JPH065130A - Composite multi-core nbti superconductive wire - Google Patents
Composite multi-core nbti superconductive wireInfo
- Publication number
- JPH065130A JPH065130A JP4184419A JP18441992A JPH065130A JP H065130 A JPH065130 A JP H065130A JP 4184419 A JP4184419 A JP 4184419A JP 18441992 A JP18441992 A JP 18441992A JP H065130 A JPH065130 A JP H065130A
- Authority
- JP
- Japan
- Prior art keywords
- nbti
- alloy
- filament
- superconducting wire
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は超電導マグネット等に使
用される複合多芯NbTi超電導線に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite multicore NbTi superconducting wire used for a superconducting magnet or the like.
【0002】[0002]
【従来の技術】超電導マグネット等に使用される複合多
芯NbTi超電導線は、図3に示す様に超電導材料であ
るNbTi合金をフィラメント化し、該フィラメント
(1) の多数本を安定化材である無酸素銅(2) 、(2′) 等
の常電導金属マトリックス中に埋め込んだ構造を有して
いる。2. Description of the Related Art As shown in FIG. 3, a composite multi-core NbTi superconducting wire used for a superconducting magnet or the like is made by converting NbTi alloy which is a superconducting material into a filament.
It has a structure in which a large number of (1) are embedded in a normal-conducting metal matrix such as oxygen-free copper (2), (2 ') which is a stabilizer.
【0003】この複合多芯NbTi超電導線の基本的な
製造方法は、まずNbTiインゴットを場合によっては
周囲をNbシートでくるみ、無酸素Cu管に挿入し、両
端にフタをした後真空中で電子ビーム溶接封入する。こ
れを熱間押出した後細線化を行ない所定の六角形或いは
丸形状にしたあと再びこの複合素線を無酸素Cu管に挿
入して、上記と同様に両端にフタをして真空中で電子ビ
ーム溶接により封入し、その後押出、細線化を行ない、
NbTiフィラメント数が十数〜数十万におよぶ複合多
芯NbTi超電導線を得る。The basic manufacturing method of this composite multifilamentary NbTi superconducting wire is as follows. First, if necessary, the NbTi ingot is wrapped with an Nb sheet around it, inserted into an oxygen-free Cu tube, and covered at both ends with an electron in a vacuum. Beam welding is included. This was hot extruded and then thinned into a predetermined hexagonal or round shape, then this composite wire was inserted again into the oxygen-free Cu tube, and both ends were covered with lids in the same manner as described above. Enclosed by beam welding, then extruded and thinned,
A composite multi-core NbTi superconducting wire having NbTi filaments of ten to several hundreds of thousands is obtained.
【0004】複合多芯NbTi超電導線は前記のように
複数本のNbTiフィラメントが常電導金属マトリック
ス中に埋め込まれた構造を有しているが、常電導金属マ
トリックスのうち、製造工程においてNbTi合金棒を
挿入した無酸素銅パイプがNbTiフィラメント周囲部
(図3における2)となり、無酸素銅/NbTi複合素
線を挿入した銅管がシース部(図3における2′)とな
っている。As described above, the composite multi-core NbTi superconducting wire has a structure in which a plurality of NbTi filaments are embedded in a normal conducting metal matrix. Among the normal conducting metal matrix, NbTi alloy rods are used in the manufacturing process. The oxygen-free copper pipe into which the oxygen-free copper is inserted serves as the peripheral portion of the NbTi filament (2 in FIG. 3), and the copper tube into which the oxygen-free copper / NbTi composite element wire is inserted serves as the sheath portion (2 'in FIG. 3).
