JPH04132113A - Manufacture of nb3x multi-core superconducting wire - Google Patents

Manufacture of nb3x multi-core superconducting wire

Info

Publication number
JPH04132113A
JPH04132113A JP2252321A JP25232190A JPH04132113A JP H04132113 A JPH04132113 A JP H04132113A JP 2252321 A JP2252321 A JP 2252321A JP 25232190 A JP25232190 A JP 25232190A JP H04132113 A JPH04132113 A JP H04132113A
Authority
JP
Japan
Prior art keywords
wire
wire rod
alloy
foil
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2252321A
Other languages
Japanese (ja)
Inventor
Kazuya Daimatsu
一也 大松
Yuichi Yamada
雄一 山田
Masayuki Nagata
永田 正之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2252321A priority Critical patent/JPH04132113A/en
Publication of JPH04132113A publication Critical patent/JPH04132113A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Wire Processing (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To manufacture a longer wire rod having high critical current density by reducing the diameter of a billet by hydrostatic extruding, followed by a heat treatment. CONSTITUTION:An Nb foil 1 and an Al foil 2 in a superposed relation are wound around a Cu rod material 3 by a modified jelly roll process, to be inserted into a Cu pipe 4, followed by drawing, thereby obtaining a segment wire rod 5. The segment wire rod 5 is provided with matrices 6 made of Cu in the center thereof and in the outer periphery thereof, respectively. Between the matrices 6, the Nb foil 1 and the Al foil 2 are spiraled each in one layer. The obtained segment wire rod is inserted into a large-diameter Cu billet, followed by vacuum drawing, for hydrostatic extruding at a room temperature, thus obtaining a wire rod. The obtained wire rod is repeatedly drawn. In the wire rod 9, a multiplicity of filaments 8 made of Nb, Al and Cu are formed in a matrix 7 made of Cu.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、たとえば核融合炉およびSME S用など
の超電導線材として用いることのできるNb、X多芯超
電導線の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a Nb,

[従来の技術および発明が解決しようとする課題]Nb
、At超電導材料は、30Tを越えるといわれている高
い臨界磁界を有しており、歪特性もNb3 Snより良
好なことから、NbTiおよびNb3 Snに続く第3
の実用的な超電導材料として期待されており、特に核融
合炉の超電導用マグネット用線材として期待されている
[Prior art and problems to be solved by the invention] Nb
, At superconducting material has a high critical magnetic field said to exceed 30T, and has better strain characteristics than Nb3Sn, so it is the third material following NbTi and Nb3Sn.
It is expected to be a practical superconducting material for nuclear fusion reactors, and is particularly expected to be used as wire for superconducting magnets in nuclear fusion reactors.

また近年、Nb、At超電導線において、NbおよびA
Iの厚みを0.1μm程度にまで薄くすると、臨界電流
密度が上昇し、Nb3 Snの臨界電流密度と同等か、
あるいはこれを越える高い値が得られると報告されてい
る。
In addition, in recent years, Nb and At superconducting wires have been
When the thickness of I is reduced to about 0.1 μm, the critical current density increases and is equivalent to the critical current density of Nb3Sn.
It has been reported that values even higher than this can be obtained.

しかしながら、工業的には、NbとAtの加工性が良く
ないため、長尺化が困難であり、長尺の超電導線として
得ることができないという問題があった。ジェリーロー
ル法およびNbバイブ法等により、Nb3Atの長尺線
材化が試みられているが、未だ十分な成果は得られてい
ない。また、Cu−10%Niをシースとした線材化も
一部試みられている。
However, industrially, there is a problem in that it is difficult to lengthen the wire because Nb and At have poor workability, and it is impossible to obtain a long superconducting wire. Attempts have been made to make Nb3At into a long wire by the jelly roll method, Nb vibe method, etc., but sufficient results have not yet been obtained. Further, some attempts have been made to make wire rods using Cu-10%Ni as a sheath.

