JPH0579408B2 - - Google Patents

Info

Publication number
JPH0579408B2
JPH0579408B2 JP59236176A JP23617684A JPH0579408B2 JP H0579408 B2 JPH0579408 B2 JP H0579408B2 JP 59236176 A JP59236176 A JP 59236176A JP 23617684 A JP23617684 A JP 23617684A JP H0579408 B2 JPH0579408 B2 JP H0579408B2
Authority
JP
Japan
Prior art keywords
wire
based metal
matrix
superconducting
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59236176A
Other languages
Japanese (ja)
Other versions
JPS61115612A (en
Inventor
Hidemoto Suzuki
Masamitsu Ichihara
Yoshimasa Kamisada
Nobuo Aoki
Tomoyuki Kumano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP59236176A priority Critical patent/JPS61115612A/en
Publication of JPS61115612A publication Critical patent/JPS61115612A/en
Publication of JPH0579408B2 publication Critical patent/JPH0579408B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Metal Extraction Processes (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、伸線加工時におけるNb−Ti素線の
断線が少なく、これによつて臨界電流密度、交流
損失等の特性の改善された超電導線の製造方法に
関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention provides a superconductor that has less disconnection of Nb-Ti wires during wire drawing and has improved characteristics such as critical current density and AC loss. This invention relates to a method for manufacturing wire.

[発明の技術的背景とその問題点] 従来から、超電導線、特にフアインマルチ超電
導線の製造方法として、Nb−Ti線の外周にCu被
覆を施し、断面正六角形に成形したコアロツドの
多数本をCuパイプ中に緊密に挿入し、このCuパ
イプとコアロツド間の空隙にスペーサとなる断面
円形のCuロツドを挿入し、これに静水圧押出お
よび伸線加工による減面加工を施し、さらに必要
に応じて、この減面加工を施した超電導線を断面
正六角形状に形成し、同様の操作を繰り返して所
望の外径の超電導線とする方法が知られている。
[Technical background of the invention and its problems] Conventionally, as a manufacturing method for superconducting wires, especially fine multi-superconducting wires, the outer periphery of Nb-Ti wire is coated with Cu, and a large number of core rods formed to have a regular hexagonal cross section are coated with Cu. A Cu rod with a circular cross section is inserted into the gap between the Cu pipe and the core rod to serve as a spacer, and is then subjected to area reduction processing using hydrostatic extrusion and wire drawing, and further processed as necessary. A method is known in which a superconducting wire subjected to this surface reduction process is formed into a regular hexagonal cross section, and the same operation is repeated to obtain a superconducting wire having a desired outer diameter.

しかしながら、このような従来の方法では、減
面加工の際にNb−Ti素線の断線が発生し易く、
得られる超電導線の特性が低下したり、場合によ
つては線材全体の断線を引き起こすという問題が
あり、その改善が望まれていた。また臨界電流密
度、比抵抗値、交流損失等の超電導線としての特
性の改善も望まれていた。
However, with such conventional methods, disconnection of the Nb-Ti strands is likely to occur during area reduction processing.
There is a problem in that the characteristics of the resulting superconducting wire deteriorate, or in some cases, the entire wire is broken, and an improvement has been desired. It was also desired to improve the properties of superconducting wires, such as critical current density, specific resistance value, and AC loss.

上記のような断線を生じ難い超電導線の製造方
法として、本出願人は、所定範囲のマトリツクス
比を有するCu被覆Nb−Ti合金線の複数本とCu
ロツドを、前記Cu被覆Nb−Ti合金線を中央部に
集合してCu管中に充填し、これに減面加工を施
す超電導線の製造方法を先に出願した(特願昭58
−201957)。
As a method for manufacturing a superconducting wire that is unlikely to cause wire breakage as described above, the present applicant has developed a method for manufacturing a superconducting wire that does not easily cause wire breakage.
We previously filed an application for a method for manufacturing superconducting wire in which the Cu-coated Nb-Ti alloy wires are collected in the center and filled into a Cu tube, and then subjected to area reduction processing (Patent Application No. 58).
−201957).