【0005】また最近では、商用周波数の交流で使用可
能な複合多芯NbTi超電導線が実用化されて来てい
る。これは交流損失を少なくするため、高抵抗のCu−
Ni合金を金属マトリックスの一部又は全部に使用した
ものであり、一例を示せば図4に示すようなCu−Ni
/Cu/Nb−Tiの三層構造を有している。即ち中央
部に、無酸素銅フィラメント(2) を埋め込んだCu−N
i合金管(3) を配し、その周辺部にNbTiフィラメン
ト(1) を埋め込んだCu−Ni合金管(3) を配した集合
体をさらにCu−Ni合金シース部(3′) で覆ったもの
である。この交流用の複合多芯NbTi超電導線の製造
方法としては前記の製造方法のうち、初期工程のNbT
i合金棒を無酸素銅パイプに挿入する代りにCu−Ni
合金パイプに挿入する点が異なるだけで他の工程はほぼ
同様である。Further, recently, a composite multi-core NbTi superconducting wire which can be used with an alternating current at a commercial frequency has been put into practical use. Since this reduces AC loss, high resistance Cu-
The Ni alloy is used for a part or all of the metal matrix, and if one example is shown, Cu-Ni as shown in FIG.
It has a three-layer structure of / Cu / Nb-Ti. That is, Cu-N with an oxygen-free copper filament (2) embedded in the center
The i-alloy tube (3) was arranged, and the assembly in which the Cu-Ni alloy tube (3) in which the NbTi filament (1) was embedded was arranged on the periphery thereof was further covered with the Cu-Ni alloy sheath part (3 '). It is a thing. As a method for manufacturing the composite multicore NbTi superconducting wire for alternating current, among the above manufacturing methods, NbT in the initial step
Instead of inserting the i alloy rod into the oxygen-free copper pipe, Cu-Ni
The other steps are almost the same except that they are inserted into the alloy pipe.
【0006】[0006]
【発明が解決しようとする課題】ところで超電導線の安
定性を高めるためには安定化材である金属マトリックス
の残留抵抗比を大きくする必要があるため、無酸素銅を
マトリックスとする場合、加工の最終工程で残留抵抗比
向上のための焼鈍を行う。しかしこの焼鈍により残留抵
抗比は大きくなり、安定性は向上するが機械的強度が低
下してしまうという問題があった。したがって大電流容
量線材の場合や線径の小さいフィラメントを撚線化する
交流用超電導線のように高強度が要求される場合には別
にステンレス線等の補強材を複合化する必要があった。
またNbTi超電導線には加工の途中で臨界電流密度
(Jc)を向上させるため、数回の時効熱処理を400
℃前後の温度で施すが、この時効熱処理の際マトリック
スである無酸素銅は完全に焼鈍されるが、一方NbTi
フィラメントは時効硬化する。このことによりNbTi
フィラメントとマトリックスの銅の降伏強度の比は10
倍以上となり、その後の複合加工(伸線等)で均一変形
が困難となりNb−Tiフィラメントの断線や超電導線
全体の断線が発生しやすいという問題もある。By the way, in order to improve the stability of the superconducting wire, it is necessary to increase the residual resistance ratio of the metal matrix which is a stabilizing material. In the final step, annealing is performed to improve the residual resistance ratio. However, this annealing causes a problem that the residual resistance ratio increases and the stability improves but the mechanical strength decreases. Therefore, in the case of a wire having a large current capacity or when high strength is required such as a superconducting wire for alternating current in which a filament having a small wire diameter is twisted, it is necessary to additionally compound a reinforcing material such as a stainless wire.
In addition, in order to improve the critical current density (Jc) of the NbTi superconducting wire during processing, the aging heat treatment is repeated 400 times.
The oxygen-free copper matrix is completely annealed during this aging heat treatment, while NbTi is used.
The filament is age hardened. This makes NbTi
The yield strength ratio of filament to matrix copper is 10
There is also a problem that uniform deformation becomes difficult in the subsequent composite processing (drawing, etc.), and the Nb-Ti filaments and the entire superconducting wire are likely to be broken.