一方、核融合炉の大型超電導マグネットに用いるNb3
At超電導線としては、以下に示す特徴が必要とされて
いる。
On the other hand, Nb3 used in large superconducting magnets for nuclear fusion reactors
At superconducting wires are required to have the following characteristics.

(1) 安定化材として電気抵抗の低い材料、たとえば
CuまたはCu合金を用いていること。
(1) A material with low electrical resistance, such as Cu or a Cu alloy, is used as the stabilizing material.

(2) 少なくとも1000m以上の長尺であること。(2) It must be at least 1000m long.

(3) 非端部の臨界電流密度がNb3Sn程度の40
0A/mm2 (12T)以上であること。
(3) The critical current density at the non-edge portion is approximately Nb3Sn.
Must be 0A/mm2 (12T) or higher.

(4) 数十μmの径のフィラメントが分散した多芯構
造であること。
(4) It has a multicore structure in which filaments with a diameter of several tens of μm are dispersed.

このような特徴を備えた線材を製造するため、従来、バ
イブ伸線法等が試みられてきた。しかし、従来の方法で
は伸線時に、フィラメントを形成するためのセグメント
相互の密着性が不足し、線材加工中に断線がしばしば発
生するという問題点があった。
In order to manufacture wire rods with such characteristics, vibrator wire drawing methods and the like have been attempted in the past. However, in the conventional method, there was a problem in that during wire drawing, the adhesion between the segments for forming a filament was insufficient, and wire breakage often occurred during wire processing.

この発明の目的は、かかる従来の問題点を解消し、高い
臨界電流密度を備えながら、より長尺の線材を作成する
ことができるNb、At等のNb、X多芯超電導線の製
造方法を提供することにある。
The purpose of the present invention is to solve such conventional problems and provide a method for manufacturing Nb, X multicore superconducting wires made of Nb, At, etc., which can produce longer wires while having a high critical current density. It is about providing.

[課題を解決するための手段] この発明に従うNb、X多芯超電導線の製造方法は、N
b金属またはNb合金からなるNb含有基材と、Nbと
反応して超電導性を示す化合物を作る元素Xまたは元素
Xを含む合金からなるX含有基材を接触させてなる第1
の線材を、CuまたはCu合金からなる安定化材で覆う
ことにより第2の線材を形成する工程と、第2の線材を
CuまたはCu合金からなるビレット内に複数本束ねて
充填した後、前記ビレットを少なくとも静水圧押出しに
より加工して縮径化した第3の線材を形成する工程と、
第3の線材を加熱処理して、Nb。
[Means for Solving the Problems] A method for manufacturing a Nb,X multicore superconducting wire according to the present invention includes
A first material made by contacting an Nb-containing base material made of a b metal or a Nb alloy with an X-containing base material made of an element X or an alloy containing the element
a step of forming a second wire by covering the wire with a stabilizing material made of Cu or a Cu alloy; and a step of bundling and filling a plurality of second wires into a billet made of Cu or a Cu alloy; Processing the billet by at least hydrostatic extrusion to form a third wire having a reduced diameter;
The third wire is heat treated to form Nb.

Xを形成する工程とを備えている。and a step of forming an X.

Nbと反応して超電導性を示す化合物を作る元素Xとし
ては、たとえばA L SS nまたはGeなどがある
Examples of the element X that reacts with Nb to form a compound exhibiting superconductivity include A L SS n or Ge.

Nb合金および/または元素Xを含む合金中の含有合金
元素としては、Ti5St、HfSTalZr5Mgま
たはBeなどが挙げられる。
Examples of alloying elements contained in the Nb alloy and/or the alloy containing element X include Ti5St, HfSTalZr5Mg, and Be.

