JPH04132114A - Manufacture of nb3x multi-core superconducting wire - Google Patents

Manufacture of nb3x multi-core superconducting wire

Info

Publication number
JPH04132114A
JPH04132114A JP2252322A JP25232290A JPH04132114A JP H04132114 A JPH04132114 A JP H04132114A JP 2252322 A JP2252322 A JP 2252322A JP 25232290 A JP25232290 A JP 25232290A JP H04132114 A JPH04132114 A JP H04132114A
Authority
JP
Japan
Prior art keywords
wire
wire rod
alloy
foil
billet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2252322A
Other languages
Japanese (ja)
Inventor
Kazuya Daimatsu
一也 大松
Yuichi Yamada
雄一 山田
Masayuki Nagata
永田 正之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2252322A priority Critical patent/JPH04132114A/en
Publication of JPH04132114A publication Critical patent/JPH04132114A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Wire Processing (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To manufacture a longer wire rod having high critical current density by reducing the diameter of a billet by warm extruding at 100-400 deg.C, followed by a heat treatment. CONSTITUTION:An Nb foil 1 and an Al foil 2 in a superposed relation are wound around a Cu rod material 3 by a modified jelly roll process, to be inserted into a Cu pipe 4, followed by drawing, thereby obtaining a segment wire rod 5. the segment wire rod 5 is provided with matrices 6 made of Cu in the center thereof and in the outer periphery thereof, respectively. Between the matrices 6, the Nb foil 1 and the Al foil 2 are spiraled each in one layer. The obtained segment wire rod is inserted into a large-diameter Cu billet, followed by vacuum drawing. The billet is heated at 260 deg.C, followed by ward extruding, thus obtaining a wire rod. The obtained wire rod is repeatedly drawn. In the wire rod 9, a multiplicity of filaments 8 made of Nb, Al and Cu are formed in a matrix 7 made of Cu.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、たとえば核融合炉およびSMES用などの
超電導線材として用いることのできるNb3X多芯超電
導線の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a Nb3X multicore superconducting wire that can be used as a superconducting wire for, for example, nuclear fusion reactors and SMES.

[従来の技術および発明が解決しようとする課題]Nb
3At超電導材料は、30Tを越えるといわれている高
い臨界磁界を有しており、歪特性もNb3 Snより良
好なことから、NbTiおよびNb3 Snに続く第3
の実用的な超電導材料として期待されており、特に核融
合炉の超電導用マグネット用線材として期待されている
[Prior art and problems to be solved by the invention] Nb
3At superconducting material has a high critical magnetic field said to exceed 30T, and has better strain characteristics than Nb3Sn, so it is considered the third material following NbTi and Nb3Sn.
It is expected to be a practical superconducting material for nuclear fusion reactors, and is particularly expected to be used as a wire for superconducting magnets in nuclear fusion reactors.

また近年、Nb3At超電導線において、NbおよびA
Iの厚みを0.1μm程度にまで薄くすると、臨界電流
密度が上昇し、Nb3 Snの臨界電流密度と同等か、
あるいはこれを越える高い値が得られると報告されてい
る。
In addition, in recent years, Nb and A
When the thickness of I is reduced to about 0.1 μm, the critical current density increases and is equivalent to the critical current density of Nb3Sn.
It has been reported that values even higher than this can be obtained.

しかしながら、工業的には、Nbと人見の加工性が良く
ないため、長尺化が困難であり、長尺の超電導線として
得ることができないという問題があった。ジェリーロー
ル法およびNbパイプ法等により、Nb3Atの長尺線
材化が試みられているが、未だ十分な成果は得られてい
ない。また、Cu−10%Niをシースとした線材化も
一部試みられている。
However, industrially, there was a problem in that it was difficult to make the wire into a long length because the workability of Nb and human fibers was not good, and it was impossible to obtain a long superconducting wire. Attempts have been made to make Nb3At into a long wire by the jelly roll method, the Nb pipe method, etc., but sufficient results have not yet been obtained. Further, some attempts have been made to make wire rods using Cu-10%Ni as a sheath.

一方、核融合炉の大型超電導マグネットに用いるNb3
At超電導線としては、以下に示す特徴が必要とされて
いる。
On the other hand, Nb3 used in large superconducting magnets for nuclear fusion reactors
At superconducting wires are required to have the following characteristics.

(1) 安定化材として電気抵抗の低い材料、たとえば
CuまたはCu合金を用いていること。
(1) A material with low electrical resistance, such as Cu or a Cu alloy, is used as the stabilizing material.