【0007】交流用超電導線の場合Cu−Ni合金のみ
をマトリックスにした場合、無酸素銅マトリックスの場
合のような焼鈍による金属マトリックスの軟化に伴う強
度低下は著しくないが、通常はCu−Ni合金のみのマ
トリックスは導電率が低く、安定性に問題があることか
らマトリックスの一部を無酸素銅とすることが多い。そ
してその構造は図4に示したようにCu−Ni合金で被
覆された無酸素銅フィラメントの周囲部にCu−Ni合
金で被覆されたNb−Ti合金フィラメントを配置し、
この集合体をCu−Ni合金でシースする構造を取るこ
とが多い。この場合中央部の無酸素銅フィラメントは線
径が数μm程度になっているが、この無酸素銅は前記の
ように焼鈍により軟化し、強度が低下してしまうという
問題がある。In the case of a superconducting wire for alternating current, when only a Cu--Ni alloy is used as a matrix, the strength is not remarkably decreased due to the softening of the metal matrix due to annealing as in the case of an oxygen-free copper matrix, but usually the Cu--Ni alloy Since only the matrix has low conductivity and has a problem in stability, a part of the matrix is often made of oxygen-free copper. As shown in FIG. 4, the structure is such that an Nb-Ti alloy filament coated with a Cu-Ni alloy is arranged around the oxygen-free copper filament coated with a Cu-Ni alloy,
A structure in which this assembly is sheathed with a Cu-Ni alloy is often adopted. In this case, the oxygen-free copper filament in the central portion has a wire diameter of about several μm, but this oxygen-free copper has a problem that it is softened by annealing as described above and its strength is lowered.
【0008】[0008]
【課題を解決するための手段】本発明はかかる状況に鑑
み、鋭意検討の結果、開発されたもので、複数本のNb
Tiフィラメントを常電導金属マトリックス中に埋め込
んだ複合多芯NbTi超電導線において、常電導金属マ
トリックスの一部又は全部がAg0.1〜5wt%を含み
残部CuからなるCu−Ag合金であることを特徴とす
る複合多芯NbTi超電導線である。SUMMARY OF THE INVENTION The present invention has been developed as a result of intensive studies in view of the above situation.
In a composite multicore NbTi superconducting wire in which a Ti filament is embedded in a normal-conducting metal matrix, a part or all of the normal-conducting metal matrix is a Cu-Ag alloy containing 0.1 to 5 wt% of Ag and the balance Cu. Is a composite multi-core NbTi superconducting wire.
【0009】ここにおいて図3に示す様な構造の複合多
芯NbTi超電導線ではCu−Ag合金は図1に示すよ
うにNbTiフィラメントの周囲部のみに配置すること
が効果的である。Here, in the composite multi-core NbTi superconducting wire having the structure shown in FIG. 3, it is effective to arrange the Cu-Ag alloy only around the NbTi filament as shown in FIG.
【0010】また図4に示す様な構造の交流用複合多芯
NbTi超電導線では図2に示すように中央部の無酸素
銅フィラメントの代りにCu−Ag合金フィラメントを
配した構造とするのが効果的である。Further, in the composite multicore NbTi superconducting wire for alternating current having the structure as shown in FIG. 4, as shown in FIG. 2, the oxygen-free copper filament in the central portion is replaced by a Cu--Ag alloy filament. It is effective.
【0011】[0011]
【作用】本発明において、金属マトリックスの一部また
は全部を無酸素銅の代りにCu−Ag合金を用いるの
は、Cu−Ag合金はAg含有量0.1wt%以上であれ
ばNbTi超電導線の焼鈍や時効処理を行う200〜4
00℃の温度に加熱しても軟化しない性質を有してお
り、時効処理による強度低下が少なくまたAg含有量が
5wt%以下であれば焼鈍しない加工状態のままでも残留
抵抗比は10以上の値を示す。したがってマトリックス
金属である無酸素銅の一部又は全部をAg含有量0.1
〜5wt%のCu−Ag合金に置き換えても、残留抵抗比
をあまり低下させずに、即ち安定性を失わずに高強度の
NbTi超電導線を得ることができるからである。また
Cu−Ag合金は超電導線の時効処理の際の、強度の低
下が小さくNbTi合金フィラメントとの強度差が大き
くならないので、複合体としての塑性変形が一様となり
フィラメント断線や超電導線全体の断線が防止できる。
そして、Cu−Ag合金のAg含有量を0.1〜5wt%
と限定したのは0.1wt%未満では耐軟化特性が無酸素
銅とあまり変らず、加熱処理後の強度が不充分であり、
5wt%を超えると残留抵抗比が低下すると共に耐軟化特
性向上の効果が飽和し、かつコスト高となるからであ
る。In the present invention, a Cu-Ag alloy is used in place of oxygen-free copper for a part or all of the metal matrix, because the Cu-Ag alloy is a NbTi superconducting wire if the Ag content is 0.1 wt% or more. 200 to 4 for annealing and aging treatment
It has the property that it does not soften even if it is heated to a temperature of 00 ° C, and its strength is less reduced by aging treatment, and if the Ag content is 5 wt% or less, the residual resistance ratio is 10 or more even in the unannealed working state. Indicates a value. Therefore, some or all of the oxygen-free copper that is the matrix metal has an Ag content of 0.1.
