JP2012190595A - Elemental wire for superconducting twisted cable, and superconducting twisted cable - Google Patents

Elemental wire for superconducting twisted cable, and superconducting twisted cable Download PDF

Info

Publication number
JP2012190595A
JP2012190595A JP2011051507A JP2011051507A JP2012190595A JP 2012190595 A JP2012190595 A JP 2012190595A JP 2011051507 A JP2011051507 A JP 2011051507A JP 2011051507 A JP2011051507 A JP 2011051507A JP 2012190595 A JP2012190595 A JP 2012190595A
Authority
JP
Japan
Prior art keywords
superconducting
wire
wires
metal
resistance metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011051507A
Other languages
Japanese (ja)
Inventor
Masahiro Sugimoto
昌弘 杉本
Hirokazu Tsubouchi
宏和 坪内
Hitoshi Shimizu
仁司 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2011051507A priority Critical patent/JP2012190595A/en
Publication of JP2012190595A publication Critical patent/JP2012190595A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an elemental wire for a superconducting twisted cable which allows the achievement of a low AC loss even when plural superconducting elemental wires are twisted together to have a large capacity, and which is stable in the manufacturing thereof, and to provide a superconducting twisted cable including the same twisted together, and a method for manufacturing the elemental wire for a superconducting twisted cable.SOLUTION: The elemental wire comprises: a plurality of superconducting primary elemental wires including superconducting filaments; and a plurality of metal composite barrier wires including low-resistance metal wires which are each covered with a high-resistance metal material and are continuously disposed on the periphery of the entire superconducting primary elemental wires along a circumferential direction thereof.

Description

本発明は、超電導撚線用素線及び超電導撚線に関する。   The present invention relates to a superconducting stranded wire and a superconducting stranded wire.

超電導素線は、銅などの常電導金属である安定化金属中にNbTi等からなる超電導フィラメントを埋込んだもので、この超電導素線の多数本を撚合わせて撚線となし、又はこの撚線を更に撚合わせて、例えばコイリングに適した断面矩形又は楔型に圧縮成形した成形撚線として用いられる。或いは、超電導撚線を金属管内に収容し、圧縮成形してケーブルインコンジットとして用いられる。   Superconducting strands are made by embedding a superconducting filament made of NbTi or the like in a stabilizing metal that is a normal conducting metal such as copper, and twisting many of these superconducting strands into a stranded wire, The wire is further twisted and used, for example, as a formed stranded wire that is compression-molded into a rectangular shape or wedge shape suitable for coiling. Alternatively, a superconducting stranded wire is accommodated in a metal tube and compression molded to be used as a cable in conduit.

このような超電導撚線やその圧縮成形撚線、或いはケーブルインコンジットは、素粒子加速器、産業用小型加速器(SOR、医療用)、ウイグラーマグネット、アンジェレーター、発電機、核融合炉、電力貯蔵装置等の導体として実用されつつあり、更に高密度・大電流化に向けて開発が進められている。   Such superconducting stranded wire, its compression-molded stranded wire, or cable in-conduit is used for elementary particle accelerator, industrial small accelerator (SOR, medical), wiggler magnet, angelator, generator, nuclear fusion reactor, power storage device. It is being put to practical use as a conductor, etc., and is being developed for higher density and higher current.

ところで、表面が電気絶縁されていない超電導素線を用いた超電導撚線では、超電導素線同士が局部的に電気的に接触している。このような超電導撚線を交流磁界下やパルス変動磁界下で使用した場合、超電導素線間で構成される閉回路に交流磁界によって誘起される電流が流れて交流損失(ジュール損失)が生じる。この交流損失により冷媒のヘリウムの蒸発量が増え、場合によっては常電導状態に転移する(クエンチ事故)恐れがある。   By the way, in the superconducting stranded wire using the superconducting strands whose surfaces are not electrically insulated, the superconducting strands are in electrical contact with each other locally. When such a superconducting stranded wire is used under an AC magnetic field or a pulse fluctuation magnetic field, a current induced by the AC magnetic field flows through a closed circuit formed between the superconducting wires, resulting in an AC loss (Joule loss). Due to this AC loss, the amount of evaporation of the helium refrigerant increases, and in some cases there is a risk of transition to a normal conducting state (quenching accident).

このときの交流損失としては、超電導素線内の超電導フィラメント部分で発生する履歴損失と常電導金属である安定化銅部分で発生する結合損失(渦電流損失を含む)に加え、電気的に接触した超電導素線間に超電導素線のシース金属材を横切って流れる電流による素線間結合損失が存在する。   As AC loss at this time, in addition to hysteresis loss occurring in the superconducting filament part in the superconducting strand and coupling loss (including eddy current loss) occurring in the stabilized copper part which is a normal conducting metal, electrical contact is made. There is an inter-element coupling loss due to the current flowing across the sheath metal material of the superconducting element wire between the superconducting element wires.