(2) 少なくとも1000m以上の長尺であること。(2) It must be at least 1000m long.

(3) 非端部の臨界電流密度がNb3Sn程度の40
0A/mm”  (12T)以上テアルコト。
(3) The critical current density at the non-edge portion is approximately Nb3Sn.
0A/mm" (12T) or more.

(4) 数十μmの径のフィラメントが分散した多芯構
造であること。
(4) It has a multicore structure in which filaments with a diameter of several tens of μm are dispersed.

このような特徴を備えた線材を製造するため、従来、バ
イブ伸線法等が試みられてきた。しかし、従来の方法で
は伸線時に、フィラメントを形成するためのセグメント
相互の密着性が不足し、線材加工中に断線がしばしば発
生するという問題点があった。
In order to manufacture wire rods with such characteristics, vibrator wire drawing methods and the like have been attempted in the past. However, in the conventional method, there was a problem in that during wire drawing, the adhesion between the segments for forming a filament was insufficient, and wire breakage often occurred during wire processing.

この発明の目的は、かかる従来の問題点を解消し、高い
臨界電流密度を備えながら、より長尺の線材を作成する
ことができるNb3At等のNb5x多芯超電導線の製
造方法を提供することにある。
The purpose of the present invention is to provide a method for manufacturing Nb5x multicore superconducting wires such as Nb3At, which solves these conventional problems and allows the production of longer wires while having a high critical current density. be.

[課題を解決するための手段] この発明に従うNb3X多芯超電導線の製造方法は、N
b金属またはNb合金からな”るN□bj有基材と、N
bと反応して超電導性を示す化合物を作る゛元素Xまた
は元素Xを゛含む合金からなるX含有基材を接触させて
なる第1め線材を、CuまたはCu合金からなる安定化
材で覆うことにより第2゛の線材を形成する工程と、第
2の線材をCuまたはCu合金からなるビレット内に複
数本束ねて充填した後、前記ビレットを少な(とも10
0℃以1上4゛00℃以下“の温度による温間押出しで
加工して縮径化したjI3の線材を形成する工程と、第
3の線材を加熱処理して、Nb3Xを形成する工程とを
備えている。
[Means for Solving the Problems] A method for manufacturing an Nb3X multicore superconducting wire according to the present invention includes
b) N□bj-containing base material made of metal or Nb alloy;
The first wire rod is made of contact with an X-containing base material made of element X or an alloy containing element X, which produces a compound exhibiting superconductivity by reacting with After the process of forming a second wire by bundling and filling a plurality of second wires into a billet made of Cu or Cu alloy, the billet is
A step of processing by warm extrusion at a temperature of 0° C. or higher and 1 to 400° C. to form a reduced-diameter jI3 wire rod, and a step of heat-treating the third wire rod to form Nb3X. It is equipped with

N’bと反応して超電導性を示す化合物を作る元素′X
としては、たとえばAlζSnまたはGeなどがある。
Element 'X that reacts with N'b to create a compound that exhibits superconductivity
Examples include AlζSn or Ge.

      “     ′Nb合金および/または元
素Xを含む合金中の含有合金元素としては、Ti、5i
SHf、Ta。
``'The alloying elements contained in the Nb alloy and/or the alloy containing element X include Ti, 5i
SHf, Ta.

Zr5MgまたはBeなどが挙げられる。Examples include Zr5Mg or Be.

また、この発明に従うNb3X多芯超電導線の製造方法
において、温間押出しは、直接押出し法または静水圧押
出し法とすることができる。
Further, in the method for producing a Nb3X multicore superconducting wire according to the present invention, the warm extrusion can be a direct extrusion method or a hydrostatic extrusion method.

さらに、この発明に従う第1の線材が、ジェリーロール
法によりN’b含有シートとX含有シートを重ね合せて
巻上げたものであれば1、この発明の目的をより効果的
に達成することができる。
Furthermore, if the first wire according to the present invention is obtained by overlapping and winding an N'b-containing sheet and an X-containing sheet by a jelly roll method, the object of the present invention can be more effectively achieved .