This is because a high strength NbTi superconducting wire can be obtained without lowering the residual resistance ratio, that is, without losing stability, even if it is replaced with a Cu-Ag alloy of 5 wt%. Further, the Cu-Ag alloy has a small decrease in strength during the aging treatment of the superconducting wire and does not have a large difference in strength with the NbTi alloy filament, so that the plastic deformation as a composite becomes uniform and the filament breakage or the entire superconducting wire breakage occurs. Can be prevented.
And, the Ag content of the Cu-Ag alloy is 0.1 to 5 wt%
If less than 0.1 wt%, the softening resistance does not change much from oxygen-free copper, and the strength after heat treatment is insufficient.
This is because if it exceeds 5 wt%, the residual resistance ratio decreases, the effect of improving the softening resistance is saturated, and the cost increases.
【0012】本発明において図1に示すようにNbTi
フィラメント(1) の周囲部のみをCu−Ag合金(4) に
置き換えるのが効果的なのは最近のNbTi超電導線で
はNbTiフィラメントは10μm以下に細径化する場
合が多くNbTiフィラメントの周囲部の無酸素銅は厚
さが数μm以下に薄肉化されている。このような薄肉の
無酸素銅は電子の平均自由行程が制限され、焼鈍処理を
施しても残留抵抗比は数十程度にしか回復しないのでこ
れをCu−Ag合金と置換してもマトリックス全体の残
留抵抗比に大きな影響はなく、しかも耐軟化特性は改善
される。そして、Cu−Ag合金の使用量も少なくて済
むのでコスト的にも有利であるからである。In the present invention, as shown in FIG. 1, NbTi
It is effective to replace only the peripheral part of the filament (1) with the Cu-Ag alloy (4). In recent NbTi superconducting wires, the NbTi filament is often thinned to 10 μm or less, and the oxygen-free part around the NbTi filament is oxygen-free. Copper is thinned to a thickness of several μm or less. Such a thin oxygen-free copper has a limited mean free path of electrons, and the residual resistance ratio recovers only to about several tens even if an annealing treatment is performed. Therefore, even if it is replaced with a Cu-Ag alloy, the entire matrix is reduced. The residual resistance ratio is not significantly affected, and the softening resistance is improved. Also, since the amount of Cu-Ag alloy used is small, it is advantageous in terms of cost.
【0013】またCu−Ni合金をマトリックスとして
用いた場合図2に示すように、中央部にCu−Ni合金
(3) で被覆されたCu−Ag合金フィラメント(4) (図
4の無酸素銅に代るもの)を配し、その周囲部にCu−
Ni合金(3) で被覆されたNb−Ti合金フィラメント
(1) を配し、これらの集合体をCu−Ni合金(3′)で
シースする構造を有するものが、効果的であるのは無酸
素銅フィラメントは数μm程度に細くなると焼鈍しても
残留抵抗比が充分回復せず、強度は低下してしまうの
で、これをCu−Ag合金に置換してもマトリックス全
体の残留抵抗比に影響は少なく、耐軟化特性を向上させ
ることができるからである。When a Cu-Ni alloy is used as a matrix, as shown in FIG. 2, a Cu-Ni alloy is formed in the central portion.