また、この発明に従うNb3X多芯超電導線の製造方法
において、静水圧押出し時の温度は、室温から100℃
以下とすることができる。
In addition, in the method for manufacturing Nb3X multicore superconducting wire according to the present invention, the temperature during hydrostatic extrusion is from room temperature to 100°C.
It can be as follows.

さらに、この発明に従う第1の線材が、ジェリーロール
法によりNb含有シートとX含有シートを重ね合せて巻
上げたものであれば、この発明の目的をより効果的に達
成することができる。
Furthermore, if the first wire rod according to the present invention is obtained by stacking and winding up an Nb-containing sheet and an X-containing sheet using a jelly roll method, the object of the present invention can be achieved more effectively.

[作用] この発明に従って得られるNb、X多芯超電導線では、
jlflの線材を覆う安定化材およびビレットがマトリ
ックスとなり、その中に加熱処理により第1の線材から
形成されるNb3Xフイラメントが埋込まれている。安
定化材およびビレットを形成するCuまたはCu合金は
、電気抵抗が低くマトリックスとして最適である。また
、第1の線材を覆うCuまたはCu合金は、多芯線加工
を行なう上で互いの密着性が良く、加工性の点からも優
れている。
[Function] In the Nb,X multicore superconducting wire obtained according to the present invention,
The stabilizing material and billet covering the jlfl wire serve as a matrix, into which the Nb3X filament formed from the first wire by heat treatment is embedded. Cu or a Cu alloy forming the stabilizing material and billet has low electrical resistance and is optimal as a matrix. Further, the Cu or Cu alloy covering the first wire has good adhesion to each other when processing multifilamentary wires, and is also excellent in terms of workability.

一方、この発明では、多芯線加工時に静水圧押出しを行
なっている。静水圧押出しでは、等方的押出しを行なう
ので、Nb含有基材とX含有基材、Nb含有基材と安定
化材および安定化材同士の密着が押出し時の静水圧によ
り達成される。このように、静水圧押出しにより金属組
織の密着が向上するので、静水圧加工を施した線材をさ
らに細い線径まで加工しても、断線することなく加工す
ることができる。したがって、長尺の多芯線の製造がよ
り容易になる。また、加工変形部の応力状態は、静水圧
応力が積重なるよう働くので、加工性が向上する。この
ため、室温から100℃程度の温度でも、十分な加工を
行なうことができる。このような温度範囲は、Nb、X
を形成するための温度(たとえばNb1Alで800℃
近傍)を大きく下回っているため、押出し加工時の発熱
によるNb3X形成への影響、ひいてはNb、Xの臨界
電流密度の低下についてまったく心配がない。
On the other hand, in this invention, hydrostatic extrusion is performed during multifilamentary wire processing. In hydrostatic extrusion, isotropic extrusion is performed, so that close contact between the Nb-containing base material and the X-containing base material, the Nb-containing base material and the stabilizing material, and the stabilizing materials are achieved by the hydrostatic pressure during extrusion. In this way, hydrostatic extrusion improves the adhesion of the metal structure, so even if a wire subjected to isostatic pressure processing is processed to an even smaller wire diameter, it can be processed without breaking. Therefore, it becomes easier to manufacture long multifilamentary wires. Furthermore, the stress state of the processed deformed portion acts in such a way that hydrostatic stress is accumulated, so that workability is improved. Therefore, sufficient processing can be performed even at temperatures from room temperature to about 100°C. Such a temperature range is suitable for Nb,
(e.g. 800°C for Nb1Al)
(near), there is no concern at all about the influence of heat generation during extrusion on the formation of Nb3X, and furthermore, the decrease in the critical current density of Nb and X.