このような素線間結合損失を低減させる方法として、特許文献1に記載されているように、安定化材となる銅管と、超電導フィラメントを含む断面六角形の超電導一次素線の間に、断面六角形の高抵抗金属線を介在させる方法がある。しかし、この方法によると、高抵抗金属線群からなる電気抵抗を所望の値にしようとすると、高抵抗金属線のサイズが規定されてしまうことから、超電導一次素線のサイズも規定され、結果として超電導フィラメントの径が制限されてしまう。   As a method for reducing such a coupling loss between strands, as described in Patent Document 1, between a copper tube serving as a stabilizing material and a superconducting primary strand having a hexagonal cross section including a superconducting filament, There is a method of interposing a high-resistance metal wire having a hexagonal cross section. However, according to this method, since the size of the high-resistance metal wire is defined when the electrical resistance composed of the group of high-resistance metal wires is set to a desired value, the size of the superconducting primary wire is also defined. As a result, the diameter of the superconducting filament is limited.

このため、高抵抗金属線のサイズを小さくしようとした場合、超電導フィラメント径も小さくなり、超電導素線の伸線加工時に超電導フィラメントが断線しやすくなるという問題がある。また、超電導フィラメント径を大きくしようとした場合には、同時に高抵抗金属線のサイズが大きくなるため、低抵抗金属よりも加工性の良くない高抵抗金属の超電導素線全体に占める割合が大きくなり、製造効率(歩留と能率)という観点から製造安定性がよくないという問題があった。   For this reason, when trying to reduce the size of the high-resistance metal wire, there is a problem that the diameter of the superconducting filament is also reduced, and the superconducting filament is likely to be disconnected when the superconducting element wire is drawn. In addition, when trying to increase the diameter of the superconducting filament, the size of the high-resistance metal wire increases at the same time, so the ratio of the high-resistance metal, which is less workable than the low-resistance metal, to the entire superconducting wire increases. There is a problem that the production stability is not good from the viewpoint of production efficiency (yield and efficiency).

特開平7−141939号公報JP-A-7-141939

本発明は、かかる問題点に鑑みてなされたものであり、超電導素線を撚り合わせて大容量化しても低交流損失を実現し、かつ、製造安定性を有する超電導撚線用素線、これを撚り合わせた超電導撚線、及び超電導撚線用素線の製造方法を提供することを目的とする。   The present invention has been made in view of such problems, and realizes a low AC loss even when the superconducting strands are twisted to increase the capacity, and has a manufacturing stability, and this It aims at providing the manufacturing method of the superconducting stranded wire which twisted together, and the strand for superconducting stranded wire.

上記課題を解決するため、本発明の第1の態様は、超電導フィラメントを含む複数本の超電導一次素線と、前記複数本の超電導一次素線の外周であって、周方向に連続的に配置された、高抵抗金属材により表面が被覆された低抵抗金属線を含む複数本の金属複合バリア線を具備することを特徴とする超電導撚線用素線を提供する。   In order to solve the above-described problem, a first aspect of the present invention is a plurality of superconducting primary strands including superconducting filaments and an outer periphery of the plurality of superconducting primary strands, which are continuously arranged in the circumferential direction. There is provided a superconducting stranded wire comprising a plurality of metal composite barrier wires including a low resistance metal wire whose surface is coated with a high resistance metal material.

このような超電導撚線用素線において、前記複数本の金属複合バリア線の外側に第1の安定化金属層が配置され、超電導一次素線が、前記超電導フィラメントの周囲に第2の安定化金属層が被覆されてなる構成とすることができる。   In such a superconducting stranded wire, a first stabilizing metal layer is disposed outside the plurality of metal composite barrier wires, and the superconducting primary strand is second stabilized around the superconducting filament. It can be set as the structure by which a metal layer is coat | covered.

また、前記金属複合線における、前記低抵抗金属線に対する前記高抵抗金属材の体積比を、0.2〜2倍とすることができる。   Moreover, the volume ratio of the said high resistance metal material with respect to the said low resistance metal wire in the said metal composite wire can be 0.2-2 times.

更に、前記超電導フィラメントがNbTiからなり、前記低抵抗金属線が銅からなり、前記高抵抗金属材がNi、MnおよびSiからなる群から選ばれた1種類以上を含む銅合金からなるものとすることができる。   Further, the superconducting filament is made of NbTi, the low-resistance metal wire is made of copper, and the high-resistance metal material is made of a copper alloy containing one or more selected from the group consisting of Ni, Mn and Si. be able to.