A Cu-Ag alloy filament (4) coated with (3) (which replaces the oxygen-free copper in Fig. 4) is placed, and Cu-
Nb-Ti alloy filament coated with Ni alloy (3)
(1) is arranged, and a structure in which these aggregates are sheathed with a Cu-Ni alloy (3 ') is effective, but it is effective that the oxygen-free copper filament is annealed even if it becomes thin to a few μm. Since the residual resistance ratio is not sufficiently recovered and the strength is lowered, even if it is replaced with a Cu-Ag alloy, the residual resistance ratio of the entire matrix is little affected, and the softening resistance can be improved. is there.
【0014】[0014]
【実施例】次に本発明を実施例により更に詳細に説明す
る。 〔実施例1〕外径200mm、内径157mmの無酸素銅管
または各種Cu−Ag合金管に155mmφのNbTi棒
を挿入し、両端部を真空封止し一次ビレットとした。こ
の一次ビレットを熱間押出し及び冷間引抜加工、皮剥ぎ
加工を行い対辺長2.5mmの六角素線とした。この六角
素線4200本を外径200mm、内径175mmの無酸素
銅管またはCu−Ag合金管に挿入し両端を真空封止し
て二次ビレットとした。このビレットを再び熱間押出し
及び適宜中間焼鈍を施しつつ冷間引抜加工により表1に
示す各種金属マトリックスを有する0.5mmφの複合多
芯NbTi超電導線とした。ここでNbTiフィラメン
トの等価径は5.5μmであった。表1に示す金属マト
リックスのシース部は二次ビレットにおける無酸素銅管
またはCu−Ag合金管から形成され、NbTiフィラ
メント周囲部は一次ビレットにおける無酸素銅管または
Cu−Ag合金管から形成されたものである。そしてN
bTiフィラメント周囲部の金属マトリックスは1.2
μmの厚さに薄肉化されていた。またこの超電導線の断
面積中におけるNbTiフィラメントとシース部の金属
マトリックスとNbTiフィラメント周囲部の金属マト
リックスの占有面積の比はいずれも1.0:0.5:
0.5である。この超電導線を250℃で1hr加熱して
焼鈍処理した後、残留抵抗比、引張強度を測定してその
値を表1に示した。また0.5mmφまで加工中に生じた
断線回数も表1に併記した。EXAMPLES The present invention will now be described in more detail with reference to Examples. Example 1 A 155 mmφ NbTi rod was inserted into an oxygen-free copper tube having an outer diameter of 200 mm and an inner diameter of 157 mm or various Cu-Ag alloy tubes, and both ends were vacuum-sealed to form a primary billet. This primary billet was subjected to hot extrusion, cold drawing, and peeling to obtain a hexagonal wire having an opposite side length of 2.5 mm. 4200 hexagonal wires were inserted into an oxygen-free copper tube or a Cu-Ag alloy tube having an outer diameter of 200 mm and an inner diameter of 175 mm, and both ends were vacuum-sealed to form a secondary billet. The billet was again subjected to hot extrusion and appropriate intermediate annealing to carry out cold drawing to obtain a 0.5 mmφ composite multicore NbTi superconducting wire having various metal matrices shown in Table 1. Here, the equivalent diameter of the NbTi filament was 5.5 μm. The sheath portion of the metal matrix shown in Table 1 was formed from the oxygen-free copper tube or Cu-Ag alloy tube in the secondary billet, and the NbTi filament peripheral portion was formed from the oxygen-free copper tube or Cu-Ag alloy tube in the primary billet. It is a thing. And N
The metal matrix around the bTi filament is 1.2
It was thinned to a thickness of μm. In addition, the ratio of the occupied area of the NbTi filament, the metal matrix of the sheath portion and the metal matrix around the NbTi filament in the cross-sectional area of the superconducting wire is 1.0: 0.5:
It is 0.5. After this superconducting wire was heated at 250 ° C. for 1 hour and annealed, the residual resistance ratio and the tensile strength were measured and the values are shown in Table 1. Table 1 also shows the number of wire breaks that occurred during processing up to 0.5 mmφ.
【0015】[0015]
【表1】 [Table 1]
【0016】表1から明らかなように本発明例No.1〜
4は従来例No.7と比較していずれも強度が高く、製造
中の断線回数も少ない。また残留抵抗比も実用上問題な
い範囲内にある。これに対しCu−Ag合金中のAg含
有量が本発明の範囲より少ない比較例No.5は強度が向
上せず、Ag含有量が本発明の範囲より多い比較例No.