[作用] この発明に従って得られるNb3X多芯超電導線では、
第1の線材を覆う安定化材およびビレットがマトリック
スとなり、その中に加熱処理により第1の線材から形成
されるNb3Xフイラメントが埋込まれている。安定化
材およびビレットを形成するCuまたはCu合金は、電
気抵抗が低くマトリックスとして最適である。また、第
1の線材を覆うCuまたはCu合金は、多芯線加工を行
なう上で互いの密着性が良く、加・工性の点からも優れ
ている。          ( 一方、この発明では、多芯線加工時に100℃から40
0°Cの温度で温間押出しを行なっている。
[Function] In the Nb3X multicore superconducting wire obtained according to the present invention,
A stabilizing material covering the first wire and the billet serve as a matrix, into which an Nb3X filament formed from the first wire by heat treatment is embedded. Cu or a Cu alloy forming the stabilizing material and billet has low electrical resistance and is optimal as a matrix. Further, the Cu or Cu alloy covering the first wire has good adhesion to each other when processing multifilamentary wires, and is also excellent in terms of processing and workability. (On the other hand, in this invention, when processing a multifilamentary wire, the
Warm extrusion is carried out at a temperature of 0°C.

温間押出しでは、線材を形成する金属が軟化し、特に第
2の線材の外皮がCuまたはCu合金であるので、第2
の線材相互の密着性が向上する。このように、温間押出
しにより金属組織の密着が向上するので、押出し加工を
施した線材をさらに細い線径まで加工しても、断線する
ことなく加工することができる。したがって、長尺の多
芯線の製造がより容易になる。また、本発明者らの実験
の結果、温間押出し時の熱履歴は、その後の加熱処理に
よるNb3 Xの形成にほとんど影響を与えず、得られ
る線材の臨界電流密度を低下させないことが解った。
In warm extrusion, the metal forming the wire softens, and especially since the outer skin of the second wire is Cu or a Cu alloy, the second
The adhesion between the wire rods is improved. In this way, warm extrusion improves the adhesion of the metal structure, so even if the extruded wire is processed to a smaller wire diameter, it can be processed without breaking. Therefore, it becomes easier to manufacture long multifilamentary wires. Additionally, as a result of experiments conducted by the present inventors, it was found that the thermal history during warm extrusion has little effect on the formation of Nb3X during subsequent heat treatment, and does not reduce the critical current density of the resulting wire. .

この発明の温間押出しには、直接押出し法および静水圧
押出し法をともに適用することができるが、静水圧押出
し法によれば、加工性のさらなる向上を望むことができ
る。
Although both a direct extrusion method and a hydrostatic extrusion method can be applied to the warm extrusion of the present invention, further improvement in processability can be expected by using the isostatic extrusion method.

[実施例コ まず、第1図に示すように、ジェリーロール法に従って
Nb箔1とAt箔2をCu棒材3の周囲に互いに一層ず
つ重ねて巻き、巻上ったものをCuパイプ4内に挿入し
た後、伸線加工して第2図に示すような断面を有するセ
グメント線材5を作成した。第2図に示すように、セグ
メント線材5は、中心と外周にCuからなるマトリ、ツ
クス6を備え、このマトリックス6間にNb箔1とAt
箔2が一層ずつ渦巻状に重なっている。
[Example 1] First, as shown in FIG. 1, Nb foil 1 and At foil 2 are rolled around a Cu bar 3 one layer at a time according to the jelly roll method, and the rolled up material is placed inside a Cu pipe 4. After inserting the wire into the wire, wire drawing was performed to create a segment wire 5 having a cross section as shown in FIG. As shown in FIG. 2, the segment wire 5 is provided with a matrix made of Cu at the center and the outer periphery, and between this matrix 6 is an Nb foil 1 and an At
The foils 2 are stacked layer by layer in a spiral shape.

このようにして得られた2mmφのセグメント線材24
0本を70mmφX65mmφの大径Cuビレット内に
挿入し、ビレット内部を真空引きした後、電子ビーム溶
接で開口部を塞いだ。次にシールされたビレットを26
0℃で2時間加熱した後、温間押出しを行ない35mm
φの線材を得た。その後、得られた線材について15%
の断面減少率で伸線加工を繰返し、0.5mmφの線材
を得た。第3図は、このようにして得られた線材の断面
図である。図に示すように、線材9は、Cuからなるマ
トリックス7中に、多数のNb、A」およびCuで構成
されるフィラメント8が形成された構造である。
Segment wire rod 24 of 2 mmφ obtained in this way
0 was inserted into a large-diameter Cu billet of 70 mmφ x 65 mmφ, the inside of the billet was evacuated, and the opening was closed by electron beam welding. Next, the sealed billet is 26
After heating at 0℃ for 2 hours, warm extrusion was performed to 35mm.
A wire rod of φ was obtained. After that, 15% of the obtained wire
The wire drawing process was repeated at a cross-section reduction rate of , to obtain a wire rod with a diameter of 0.5 mm. FIG. 3 is a cross-sectional view of the wire obtained in this manner. As shown in the figure, the wire 9 has a structure in which a large number of filaments 8 made of Nb, A'' and Cu are formed in a matrix 7 made of Cu.