しかしながら、この方法においては、線材加工
中の断線の発生頻度およびこれに関連した上述の
諸特性は改善されるが、コイル成型時の占積率、
巻線作業性、機械的安定性に優れる平角線製造時
の圧延および引抜加工において、Nb−Ti合金素
線の配置が乱れ、従つて上記の改善された諸特性
を維持することが困難であるという難点を有する
ことが判明した。
However, although this method improves the frequency of wire breakage during wire processing and the above-mentioned characteristics related to this, the space factor during coil forming,
During the rolling and drawing processes during the manufacturing of rectangular wires that have excellent winding workability and mechanical stability, the arrangement of Nb-Ti alloy strands becomes disordered, making it difficult to maintain the improved properties mentioned above. It turns out that there are some drawbacks.

上記のような平角加工時の超電導素線の配置の
乱れを防止するためには線材の中央部に適当な面
積のマトリツクスを有する必要があり、上述の方
法ではこれを達成することができない。
In order to prevent the arrangement of the superconducting strands from being disturbed during rectangular processing as described above, it is necessary to have a matrix of an appropriate area in the center of the wire, and this cannot be achieved with the above-mentioned method.

(発明の目的) 本発明は以上の難点を改善するためになされた
もので、所定範囲のマトリツクス比を有する複合
線を円筒状に配置するとともに、この外周のマト
リツクスの厚みを一定以上とすることにより、加
工性および超電導特性に優れた多芯構造のNb−
Ti多芯超電導線の製造方法を提供することを目
的とする。
(Object of the Invention) The present invention has been made in order to improve the above-mentioned difficulties, and includes arranging compound wires having a matrix ratio within a predetermined range in a cylindrical shape, and making the thickness of the matrix on the outer periphery greater than a certain value. Nb− has a multicore structure with excellent workability and superconducting properties.
The purpose of this invention is to provide a method for manufacturing Ti multicore superconducting wire.

(発明の概要) 本発明のCuまたはCu基合金(以下Cu系金属と
称す。)マトリツクス中に多数本のNb−Ti合金
素線を配置して成る超電導線の製造方法は、 (イ) Nb−Ti合金の外周にCu系金属を被覆し、マ
トリツクス比(マトリツクス断面積/Nb−Ti
合金断面積)0.25〜0.6の断面略正六角形の複
合線を製造する工程と、 (ロ) 前記複合線の多数本をほぼ円筒状に配置し、
この円筒の内側、あるいは内側および外側に前
記複合線と同断面形状のCu系金属線を配置し、
これらをCu系金属管中に充填する工程と、 (ハ) 前記複合線およびCu系金属線の充填された
Cu系金属管に断面減少加工を施して、少なく
とも線径の10%以上の厚さのCu系金属が線材
外周部に配置された線材を製造する工程とから
成ることを特徴としている。
(Summary of the Invention) The method for manufacturing a superconducting wire in which a large number of Nb-Ti alloy wires are arranged in a Cu or Cu-based alloy (hereinafter referred to as Cu-based metal) matrix of the present invention includes: (a) Nb -The outer periphery of the Ti alloy is coated with Cu-based metal, and the matrix ratio (matrix cross-sectional area/Nb-Ti
(b) arranging a large number of said composite wires in a substantially cylindrical shape;
A Cu-based metal wire having the same cross-sectional shape as the composite wire is placed inside the cylinder, or inside and outside the cylinder,
(c) filling the composite wire and the Cu-based metal wire into a Cu-based metal tube;
The present invention is characterized by comprising the step of subjecting a Cu-based metal tube to a cross-sectional reduction process to produce a wire in which a Cu-based metal having a thickness of at least 10% or more of the wire diameter is disposed on the outer periphery of the wire.

本発明において、複合線のマトリツクス比およ
び超電導線外周部のマトリツクスの厚さを上記の
ように限定したのは、上記範囲外でいずれも本発
明の効果が実質的に得られなくなるからによる。
本発明によれば、超電導素線の断線が減少して作
業性が改善され、かつこれにより超電導線として
の諸特性も一段と改善される。
In the present invention, the matrix ratio of the composite wire and the thickness of the matrix at the outer periphery of the superconducting wire are limited as described above because the effects of the present invention cannot be obtained substantially outside the above ranges.
According to the present invention, breakage of the superconducting wire is reduced, workability is improved, and various properties of the superconducting wire are thereby further improved.