6は強度は高くなるが残留抵抗比が小さいことが判る。As is apparent from Table 1, the invention example No. 1 to
No. 4 is the conventional example No. Compared with No. 7, the strength is high, and the number of disconnection during manufacturing is small. Further, the residual resistance ratio is also within a range where there is no practical problem. On the other hand, Comparative Example No. 1 in which the Ag content in the Cu-Ag alloy is less than the range of the present invention. In Comparative Example No. 5, the strength was not improved and the Ag content was larger than the range of the present invention.
6 shows that the strength is high, but the residual resistance ratio is small.
【0017】〔実施例2〕外径200mm、内径157mm
のCu−10%Ni合金管に155mmφのNbTi棒を
挿入し、両端部を真空封止し、NbTi/CuNi複合
ビレットとしこのNbTi/CuNi複合ビレットを熱
間押出し及び途中適宜中間焼鈍を施しつつ冷間引抜加
工、皮剥を行い対辺長3mmの六角NbTi/Cu−Ni
素線とした。一方外径200mm、内径157mmのCu−
10%Ni合金管に155mmφの各種Cu−Ag合金棒
を挿入し両端部を真空封止しCu−Ag/Cu−Ni複
合ビレットとしこのCu−Ag/Cu−Ni複合ビレッ
トを熱間押出し、及び途中適宜中間焼鈍を施しつつ冷間
引抜加工、皮剥を行い対辺長3mmの六角Cu−Ag/C
u−Ni素線とした。次に外径200mm、内径175mm
のCu−10%Ni合金管の中央部にCu−Ag/Cu
−Ni素線を2000本、その周辺部にNb−Ti/C
u−Ni素線を930本、合計2930本挿入し両端を
真空封止して二次ビレットとし、この二次ビレットを熱
間押出し、及び途中適宜中間焼鈍を施しつつ冷間引抜加
工することにより表2に示す各種金属マトリックスを有
する0.5mmφの複合多芯NbTi超電導線とした。こ
こでNbTiフィラメントの等価径は6.8μmであ
り、Cu−Agフィラメントの等価径も6.8μmであ
った。この超電導線を250℃で1hr加熱して焼鈍処理
した後、残留抵抗比、引張強度を測定して、その値を表
2に示した。また0.5mmφまで加工中に生じた断線回
数も表2に併記した。また従来例として中央部フィラメ
ントがCu−Ag合金ではなく無酸素銅である複合多芯
NbTi超電導線を上記と同様に製造して比較した。[Example 2] Outer diameter 200 mm, inner diameter 157 mm
Insert a 155 mmφ NbTi rod into a Cu-10% Ni alloy tube of, and seal both ends in vacuum to form an NbTi / CuNi composite billet. This NbTi / CuNi composite billet is subjected to hot extrusion and intermediate annealing as needed while cooling. Hexagonal NbTi / Cu-Ni with opposite side length of 3 mm after thinning and peeling
It was a bare wire. On the other hand, Cu- with an outer diameter of 200 mm and an inner diameter of 157 mm
Various Cu-Ag alloy rods having a diameter of 155 mm were inserted into a 10% Ni alloy tube, and both ends were vacuum-sealed to form a Cu-Ag / Cu-Ni composite billet. This Cu-Ag / Cu-Ni composite billet was hot extruded, and Hexagonal Cu-Ag / C with opposite side length of 3 mm, with cold drawing and peeling while appropriately performing intermediate annealing on the way
The u-Ni strand was used. Next, 200 mm outer diameter and 175 mm inner diameter
Cu-10% Ni alloy tube with Cu-Ag / Cu
-2000 Ni strands and Nb-Ti / C around it
By inserting 930 u-Ni strands, 2930 in total, and vacuum-sealing both ends to form a secondary billet, by hot extruding this secondary billet and performing cold annealing while appropriately performing intermediate annealing. The composite multicore NbTi superconducting wire of 0.5 mmφ having various metal matrices shown in Table 2 was used. Here, the equivalent diameter of the NbTi filament was 6.8 μm, and the equivalent diameter of the Cu—Ag filament was 6.8 μm. After this superconducting wire was heated at 250 ° C. for 1 hour and annealed, the residual resistance ratio and the tensile strength were measured, and the values are shown in Table 2. Table 2 also shows the number of wire breaks that occurred during processing up to 0.5 mmφ. Further, as a conventional example, a composite multi-core NbTi superconducting wire in which the central filament is not oxygen-free Cu-Ag alloy but oxygen-free copper was manufactured and compared in the same manner as above.