一方、比較例として上述した2mmφのセグメント線材
を1mmφまで伸線加工した後、35mmφx3Qmm
φのCu製パイプへ150本挿入し、冷間で9.5mm
φまで伸線加工を行なった。
On the other hand, as a comparative example, after drawing the 2 mmφ segment wire rod to 1 mmφ,
Insert 150 pieces into φ Cu pipe and make 9.5mm cold.
Wire drawing was performed up to φ.

加工時の断面減少率は同じく15%であった。The area reduction rate during processing was also 15%.

表1に実施例および比較例について、それぞれの加工段
階における線径と断線回数を示す。表に示すように、実
施例では5.Qmmφから0.5mmφまでの加工の間
に、合計4回の断線が発生した。一方、比較例では同じ
加工の間に合計10回の断線が発生した。また、実施例
では0.5mmφの線材として1500mm以上の単長
を得ることができたが、比較例では最長で200mmの
単長しか得ることができなかった。以上の結果より、こ
の発明によれば、より長尺の線材を容易に製造できるこ
とが明らかになった。
Table 1 shows the wire diameter and the number of wire breakages at each processing stage for Examples and Comparative Examples. As shown in the table, in the example 5. During machining from Qmmφ to 0.5mmφ, a total of four disconnections occurred. On the other hand, in the comparative example, wire breakage occurred a total of 10 times during the same processing. Further, in the example, a single length of 1500 mm or more could be obtained as a 0.5 mmφ wire, but in the comparative example, a maximum single length of only 200 mm could be obtained. From the above results, it has become clear that according to the present invention, longer wire rods can be easily manufactured.

表2に、実施例および比較例で得られた線材を、種々の
条件で加熱処理した場合の臨界電流密度を示す。表に示
すように、実施例と比較例はほとんど同一の臨界電流密
度を示した。一方、加熱処理する前のQ、5mmφ線材
において、マトリックス中に形成されるフィラメントの
径ならびにNbおよびAtの厚みについて測定したとこ
ろ、フィラメントの径は実施例および比較例ともに30
μmであり、NbおよびAtの厚みは、それぞれ0゜3
μmと0.1μmであった。このようにフィラメントの
径ならびにNbおよびAIの厚みが十分小さいため、8
00℃から850℃での加熱処理により良好なNb3A
tの微細結晶が形成され、その結果、高い臨界電流密度
を達成することができたと考えられた。
Table 2 shows the critical current density when the wire rods obtained in Examples and Comparative Examples were heat-treated under various conditions. As shown in the table, the example and the comparative example showed almost the same critical current density. On the other hand, when measuring the diameter of the filament formed in the matrix and the thickness of Nb and At in the Q, 5 mmφ wire material before heat treatment, the diameter of the filament was 30 mm in both the example and the comparative example.
μm, and the thickness of Nb and At is 0°3 each.
μm and 0.1 μm. In this way, the diameter of the filament and the thickness of Nb and AI are sufficiently small, so 8
Good Nb3A by heat treatment at 00°C to 850°C
It was thought that fine crystals of t were formed, and as a result, a high critical current density could be achieved.

また、実施例において、各加工段階で得られた線材を8
00℃で5時間処理した後、得られた線材の非端部当り
の臨界電流密度を測定した。表3に各加工段階における
線材の直径と熱処理後の得られた線材の臨界電流密度と
の関係を示す。表から明らかなように、線径が細くなる
につれ、臨界電流密度が次第に上昇している。このこと
は、この発明に従って、線径を細くしていけば、加熱処
理によって確実にNb3Atの微細な結晶を形成するこ
とができ、その結果高い臨界電流密度が得られることを
意味している。
In addition, in the examples, the wire rods obtained at each processing step were
After treatment at 00° C. for 5 hours, the critical current density per non-end portion of the obtained wire was measured. Table 3 shows the relationship between the diameter of the wire at each processing step and the critical current density of the wire obtained after heat treatment. As is clear from the table, as the wire diameter becomes smaller, the critical current density gradually increases. This means that if the wire diameter is reduced according to the present invention, fine crystals of Nb3At can be reliably formed by heat treatment, and as a result, a high critical current density can be obtained.

