向上の目的でMgs Ags Zns C
u等が添加され、この場合の組成としては、AI−(0
,5〜10)at%Mg5Al −(0,5〜9)at
%Ag 、 AI −(0,1〜2)at%Cu 、 
AI −(0,5〜10)at%Znや0.1〜2at
%の (Cu+Ge)を添加したAl−Cu−Ge合金
を用いることができる。
Similarly, for the purpose of improving processability, Mgs Ags Zns C
u, etc., and the composition in this case is AI-(0
,5-10)at%Mg5Al-(0,5-9)at
%Ag, AI-(0,1-2)at%Cu,
AI - (0,5~10)at%Zn or 0.1~2at
% of (Cu+Ge) can be used.

実施例1 外径1ossφ、内径8.71−φのAI −5at%
Mg管内に外径8.6關φのNbロッドを収容した後、
縮径加工を施して対辺間距111:1.0龍の断面六角
形の複合線を製造した。この複合線の1481本を外径
47 、8 amφ、内径42 、5 +amφのNb
管内に稠密に充填し、このNb管の外側に外径56 v
sφ、内径48.3龍φのCu管を配置した後、その両
端を密封した。次いで静水圧押出加工および伸線加工を
施して対辺間距離1.0龍の断面六角形の一次マルチ線
を製造した。
Example 1 AI -5at% with outer diameter 1ossφ and inner diameter 8.71-φ
After housing the Nb rod with an outer diameter of 8.6 mm in the Mg tube,
A composite wire having a hexagonal cross section with a distance between opposite sides of 111:1.0 was manufactured by performing diameter reduction processing. 1481 of these composite wires are Nb with an outer diameter of 47,8 amφ and an inner diameter of 42,5 + amφ.
The inside of the tube is densely filled, and the outer diameter of the Nb tube is 56 V.
After placing a Cu tube with an inner diameter of sφ of 48.3 mm, both ends thereof were sealed. Next, hydrostatic extrusion processing and wire drawing processing were performed to produce a primary multi wire having a hexagonal cross section with a distance between opposite sides of 1.0 mm.

上記の一次マルチ線の926本を外径39.5mmφ、
内径34.5關φのCu管内に稠密に充填した後、静水
圧押出加工および伸線加工を施して外径1.0mmφの
二次マルチ線を製造した。この時のNbフィラメント径
は0.4μlφであった。
The 926 primary multi wires above have an outer diameter of 39.5 mmφ,
After densely filling a Cu tube with an inner diameter of 34.5 mm, hydrostatic extrusion and wire drawing were performed to produce a secondary multi wire with an outer diameter of 1.0 mm. The Nb filament diameter at this time was 0.4 μlφ.

さらに二次マルチ線に700℃×2時間の熱処理を施し
た多心超電導線の臨界電流密度を測定した結果、to 
Tで80OA/as” 、14 Tで100A/am2
(共に弁銅の値)の値が得られた。
Furthermore, as a result of measuring the critical current density of a multi-core superconducting wire in which the secondary multi-wire was heat-treated at 700°C for 2 hours, it was found that
80OA/as” at T, 100A/am2 at 14T
(Both values are for valve copper) were obtained.

[発明の効果] 以上述べたように、本発明によれば加工性および超電導
特性の改善された多心構造のNb、 AI超電導線を容
易に製造することができる。
[Effects of the Invention] As described above, according to the present invention, an Nb, AI superconducting wire having a multi-core structure with improved workability and superconducting properties can be easily produced.