【0018】[0018]
【表2】 [Table 2]
【0019】表2から明らかなように本発明例No.11
〜13は従来例No.16と比較して引張強度が高く断線
回数も少ない。また残留抵抗比も実用上問題ない範囲内
である。これに対し、中央部フィラメントのCu−Ag
合金中のAg含有量が本発明の範囲より少ない比較例N
o.14は引張強度が向上せず断線回数も減少していな
い。また中央部フィラメントのCu−Ag合金中のAg
含有量が本発明の範囲より多い比較例No.15は強度は
高くなるが残留抵抗比が小さくなることが判る。As is apparent from Table 2, the invention sample No. 11
Nos. 13 to 13 are conventional examples. Compared with No. 16, the tensile strength is high and the number of breaks is small. Further, the residual resistance ratio is also within a range where there is no practical problem. On the contrary, Cu-Ag of the central filament
Comparative Example N in which the Ag content in the alloy is less than the range of the present invention
o. In No. 14, the tensile strength was not improved and the number of wire breaks was not reduced. Also, the Ag in the Cu-Ag alloy of the central filament
Comparative Example No. with a content higher than the range of the present invention. It can be seen that No. 15 has a high strength but a small residual resistance ratio.
【0020】[0020]
【発明の効果】以上述べたように本発明によれば高安
定、高強度で加工性のよい複合多芯NbTi超電導線が
得られるもので工業上顕著な効果を奏するものである。As described above, according to the present invention, a composite multifilamentary NbTi superconducting wire having high stability, high strength and good workability can be obtained, and the industrially remarkable effect is exhibited.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の一実施例を示す複合多芯NbTi超電
導線の断面構成図。FIG. 1 is a cross-sectional configuration diagram of a composite multicore NbTi superconducting wire showing an embodiment of the present invention.
【図2】本発明の他の一実施例を示す複合多芯NbTi
超電導線の断面構成図。FIG. 2 is a composite multi-core NbTi showing another embodiment of the present invention.
Sectional drawing of a superconducting wire.
【図3】従来の複合多芯NbTi超電導線の断面構成
図。FIG. 3 is a cross-sectional configuration diagram of a conventional composite multi-core NbTi superconducting wire.
【図4】従来の複合多芯NbTi超電導線の断面構成
図。FIG. 4 is a cross-sectional configuration diagram of a conventional composite multi-core NbTi superconducting wire.
1 NbTiフィラメント 2 無酸素銅 3 Cu−Ni合金 4 Cu−Ag合金 1 NbTi filament 2 Oxygen-free copper 3 Cu-Ni alloy 4 Cu-Ag alloy
Claims (3)
金属マトリックス中に埋め込んだ複合多芯NbTi超電
導線において、常電導金属マトリックスの一部又は全部
がAg0.1〜5wt%を含み残部CuからなるCu−A
g合金であることを特徴とする複合多芯NbTi超電導
線。1. In a composite multi-core NbTi superconducting wire in which a plurality of NbTi filaments are embedded in a normal conducting metal matrix, a part or all of the normal conducting metal matrix contains Ag of 0.1 to 5 wt% and the remaining Cu. -A
A composite multi-core NbTi superconducting wire characterized by being a g-alloy.
u−Ag合金を配したことを特徴とする請求項1記載の
複合多芯NbTi超電導線。2. C only in the peripheral portion of the NbTi filament
The composite multicore NbTi superconducting wire according to claim 1, further comprising a u-Ag alloy.