[発明の実施例] 実施例 1 Cu比0.29のCu被覆Nb−Ti合金線を断面正六角
形に加工し、この336本と同断面形状のCu線の
709本を外径80mmφ、内径72mmφのCu管中に収容
した。この際Cu管の内側および中央部にCu線を
配置し、Cu被覆Nb−Ti合金線がほぼ円筒状に配
置するように充填した。このCu管の先後端をCu
合金で密閉した後、静水圧押出加工を施して外径
38mmφの複合ロツドを得た。この複合ロツドに伸
線加工および熱処理(300℃〜470℃×90〜150時
間)を施した後、さらに伸線加工を施して外径
1.0mmφの超電導線を製造した。
[Embodiments of the invention] Example 1 A Cu-coated Nb-Ti alloy wire with a Cu ratio of 0.29 was processed into a regular hexagonal cross section, and 336 Cu wires with the same cross-sectional shape were
709 tubes were housed in a Cu tube with an outer diameter of 80 mmφ and an inner diameter of 72 mmφ. At this time, the Cu wire was arranged inside and at the center of the Cu tube, and the Cu-coated Nb-Ti alloy wire was filled so as to be arranged in a substantially cylindrical shape. The front and rear ends of this Cu tube are
After sealing with alloy, the outer diameter is made by isostatic extrusion.
A composite rod with a diameter of 38 mm was obtained. After wire drawing and heat treatment (300°C to 470°C x 90 to 150 hours) are performed on this composite rod, further wire drawing is performed to determine the outer diameter.
A superconducting wire with a diameter of 1.0 mm was manufactured.

この線材について熱処理後の加工率とNb−Ti
フイラメントの断線率の関係および加工率0%の
値で規格化した臨界電流密度比と熱処理後の加工
率との関係を求めた。
Processing rate and Nb-Ti after heat treatment for this wire
The relationship between the wire breakage rate of the filament and the relationship between the critical current density ratio normalized to the value of the working rate of 0% and the working rate after heat treatment was determined.

尚この超電導線のマトリツクス比は4.1、Nb−
Tiフイラメント径は24.2μmφであり、超電導線
外周部のマトリツクス厚さは線材外径の13.3%で
あつた。
The matrix ratio of this superconducting wire is 4.1, Nb−
The diameter of the Ti filament was 24.2 μmφ, and the matrix thickness at the outer periphery of the superconducting wire was 13.3% of the outer diameter of the wire.

実施例 2 Cu比0.50のCu被覆Nb−Ti合金線の336本とこ
れと同断面形状のCu線の595本を用い、他は実施
例1と同様の方法で超電導線を製造した。
Example 2 A superconducting wire was manufactured in the same manner as in Example 1 except for using 336 pieces of Cu-coated Nb-Ti alloy wire with a Cu ratio of 0.50 and 595 pieces of Cu wire having the same cross-sectional shape.

尚この超電導線のマトリツクス比は4.4、Nb−
Tiフイラメント径は23.5μmφであり、超電導線
外周部のマトリツクス厚さは線材外径の12.8%で
あつた。
The matrix ratio of this superconducting wire is 4.4, Nb−
The diameter of the Ti filament was 23.5 μmφ, and the matrix thickness at the outer periphery of the superconducting wire was 12.8% of the outer diameter of the wire.

比較例 1 Cu比0.73のCu被覆Nb−Ti合金線の336本とこ
れと同断面形状のCu線の487本を用い、他は実施
例1と同様の方法で超電導線を製造した。
Comparative Example 1 A superconducting wire was manufactured in the same manner as in Example 1 except for using 336 pieces of Cu-coated Nb-Ti alloy wire with a Cu ratio of 0.73 and 487 pieces of Cu wire having the same cross-sectional shape.