(以下余白) 表 表 なお、以上の実施例においては、この発明に従う第1の
線材をジェリーロール法に従ってNb箔とAt箔を巻上
げたものとしたが、これに限定されるものではなく、た
とえば、複数のNb細、線とAt細線を撚線としたもの
や、束ね合せたものでもよい。また、上記実施例に示し
たセグメント線材は、中心のCu棒材がないものでもよ
(、たとえば、Nb箔とAt箔が巻かれたものにCu製
のバイブが被せられた構造のものでもよい。
(Margin below) Table Note that in the above embodiments, the first wire according to the present invention was made by rolling up Nb foil and At foil according to the jelly roll method, but the invention is not limited to this. For example, , a plurality of Nb thin wires and Atn thin wires may be twisted together or bundled together. Furthermore, the segment wire rods shown in the above embodiments may not have a central Cu bar (for example, they may have a structure in which Nb foil and At foil are wound and a Cu vibrator is covered). .

[発明の効果] 以上説明゛したように、この発明に従えば、電気抵抗の
低いCuまたはCu合金からなるマトリックス中に、数
十μm径のフィラメントが分散した多芯構造のNb3 
X超電導゛線を製造することができる。しかも、製造時
の加工性が向上する結果、Nb3Xのより微細な結晶か
らなるフィラメントを形成することができるので、臨界
電流密度が高い超電導線を得ることができる。さらに、
温間押出しにより金属組織の密着を向上させて縮径加工
を行なうため、その後の伸線加工で断線が少なく、より
長尺の超電導線を製造することができる。
[Effects of the Invention] As explained above, according to the present invention, Nb3 has a multicore structure in which filaments of several tens of μm in diameter are dispersed in a matrix made of Cu or Cu alloy with low electrical resistance.
X superconducting wires can be produced. Furthermore, as a result of improved workability during manufacturing, it is possible to form filaments made of finer crystals of Nb3X, so it is possible to obtain a superconducting wire with a high critical current density. moreover,
Since the diameter reduction process is performed by improving the adhesion of the metal structure by warm extrusion, there is less wire breakage in the subsequent wire drawing process, and a longer superconducting wire can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明に従う実施例において、ジェリーロ
ール法に従いセグメント線材を形成する工程を模式的に
示す斜視図である。 第2図は、第1図に示す工程により得られたセグメント
線材の断面図である。 第3図は、この発明に従う実施例において、多芯線の縮
径加工が終了して得られた線材の断面図である。 図において、1はNb箔、2はAt箔、3はCu棒材、
4はCuパイプ、5はセグメント線材、6および7はマ
トリックス、8はフィラメント、9は線材を示す。
FIG. 1 is a perspective view schematically showing the process of forming a segment wire according to the jelly roll method in an embodiment according to the present invention. FIG. 2 is a cross-sectional view of the segment wire rod obtained by the process shown in FIG. 1. FIG. 3 is a sectional view of a wire rod obtained after the diameter reduction process of a multifilamentary wire is completed in an embodiment according to the present invention. In the figure, 1 is Nb foil, 2 is At foil, 3 is Cu bar,
4 is a Cu pipe, 5 is a segment wire, 6 and 7 are matrices, 8 is a filament, and 9 is a wire.

Claims (5)