のCu−Ag合金フィラメントをCu−Ni合金マトリ
ックス中に埋め込んだことを特徴とする請求項1記載の
複合多芯NbTi超電導線。3. The composite multicore NbTi superconducting wire according to claim 1, wherein a plurality of NbTi filaments and a plurality of Cu—Ag alloy filaments are embedded in a Cu—Ni alloy matrix.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4184419A JPH065130A (en) | 1992-06-18 | 1992-06-18 | Composite multi-core nbti superconductive wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4184419A JPH065130A (en) | 1992-06-18 | 1992-06-18 | Composite multi-core nbti superconductive wire |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH065130A true JPH065130A (en) | 1994-01-14 |
Family
ID=16152838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4184419A Pending JPH065130A (en) | 1992-06-18 | 1992-06-18 | Composite multi-core nbti superconductive wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH065130A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2354874A (en) * | 1999-09-30 | 2001-04-04 | Yazaki Corp | Flexible conductor |
US6576844B1 (en) * | 1999-09-30 | 2003-06-10 | Yazaki Corporation | High-strength light-weight conductor and twisted and compressed conductor |
JP2012190595A (en) * | 2011-03-09 | 2012-10-04 | Furukawa Electric Co Ltd:The | Elemental wire for superconducting twisted cable, and superconducting twisted cable |
-
1992
- 1992-06-18 JP JP4184419A patent/JPH065130A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2354874A (en) * | 1999-09-30 | 2001-04-04 | Yazaki Corp | Flexible conductor |
US6528729B1 (en) | 1999-09-30 | 2003-03-04 | Yazaki Corporation | Flexible conductor of high strength and light weight |
US6576844B1 (en) * | 1999-09-30 | 2003-06-10 | Yazaki Corporation | High-strength light-weight conductor and twisted and compressed conductor |
GB2354874B (en) * | 1999-09-30 | 2004-03-17 | Yazaki Corp | Flexible conductor of high strength and light weight |
JP2012190595A (en) * | 2011-03-09 | 2012-10-04 | Furukawa Electric Co Ltd:The | Elemental wire for superconducting twisted cable, and superconducting twisted cable |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10679775B2 (en) | Fabrication of reinforced superconducting wires | |
KR102205386B1 (en) | Diffusion barrier for metallic superconducting wires | |
JPH065130A (en) | Composite multi-core nbti superconductive wire | |
JP3063025B2 (en) | Nb3Sn superconducting wire and method of manufacturing the same | |
US11631508B2 (en) | Methods for manufacturing a superconductor | |
JP3670888B2 (en) | Superconducting wire for alternating current and its manufacturing method | |
JP3124448B2 (en) | Method for manufacturing Nb (3) Sn superconducting wire | |
JPH0329215A (en) | Nb3al multicore superconductive wire | |
JPH09171727A (en) | Manufacture of metal-based superconductive wire | |
JPH087681A (en) | A3b type compound superconductive wire rod and manufacture thereof | |
JP3212596B2 (en) | Cu or Al stabilized superconducting wire and method for producing the same | |
JP3154246B2 (en) | Extruded billet for AC superconducting wire | |
JPH0430123B2 (en) | ||
JPH04132113A (en) | Manufacture of nb3x multi-core superconducting wire | |
JPH08167336A (en) | Manufacture of nb3sn superconducting wire | |
JPH04132115A (en) | Manufacture of nb3x multi-core superconducting wire | |
JPH0696627A (en) | Nbti superconductive wire | |
JPH03141515A (en) | Manufacture of nb-ti ac superconductive cable | |
JPH04132114A (en) | Manufacture of nb3x multi-core superconducting wire | |
JPH04132117A (en) | Manufacture of nb3x multi-core superconducting wire | |
JPH06150737A (en) | Nb multicore superconducting cable and manufacture thereof | |
JP2002063816A (en) | MANUFACTURING METHOD OF Nb3Al-SYSTEM SUPERCONDUCTING WIRE | |
JPH10125149A (en) | Superconductive multiplex molded stranded wire | |
JPH02192618A (en) | Manufacture of superconductive alloy wire rod | |
JPH06150738A (en) | Compound superconducting cable |