本発明の第2の態様は、上述の超電導撚線用素線を2本以上撚りあわせて構成された超電導撚線を提供する。   The second aspect of the present invention provides a superconducting stranded wire formed by twisting two or more of the above-described superconducting stranded wires.

本発明の第3の態様は、超電導フィラメントを含む複数本の超電導一次素線と、高抵抗金属材により表面が被覆された低抵抗金属線を含む複数本の金属複合バリア線を作成する工程と、安定化金属シース内に、前記複数本の超電導一次素線を配置し、その外周に前記複数本の金属複合バリア線を一層以上配置して、複合ビレットを作製する工程と、前記複合ビレットに熱間押出加工を施す工程を具備することを特徴とする超電導撚線用素線の製造方法を提供する。   According to a third aspect of the present invention, there is provided a step of forming a plurality of superconducting primary strands including a superconducting filament and a plurality of metal composite barrier wires including a low resistance metal wire whose surface is coated with a high resistance metal material; A step of disposing the plurality of superconducting primary strands in a stabilized metal sheath and disposing one or more of the plurality of metal composite barrier wires on the outer periphery thereof to produce a composite billet; and Provided is a method of manufacturing a strand for a superconducting stranded wire, comprising a step of performing hot extrusion.

このような超電導撚線用素線の製造方法において、前記超電導一次素線と前記金属複合バリア線が、同一サイズの断面六角形状を有するものとすることができる。   In such a method for manufacturing a strand for a superconducting stranded wire, the superconducting primary strand and the metal composite barrier wire may have a hexagonal cross section of the same size.

本発明によれば、超電導素線を撚り合わせて大容量化しても低交流損失を実現し、従来よりも製造安定性のよい超電導撚線用素線、これを撚り合わせた超電導撚線、及び超電導撚線用素線が提供される。   According to the present invention, even if the superconducting wire is twisted to achieve a large capacity, a low AC loss is realized, and a superconducting twisted wire with better manufacturing stability than the conventional one, a superconducting twisted wire twisted together, and A strand for a superconducting stranded wire is provided.

本発明の第1の実施形態に係る超電導素線の構成を示す断面図である。It is sectional drawing which shows the structure of the superconducting strand which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る超電導撚線の構成を示す概略図である。It is the schematic which shows the structure of the superconducting twisted wire which concerns on the 2nd Embodiment of this invention. 実施例1に係る超電導素線の構成を示す断面図である。1 is a cross-sectional view showing a configuration of a superconducting element wire according to Example 1. FIG. 比較例1及び2に係る超電導素線の構成を示す断面図である。It is sectional drawing which shows the structure of the superconducting strand which concerns on the comparative examples 1 and 2.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

第1の実施形態
図1は、本発明の第1の実施形態に係る超電導素線の断面構成を示す図である。この超電導素線では、複数本の断面略六角形の安定化金属線1の集合からなるコア部の外周に、表面が安定化材3により被覆された超電導フィラメント2からなる断面略六角形の超電導一次素線4がマトリクス状に複数本配置され、フィラメント集合体を構成している。また、このフィラメント集合体の外周を取り囲むように、表面が高抵抗金属材6で被覆された低抵抗金属線5からなる複合バリア線7の集合が配置されている。ここで、複合バリア線7は、隣り合う複合バリア線7同士が接するように、周方向に連続的に配置されている。複合バリア線7が周方向において不連続に配置されている超電導素線の場合には、集合した複合バリア線7の不連続部分から安定化金属シース8を横切って電流が流れるため、素線間結合損失を低減することができない。
First Embodiment FIG. 1 is a diagram showing a cross-sectional configuration of a superconducting element wire according to a first embodiment of the present invention. In this superconducting wire, a superconducting conductor having a substantially hexagonal cross section composed of a superconducting filament 2 whose surface is covered with a stabilizing material 3 on the outer periphery of a core portion composed of a set of a plurality of stabilized hexagonal stabilizing metal wires 1. A plurality of primary strands 4 are arranged in a matrix to constitute a filament assembly. A set of composite barrier wires 7 composed of low-resistance metal wires 5 whose surfaces are covered with a high-resistance metal material 6 is disposed so as to surround the outer periphery of the filament assembly. Here, the composite barrier wires 7 are continuously arranged in the circumferential direction so that the adjacent composite barrier wires 7 are in contact with each other. In the case of a superconducting element wire in which the composite barrier wire 7 is discontinuously arranged in the circumferential direction, a current flows from the discontinuous portion of the assembled composite barrier wire 7 across the stabilizing metal sheath 8. Coupling loss cannot be reduced.