[実施例コ まず、第1図に示すように、ジェリーロール法に従って
Nb箔1とAt箔2をCu棒材3の周囲に互いに一層ず
つ重ねて巻き、巻上ったものをCUパイプ4内に挿入し
た後、伸線加工して第2図に示すような断面を有するセ
グメント線材5を作成した。第5図に示すように、セグ
メント線材5は、中心と外周にCuからなるマトリック
ス6を備え、このマトリックス6間にNb箔1とAt箔
2が一層ずつ渦巻状に重なっている。
[Example 1] First, as shown in FIG. 1, Nb foil 1 and At foil 2 are rolled around a Cu bar 3 one layer at a time according to the jelly roll method, and the rolled up material is rolled up into a CU pipe 4. After inserting the wire into the wire, wire drawing was performed to create a segment wire 5 having a cross section as shown in FIG. As shown in FIG. 5, the segment wire 5 is provided with a matrix 6 made of Cu at the center and outer periphery, and between the matrix 6, a Nb foil 1 and an At foil 2 are stacked one layer at a time in a spiral shape.

このようにして得られた3mmφのセグメント線材36
0本を120mmφX105mmφの大径Cuビレット
内に装入し、ビレット内部を真空引きした後、電子ビー
ム溶接で開口部を塞いだ。
Segment wire rod 36 of 3 mmφ obtained in this way
0 was placed in a large diameter Cu billet of 120 mmφ x 105 mmφ, and after the inside of the billet was evacuated, the opening was closed by electron beam welding.

次に室温のまま、シールされたビレットについて静水圧
押出しを行ない5Qmmφの線材を得た。
Next, the sealed billet was subjected to hydrostatic extrusion at room temperature to obtain a wire rod with a diameter of 5 Q mm.

静水圧押出しには、静水圧押出しプレスを用いた6その
後、得られた線材について25%の断面減少率で、伸線
加工を繰返し、0.5mmφの線材を得た。第3図は、
このようにして得られた線材の断面図である。図に示す
ように、線材9は、Cuからなるマトリックス7中に、
多数のNb、AtおよびCuで構成されるフィラメント
8が形成された構造である。
A hydrostatic extrusion press was used for the hydrostatic extrusion.6 Thereafter, the wire rod obtained was repeatedly drawn at a cross-section reduction rate of 25% to obtain a wire rod with a diameter of 0.5 mm. Figure 3 shows
It is a sectional view of the wire obtained in this way. As shown in the figure, the wire 9 has a matrix 7 made of Cu.
This structure has a large number of filaments 8 made of Nb, At, and Cu.

一方、比較例として上述した3mmφのセグメント線材
を1mmφまで伸線加工した後、35mmφX30mm
φのCu製パイプへ150本挿入し、冷間で0.5mm
φまで伸線加工を行なった。
On the other hand, as a comparative example, after drawing the above-mentioned 3 mmφ segment wire to 1 mmφ,
Insert 150 pieces into a φ Cu pipe and make it 0.5mm cold.
Wire drawing was performed up to φ.

加工時の断面減少率は同じく25%であった。The area reduction rate during processing was also 25%.

表1に実施例および比較例について、それぞれの加工段
階における線径と断線回数を示す。表に示すように、実
施例では5.0mmφから0.5mmφまでの加工の間
に、合計5回の断線が発生した。一方、比較例では同じ
加工の間に合計10回の断線が発生した。また、実施例
では0.5mmφの線材として1000mm以上の単長
を得ることができたが、比較例では最長で200mmの
単長しか得ることができなかった。以上の結果より、こ
の発明によれば、より長尺の線材を容易に製造できるこ
とが明らかになった。
Table 1 shows the wire diameter and the number of wire breakages at each processing stage for Examples and Comparative Examples. As shown in the table, in the example, wire breakage occurred a total of five times during processing from 5.0 mmφ to 0.5 mmφ. On the other hand, in the comparative example, wire breakage occurred a total of 10 times during the same processing. Further, in the examples, a single length of 1000 mm or more could be obtained as a 0.5 mmφ wire, but in the comparative example, only a maximum single length of 200 mm could be obtained. From the above results, it has become clear that according to the present invention, longer wire rods can be easily manufactured.