Claims (2)

【特許請求の範囲】[Claims] (1)Ge、Si、Mg、Ag、ZnおよびCuのいず
れか一種以上を添加元素とするアルミニウム合金マトリ
ックス中に多数のNb線を配置した複合体(A)に減面
加工を施した後、Nb_3Al生成の熱処理を施すこと
を特徴とするNb_3Al多心超電導線の製造方法。
(1) After subjecting a composite (A) in which a large number of Nb wires are arranged in an aluminum alloy matrix containing one or more of Ge, Si, Mg, Ag, Zn, and Cu as an additive element to an area-reducing process, A method for producing a Nb_3Al multi-core superconducting wire, the method comprising performing heat treatment to generate Nb_3Al.
(2)Cuマトリックス中に多数のNb管を配置し、こ
のNb管内のアルミニウム合金マトリックス中に多数の
Nbフィラメントを配置した複合体(B)に減面加工を
施した後、Nb_3Al生成の熱処理を施す超電導線の
製造方法において、前記アルミニウム合金マトリックス
として、Ge、Si、Mg、Ag、ZnおよびCuのい
ずれか一種以上を添加元素とするアルミニウム合金を用
いることを特徴とするNb_3Al多心超電導線の製造
方法。
(2) After applying surface reduction processing to the composite (B) in which a large number of Nb tubes are arranged in a Cu matrix and a large number of Nb filaments are arranged in an aluminum alloy matrix in this Nb tube, heat treatment is performed to generate Nb_3Al. In the method for manufacturing a superconducting wire according to the present invention, an aluminum alloy containing at least one of Ge, Si, Mg, Ag, Zn and Cu as an additive element is used as the aluminum alloy matrix. Production method.
JP1075514A 1989-03-28 1989-03-28 Manufacture of nb3al multicore superconducting wire Pending JPH02253521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1075514A JPH02253521A (en) 1989-03-28 1989-03-28 Manufacture of nb3al multicore superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1075514A JPH02253521A (en) 1989-03-28 1989-03-28 Manufacture of nb3al multicore superconducting wire

Publications (1)

Publication Number Publication Date
JPH02253521A true JPH02253521A (en) 1990-10-12

Family

ID=13578422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1075514A Pending JPH02253521A (en) 1989-03-28 1989-03-28 Manufacture of nb3al multicore superconducting wire

Country Status (1)

Country Link
JP (1) JPH02253521A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196030A (en) * 1991-08-29 1994-07-15 Natl Res Inst For Metals Manufacture of nb3 al compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196030A (en) * 1991-08-29 1994-07-15 Natl Res Inst For Metals Manufacture of nb3 al compound

Similar Documents

Publication Publication Date Title
US4917965A (en) Multifilament Nb3 Al superconducting linear composite articles
US3836404A (en) Method of fabricating composite superconductive electrical conductors
WO2000017890A1 (en) Method for producing aluminum-stabilized super conductive wire
JPH02253521A (en) Manufacture of nb3al multicore superconducting wire
EP0113186B1 (en) Method of manufacturing fine filamentary nb-ti based alloy superconducting wire
JP3464423B2 (en) Manufacturing method of aluminum stabilized superconducting wire
JPH02148619A (en) Manufacture of nb3al to multicore conductive wire
JPH01140521A (en) Manufacture of nb3al compound superconductive wire rod
JP3058904B2 (en) Nb Lower 3 Method for Manufacturing Sn Multicore Superconducting Wire
JPH03283322A (en) Manufacture of nb3al superconductor
JPH02148620A (en) Manufacture of nb3al superconductive wire
JPH09223425A (en) Manufacture of b-ti alloy superconducting wire rod
JPH03147213A (en) Manufacture of nb3al superconducting wire
JPH08138467A (en) Manufacture of a3b type compound superconductive wire
JPH02250904A (en) Manufacture of nb3al electric superconductive wire
JPH0465032A (en) Nb-ti superconducting wire
JPH065130A (en) Composite multi-core nbti superconductive wire
JPH0528860A (en) Manufacture of superconductive wire of nb3sn type
JPH0579408B2 (en)
JP3058890B2 (en) Nb Lower 3 Method for Manufacturing Sn Superconducting Wire
JPH03230421A (en) Manufacture of nb3al superconducting wire
JPH06309968A (en) Manufacture of nb3sn superconducting wire for ac
JPH0471116A (en) Manufacture of compound superconducting wire
JPH11149833A (en) Oxide superconducting wire and its manufacture
JPH0815016B2 (en) Νb ▲ 3 ▼ Manufacturing method of Sn multi-core superconducting wire