尚この超電導線のマトリツクス比は4.6、Nb−
Tiフイラメント径は23.1μmφであり、超電導線
外周部のマトリツクス厚さは線材外径の11.7%で
あつた。
The matrix ratio of this superconducting wire is 4.6, Nb−
The diameter of the Ti filament was 23.1 μmφ, and the matrix thickness at the outer periphery of the superconducting wire was 11.7% of the outer diameter of the wire.

比較例 2 Cu比1.7のCu被覆Nb−Ti合金線の336本とこれ
と同断面形状のCu線の181本を用い、他は実施例
1と同様の方法で超電導線を製造した。
Comparative Example 2 A superconducting wire was manufactured in the same manner as in Example 1 except for using 336 pieces of Cu-coated Nb-Ti alloy wire with a Cu ratio of 1.7 and 181 pieces of Cu wire having the same cross-sectional shape.

尚この超電導線のマトリツクス比は4.3、Nb−
Tiフイラメント径は23.7μmφであり、超電導線
外周部のマトリツクス厚さは線材外径の5%であ
つた。
The matrix ratio of this superconducting wire is 4.3, Nb−
The diameter of the Ti filament was 23.7 μmφ, and the matrix thickness at the outer periphery of the superconducting wire was 5% of the outer diameter of the wire.

以上実施例および比較例についての、熱処理後
の加工率とフイラメントの断線率の関係を第1図
に、熱処理後の加工率と臨界電流密度比の関係を
第2図に示す。
FIG. 1 shows the relationship between the processing rate after heat treatment and the filament breakage rate, and FIG. 2 shows the relationship between the processing rate after heat treatment and the critical current density ratio for the above examples and comparative examples.

なお、フイラメントの断線率は硝酸でCu安定
化材を溶解した後、流水中にNb−Ti素線を浸漬
し、落ちてくるNB−Ti素線の数と使用したNb
−Ti素線の本数との百分率を求めたものである。
The breakage rate of the filament is determined by dissolving the Cu stabilizing material with nitric acid, then immersing the Nb-Ti wire in running water, and calculating the number of falling NB-Ti wires and the amount of Nb used.
- The percentage of the number of Ti wires is calculated.

第1図ないし第2図のグラフから明らかなよう
に、本発明方法により得られた超電導線はNb−
Ti素線の断線が少なく、臨界電流密度等の特性
に優れている。
As is clear from the graphs in Figures 1 and 2, the superconducting wire obtained by the method of the present invention is Nb-
Ti wire has less disconnection and has excellent characteristics such as critical current density.

[発明の効果] 以上の実施例からも明らかなように、本発明に
よれば、伸線加工時における断線が減少し、作業
性が向上するとともに臨界電流密度も優れた特性
を有する超電導線を得ることができる。
[Effects of the Invention] As is clear from the above examples, according to the present invention, wire breakage during wire drawing is reduced, workability is improved, and a superconducting wire with excellent critical current density can be produced. Obtainable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例および比較例の方法
によつて製造された多芯超電導線の熱処理後の加
工率とフイラメントの断線率との関係を示すグラ
フ、第2図は同様の方法によつて製造された多芯
超電導線の熱処理後の加工率と臨界電流密度比の
関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the processing rate after heat treatment and the filament breakage rate of multicore superconducting wires manufactured by the method of one example of the present invention and the comparative example, and FIG. 1 is a graph showing the relationship between processing rate and critical current density ratio after heat treatment of a multicore superconducting wire manufactured by.

Claims (1)