表2に、実施例および比較例で得られた線材を、種々の
条件で加熱処理した場合の非端部当りの臨界電流密度を
示す。表に示すように、実施例と比較例はほとんど同一
の臨界電流密度を示した。−方、加熱処理前の0.5m
mφ線材において、マトリックス中に形成されるフィラ
メントの径ならびにNbおよびAtの厚みについて測定
したところ、フィラメントの径は実施例および比較例と
もに30μmであり、NbおよびAIの厚みは、それぞ
れ0.3μmと0.1μmであった。このようにフィラ
メントの径ならびにNbおよびAIの厚みが十分小さい
ため、800℃から850℃での加熱処理により良好な
Nb、AI微細結晶が形成され、その結果、高い臨界電
流密度を達成することができたと考えられた。
Table 2 shows the critical current density per non-end portion when the wire rods obtained in Examples and Comparative Examples were heat-treated under various conditions. As shown in the table, the example and the comparative example showed almost the same critical current density. - side, 0.5m before heat treatment
When measuring the diameter of the filament formed in the matrix and the thickness of Nb and At in the mφ wire, the diameter of the filament was 30 μm in both Examples and Comparative Examples, and the thickness of Nb and AI was 0.3 μm, respectively. It was 0.1 μm. As the diameter of the filament and the thickness of Nb and AI are sufficiently small, good Nb and AI microcrystals are formed by heat treatment at 800°C to 850°C, and as a result, a high critical current density can be achieved. It was considered possible.

また、実施例において、各加工段階で得られた線材を8
00℃で5時間処理した後、得られた線材の非端部当り
の臨界電流密度を測定した。第4図に各加工段階におけ
る線材の直径と熱処理後の得られた線材の臨界電流密度
との関係を示す。図から明らかなように、線径か細くな
るにつれ、臨界電流密度が次第に上昇している。このこ
とは、この発明に従って、線径を細くしていけば、加熱
処理によって確実にNb、Atの微細な結晶を形成する
ことができ、その結果高い臨界電流密度が得られること
を意味している。
In addition, in the examples, the wire rods obtained at each processing step were
After treatment at 00° C. for 5 hours, the critical current density per non-end portion of the obtained wire was measured. FIG. 4 shows the relationship between the diameter of the wire at each processing stage and the critical current density of the wire obtained after heat treatment. As is clear from the figure, as the wire diameter becomes smaller, the critical current density gradually increases. This means that if the wire diameter is made thinner according to the present invention, fine crystals of Nb and At can be reliably formed by heat treatment, and as a result, a high critical current density can be obtained. There is.

(以下余白) 表1 表2 なお、以上の実施例においては、この発明は従う第1の
線材をジェリーロール法に従ってNb箔とAI箔を巻上
げたものとしたが、これに限定されるものではなく、た
とえば、複数のNb細線とA艷細線を束ねたり、撚合せ
たものでもよい。また、上記実施例に示したセグメント
線材は、中心のCU棒材がないものでもよく、たとえば
、Nb箔とAt箔が巻かれたものにCu製のパイプが被
せられた構造のものでもよい。
(Margins below) Table 1 Table 2 In the above embodiments, the first wire according to the present invention was made by rolling up Nb foil and AI foil according to the jelly roll method, but the present invention is not limited to this. For example, a plurality of Nb wires and A-thin wires may be bundled or twisted together. Further, the segment wire rod shown in the above embodiment may be one without the central CU rod, for example, it may have a structure in which Nb foil and At foil are wound and a Cu pipe is covered.