【特許請求の範囲】[Claims] (1)Nb金属またはNb合金からなるなるNb含有基
材と、Nbと反応して超電導性を示す化合物を作る元素
Xまたは元素Xを含む合金からなるX含有基材を接触さ
せてなる第1の線材を、CuまたはCu合金からなる安
定化材で覆うことにより第2の線材を形成する工程と、 前記第2の線材をCuまたはCu合金からなるビレット
内に複数本束ねて充填した後、前記ビレットを少なくと
も100℃以上400℃以下の温度による温間押出しで
加工して縮径化した第3の線材を形成する工程と、 前記第3の線材を加熱処理して、Nb_3Xを形成する
工程とを備えるNb_3X多芯超電導線の製造方法。
(1) A first structure in which an Nb-containing base material made of Nb metal or a Nb alloy is brought into contact with an X-containing base material made of an element a step of forming a second wire by covering the wire with a stabilizing material made of Cu or a Cu alloy, and after bundling and filling a plurality of the second wire into a billet made of Cu or a Cu alloy, a step of processing the billet by warm extrusion at a temperature of at least 100° C. or higher and 400° C. or lower to form a third wire rod having a reduced diameter; and a step of heat-treating the third wire rod to form Nb_3X. A method for manufacturing a Nb_3X multicore superconducting wire, comprising:
(2)前記温間押出しが、直接押出し法または静水圧押
出し法による請求項1に記載のNb_3X多芯超電導線
の製造方法。
(2) The method for producing a Nb_3X multifilamentary superconducting wire according to claim 1, wherein the warm extrusion is performed by a direct extrusion method or a hydrostatic extrusion method.
(3)前記第1の線材が、ジェリーロール法によりNb
含有シートとX含有シートを重ね合せて巻上げたもので
ある請求項1に記載のNb_3X多芯超電導線の製造方
法。
(3) The first wire is made of Nb by the jelly roll method.
The method for producing a Nb_3X multicore superconducting wire according to claim 1, wherein the Nb_3X multicore superconducting wire is obtained by stacking the X-containing sheet and the X-containing sheet and rolling them up.
(4)前記元素Xが、Al、SnおよびGeからなるグ
ループより選ばれる少なくとも1種である、請求項1に
記載のNb_3X多芯超電導線の製造方法。
(4) The method for manufacturing a Nb_3X multicore superconducting wire according to claim 1, wherein the element X is at least one selected from the group consisting of Al, Sn, and Ge.
(5)前記Nb合金および/または前記元素Xを含む合
金中の含有合金元素が、Ti、Si、Hf、Ta、Zr
、MgおよびBeからなるグループより選ばれる少なく
とも1種である、請求項1に記載のNb_3X多芯超電
導線の製造方法。
(5) The alloying elements contained in the Nb alloy and/or the alloy containing the element X are Ti, Si, Hf, Ta, and Zr.
, Mg, and Be.
JP2252322A 1990-09-21 1990-09-21 Manufacture of nb3x multi-core superconducting wire Pending JPH04132114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2252322A JPH04132114A (en) 1990-09-21 1990-09-21 Manufacture of nb3x multi-core superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2252322A JPH04132114A (en) 1990-09-21 1990-09-21 Manufacture of nb3x multi-core superconducting wire

Publications (1)

Publication Number Publication Date
JPH04132114A true JPH04132114A (en) 1992-05-06

Family

ID=17235649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2252322A Pending JPH04132114A (en) 1990-09-21 1990-09-21 Manufacture of nb3x multi-core superconducting wire

Country Status (1)

Country Link
JP (1) JPH04132114A (en)

Similar Documents

Publication Publication Date Title
US6583362B2 (en) Zirconia-stabilized multi-filamentary niobium-tin superconducting wire
US4094059A (en) Method for producing composite superconductors
JPH04132114A (en) Manufacture of nb3x multi-core superconducting wire
JPH04132115A (en) Manufacture of nb3x multi-core superconducting wire
JP2808874B2 (en) Nb (3) Manufacturing method of Al multi-core superconducting wire
JPH0329215A (en) Nb3al multicore superconductive wire
JPH04132113A (en) Manufacture of nb3x multi-core superconducting wire
JPH04132117A (en) Manufacture of nb3x multi-core superconducting wire
US11990251B2 (en) Methods for manufacturing a superconductor
JP2749136B2 (en) Aluminum stabilized superconducting wire
JP3948291B2 (en) Nb3Al compound superconducting wire and method for producing the same
JP2562435B2 (en) Superfine superconducting wire
JPH04277409A (en) Compound superconducting wire and manufacture thereof
JPH04132116A (en) Manufacture of nb3x multi-core superconducting wire
JPH04132120A (en) Manufacture of nb3x multi-core superconducting wire
JPH04301322A (en) Manufacture of niobium-tin superconducting wire
JPH09171727A (en) Manufacture of metal-based superconductive wire
JPH065130A (en) Composite multi-core nbti superconductive wire
JPS62270754A (en) Manufacture of nb-ti alloy superconducting wire rod and nb-ti alloy superconducting wire rod
JPH04132119A (en) Manufacture of nb3x multi-core superconducting wire
JPH1012057A (en) Nb3al-type superconductive wire material and manufacture thereof
JPH09106715A (en) Extremely thin multiple core nb-ti superconducting wire
JPH09139124A (en) Composite multiple-core superconductive wire and manufacture thereof
JPH07282650A (en) Compound superconductor
JPH08227621A (en) Compound superconducting wire material