【特許請求の範囲】 1 CuまたはCu基合金(以下Cu系金属と称す。)
マトリツクス中に多数本のNb−Ti合金素線を配
置して成る超電導線の製造方法において、 (イ) Nb−Ti合金の外周にCu系金属を被覆し、マ
トリツクス比(マトリツクス断面積/Nb−Ti
合金断面積)0.25〜0.6の断面略正六角形の複
合線を製造する工程と、 (ロ) 前記複合線の多数本をほぼ円筒状に配置し、
この円筒の内側、あるいは内側および外側に前
記複合線と同断面形状のCu系金属線を配置し、
これらをCu系金属管中に充填する工程と、 (ハ) 前記複合線およびCu系金属線の充填された
Cu系金属管に断面減少加工を施して、少なく
とも線径の10%以上の厚さのCu系金属が線材
外周部に配置された線材を製造する工程とから
成ることを特徴とするNb−Ti多芯超電導線の
製造方法。
[Claims] 1 Cu or Cu-based alloy (hereinafter referred to as Cu-based metal)
In a method for manufacturing a superconducting wire consisting of a large number of Nb-Ti alloy wires arranged in a matrix, (a) the outer periphery of the Nb-Ti alloy is coated with a Cu-based metal, and the matrix ratio (matrix cross-sectional area/Nb- Ti
(b) arranging a large number of said composite wires in a substantially cylindrical shape;
A Cu-based metal wire having the same cross-sectional shape as the composite wire is placed inside the cylinder, or inside and outside the cylinder,
(c) filling the composite wire and Cu-based metal wire into a Cu-based metal tube;
Nb-Ti characterized by comprising a step of performing a cross-section reduction process on a Cu-based metal tube to produce a wire rod in which a Cu-based metal with a thickness of at least 10% or more of the wire diameter is arranged on the outer periphery of the wire. A method for manufacturing multicore superconducting wire.
JP59236176A 1984-11-09 1984-11-09 Production of nb-ti multicore superconductive wire Granted JPS61115612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59236176A JPS61115612A (en) 1984-11-09 1984-11-09 Production of nb-ti multicore superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59236176A JPS61115612A (en) 1984-11-09 1984-11-09 Production of nb-ti multicore superconductive wire

Publications (2)

Publication Number Publication Date
JPS61115612A JPS61115612A (en) 1986-06-03
JPH0579408B2 true JPH0579408B2 (en) 1993-11-02

Family

ID=16996891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59236176A Granted JPS61115612A (en) 1984-11-09 1984-11-09 Production of nb-ti multicore superconductive wire

Country Status (1)

Country Link
JP (1) JPS61115612A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711927B2 (en) * 1988-10-21 1995-02-08 三菱電機株式会社 NbTi Extra-fine multi-core superconducting wire manufacturing method
US5196285A (en) * 1990-05-18 1993-03-23 Xinix, Inc. Method for control of photoresist develop processes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023195A (en) * 1973-06-27 1975-03-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023195A (en) * 1973-06-27 1975-03-12

Also Published As

Publication number Publication date
JPS61115612A (en) 1986-06-03

Similar Documents

Publication Publication Date Title
JPH0579408B2 (en)
JPH0580283B2 (en)
JPH08180752A (en) Nb3sn superconductive wire and manufacture thereof
JPH07118232B2 (en) Superconducting wire manufacturing method
JP3124448B2 (en) Method for manufacturing Nb (3) Sn superconducting wire
JPH04277416A (en) Manufacture of nb3sn superconducting wire
JPS61116711A (en) Manufacture of nb-ti multicore flat superconductor
JP3058904B2 (en) Nb Lower 3 Method for Manufacturing Sn Multicore Superconducting Wire
JP3058890B2 (en) Nb Lower 3 Method for Manufacturing Sn Superconducting Wire
RU96116402A (en) METHOD FOR PRODUCING COMPOSITE SUPERCONDUCTOR BASED ON NB3SN CONNECTION
JPH0617318A (en) Aggregate of metal fiber and its production
JPH03283320A (en) Manufacture of nb3sn multicore superconductor
JPH05334929A (en) Manufacture of nb3sn superconductor
JPH05325666A (en) Complex multi-conductor superconductive wire
JPH0322004B2 (en)
JPS6117897B2 (en)
JPH08167336A (en) Manufacture of nb3sn superconducting wire
JPS61227309A (en) Manufactue of nb3 sn superconducting wire by external diffusion
JPS61230210A (en) Manufacture of nb-ti based superconducting wire
JPS5947406B2 (en) Method for manufacturing aluminum-coated multicore superconducting wire
JPS625990B2 (en)
JPH01312803A (en) Manufacture of nb3sn magnet
JPS63213212A (en) Manufacture of internal diffusion type nb3 sn superconductive wire
JPH06333449A (en) Manufacture of superconductive wire
JPH09171727A (en) Manufacture of metal-based superconductive wire