[発明の効果] 以上説明したように、この発明に従えば、電気抵抗の低
いCuまたはCu合金からなるマトリックニス中に、数
十μm径のフィラメントが分散した多芯構造のNb3X
超電導線を製造することができる。しかも、製造時の加
工性が向上する結果、Nb3Xのより微細な結晶からな
るフィラメントを形成することができるので、臨界電流
密度が高い超電導線を得ることができる。さらに、・静
水圧押出しにより金属組織の密着を向上させて縮径加工
を行なうため、その後の伸線加工で断線が少なく、より
長尺の超電導線を製造することができる。
[Effects of the Invention] As explained above, according to the present invention, Nb3X with a multi-core structure in which filaments of several tens of μm in diameter are dispersed in a matrix varnish made of Cu or Cu alloy with low electrical resistance.
Superconducting wires can be manufactured. Moreover, as a result of improved workability during manufacturing, it is possible to form filaments made of finer crystals of Nb3X, so that a superconducting wire with a high critical current density can be obtained. Furthermore, since the diameter reduction process is performed by improving the adhesion of the metal structure by hydrostatic extrusion, there is less wire breakage in the subsequent wire drawing process, and a longer superconducting wire can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明に従う実施例において、ジェリーロ
ール法に従いセグメント線材を形成する工程を模式的に
示す斜視図であご。 第2図は、第1図に示す工程により得られたセグメント
線材の断面図である。 第3図は、この発明に従う実施例において、多芯線の縮
径加工が終了して得られた線材の断面図である。 第4図は、実施例において得られた線材の直径と127
.4.2Kにおける臨界電流密度の関係を示す図である
。 図において、1はNb箔、2はAt箔、3はCU棒材、
4はCuパイプ、5はセグメント線材、6および7はマ
トリックス、8はフィラメント、9は線材を示す。 第3図 第 図 第4図 録 イ1ヒ(mm)
FIG. 1 is a perspective view schematically showing the process of forming a segment wire according to the jelly roll method in an embodiment according to the present invention. FIG. 2 is a cross-sectional view of the segment wire rod obtained by the process shown in FIG. 1. FIG. 3 is a sectional view of a wire rod obtained after the diameter reduction process of a multifilamentary wire is completed in an embodiment according to the present invention. Figure 4 shows the diameter of the wire obtained in the example and 127
.. It is a figure showing the relationship of critical current density at 4.2K. In the figure, 1 is Nb foil, 2 is At foil, 3 is CU bar,
4 is a Cu pipe, 5 is a segment wire, 6 and 7 are matrices, 8 is a filament, and 9 is a wire. Figure 3 Figure 4 Figure 4 Illustrated record A1hi (mm)

Claims (5)

【特許請求の範囲】[Claims] (1)Nb金属またはNb合金からなるNb含有基材と
、Nbと反応して超電導性を示す化合物を作る元素Xま
たは元素Xを含む合金からなるX含有基材を接触させて
なる第1の線材を、CuまたはCu合金からなる安定化
材で覆うことにより第2の線材を形成する工程と、 前記第2の線材をCuまたはCu合金からなるビレット
内に複数本束ねて充填した後、前記ビレットを少なくと
も静水圧押出しにより加工して縮径化した第3の線材を
形成する工程と、 前記第3の線材を加熱処理して、Nb_3Xを形成する
工程とを備えるNb_3X多芯超電導線の製造方法。
(1) A first Nb-containing base material made of Nb metal or Nb alloy and an X-containing base material made of element X or an alloy containing element X that reacts with Nb to form a compound exhibiting superconductivity. forming a second wire by covering the wire with a stabilizing material made of Cu or a Cu alloy; and after bundling and filling a plurality of the second wire into a billet made of Cu or a Cu alloy; Manufacturing a Nb_3X multifilamentary superconducting wire comprising the steps of processing a billet by at least hydrostatic extrusion to form a diameter-reduced third wire, and heat-treating the third wire to form Nb_3X. Method.
(2)前記静水圧押出し時の温度が、室温から100℃
以下である請求項1に記載のNb_3X多芯超電導線の
製造方法。
(2) The temperature during the hydrostatic extrusion is from room temperature to 100°C
The method for manufacturing a Nb_3X multicore superconducting wire according to claim 1, which is as follows.
(3)前記第1の線材が、ジェリーロール法によりNb
含有シートとX含有シートを重ね合せて巻上げたもので
ある請求項1に記載のNb_3X多芯超電導線の製造方
法。
(3) The first wire is made of Nb by the jelly roll method.
The method for producing a Nb_3X multicore superconducting wire according to claim 1, wherein the Nb_3X multicore superconducting wire is obtained by stacking the X-containing sheet and the X-containing sheet and rolling them up.
(4)前記元素Xが、Al、SnおよびGeからなるグ
ループより選ばれる少なくとも1種である、請求項1に
記載のNb_3X多芯超電導線の製造方法。
(4) The method for manufacturing a Nb_3X multicore superconducting wire according to claim 1, wherein the element X is at least one selected from the group consisting of Al, Sn, and Ge.
(5)前記Nb合金および/または前記元素Xを含む合
金中の含有合金元素が、Ti、Si、Hf、Ta、Zr
、MgおよびBeからなるグループより選ばれる少なく
とも1種である、請求項1に記載のNb_3X多芯超電
導線の製造方法。
(5) The alloying elements contained in the Nb alloy and/or the alloy containing the element X are Ti, Si, Hf, Ta, and Zr.
, Mg, and Be.
JP2252321A 1990-09-21 1990-09-21 Manufacture of nb3x multi-core superconducting wire Pending JPH04132113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2252321A JPH04132113A (en) 1990-09-21 1990-09-21 Manufacture of nb3x multi-core superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2252321A JPH04132113A (en) 1990-09-21 1990-09-21 Manufacture of nb3x multi-core superconducting wire

Publications (1)

Publication Number Publication Date
JPH04132113A true JPH04132113A (en) 1992-05-06

Family

ID=17235634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2252321A Pending JPH04132113A (en) 1990-09-21 1990-09-21 Manufacture of nb3x multi-core superconducting wire

Country Status (1)

Country Link
JP (1) JPH04132113A (en)

Similar Documents

Publication Publication Date Title
US6583362B2 (en) Zirconia-stabilized multi-filamentary niobium-tin superconducting wire
US5554448A (en) Wire for Nb3 X superconducting wire
US4094059A (en) Method for producing composite superconductors
US7325293B2 (en) Zirconia-stabilized multi-filamentary niobium-tin superconducting wire
US5001020A (en) Multifilament superconducting wire of NB3 AL
JPH04132113A (en) Manufacture of nb3x multi-core superconducting wire
JP3520699B2 (en) Oxide superconducting wire and manufacturing method thereof
JPH04132115A (en) Manufacture of nb3x multi-core superconducting wire
JPH04132114A (en) Manufacture of nb3x multi-core superconducting wire
JP2808874B2 (en) Nb (3) Manufacturing method of Al multi-core superconducting wire
JPH04132117A (en) Manufacture of nb3x multi-core superconducting wire
JP2562435B2 (en) Superfine superconducting wire
JPH04277409A (en) Compound superconducting wire and manufacture thereof
JPH04132116A (en) Manufacture of nb3x multi-core superconducting wire
JPH065130A (en) Composite multi-core nbti superconductive wire
JP2749136B2 (en) Aluminum stabilized superconducting wire
JPH0831244A (en) Superconducting wire and its manufacture
JPS58189909A (en) Method of producing nb3sn superconductor
JPH06290651A (en) Nb3x type superconductive wire rod and its manufacture
JPH04301322A (en) Manufacture of niobium-tin superconducting wire
JPH04132120A (en) Manufacture of nb3x multi-core superconducting wire
JPH07302520A (en) Manufacture of nb3sn superconductive wire
JPH07176222A (en) Nb3x superconductive wire material
JP3212596B2 (en) Cu or Al stabilized superconducting wire and method for producing the same
JPH04132119A (en) Manufacture of nb3x multi-core superconducting wire