なお、複合バリア線7は、1層の形でフィラメント集合体の外周を取り囲んでいてもよいが、複数層であってもよい。   The composite barrier wire 7 may surround the outer periphery of the filament aggregate in a single layer form, but may be a plurality of layers.

このようにフィラメント集合体の外周を取り囲む複合バリア線7の集合の外周が、安定化金属シース8により覆われて、超電導素線が構成されている。   In this way, the outer periphery of the assembly of the composite barrier wires 7 surrounding the outer periphery of the filament assembly is covered with the stabilizing metal sheath 8 to constitute a superconducting element wire.

以上のように構成される超電導素線において、超電導フィラメント2を構成する超電導材料としては、特に限定されない。例えば、NbTi、NbSn、MgB等の金属系超電導体に限らず、Bi系超電導体にも適用可能である。 In the superconducting wire constructed as described above, the superconducting material constituting superconducting filament 2 is not particularly limited. For example, the present invention is applicable not only to metallic superconductors such as NbTi, Nb 3 Sn, and MgB 2 but also to Bi based superconductors.

本実施形態に係る超電導素線は、超電導材が多芯構造を有する超電導素線において有効であり、超電導材料はNbTiに限定されるものではないが、以下、主として超電導材料をNbTiとした場合について説明する。   The superconducting wire according to the present embodiment is effective in a superconducting wire in which the superconducting material has a multi-core structure, and the superconducting material is not limited to NbTi. Hereinafter, the case where the superconducting material is mainly NbTi will be described below. explain.

コア部の安定化金属線1を構成する低抵抗金属としては、銅、銅合金、アルミニウム、アルミニウム合金等を挙げることが出来るが、特に無酸素銅を用いるのが好ましい。また、安定化材3、低抵抗金属線5、安定化金属シース8もまた、銅、銅合金、アルミニウム、アルミニウム合金等を挙げることが出来るが、好ましくは無酸素銅を用いることができる。   Examples of the low resistance metal constituting the stabilized metal wire 1 in the core include copper, copper alloy, aluminum, aluminum alloy, etc., but it is particularly preferable to use oxygen-free copper. The stabilizing material 3, the low resistance metal wire 5, and the stabilizing metal sheath 8 can also include copper, copper alloy, aluminum, aluminum alloy, etc., but preferably oxygen-free copper can be used.

超電導材料がNbTiである場合、コア部および/またはシース部を構成する低抵抗金属材からなる安定化材は、残留抵抗比(温度273Kと超電導臨界温度(Tc)での電気抵抗の比)が50以上かつ300以下の銅であることが好ましい。   When the superconducting material is NbTi, the stabilizing material made of the low resistance metal material constituting the core part and / or the sheath part has a residual resistance ratio (electric resistance ratio between the temperature 273K and the superconducting critical temperature (Tc)). It is preferable that it is 50 or more and 300 or less copper.

なお、超電導材料がNbTiである場合、コア部を構成する銅または銅合金からなる低抵抗金属材をCuNi合金等からなる高抵抗バリア層で分割することもできるが、実用上許容される交流損失以下である場合は、コスト的観点から高抵抗バリア層による分割はしない方が望ましい。   In addition, when the superconducting material is NbTi, the low resistance metal material made of copper or copper alloy constituting the core portion can be divided by the high resistance barrier layer made of CuNi alloy or the like. In the case of the following, it is desirable not to divide by the high resistance barrier layer from the viewpoint of cost.

また、超電導素線の臨界電流を増大させるためには、コア部をすべて超電導一次素線4とし、低抵抗金属からなる安定化金属線1をまったく設けなくてもよい。   Further, in order to increase the critical current of the superconducting element wire, the core part is entirely made of the superconducting primary element wire 4, and the stabilizing metal line 1 made of a low resistance metal need not be provided at all.

複合バリア線7の高抵抗金属材6としては、Ni、Mn、及びSiからなる群から選ばれた1種以上を含む銅合金や、Zn、Fe、Mg、Mn、Si、Cu、Ti、及びCrからなる群から選ばれた1種以上を含むアルミ合金を用いることが出来る。以下、比抵抗は、超電導線の使用時の温度における値を意味する。   As the high resistance metal material 6 of the composite barrier wire 7, a copper alloy containing one or more selected from the group consisting of Ni, Mn, and Si, Zn, Fe, Mg, Mn, Si, Cu, Ti, and An aluminum alloy containing one or more selected from the group consisting of Cr can be used. Hereinafter, the specific resistance means a value at a temperature when the superconducting wire is used.

ここで、高抵抗金属材6の高抵抗とは、1×10-8Ωm〜5×10-7Ωmの比抵抗を意味し、低抵抗金属線5の低抵抗とは、5×10-9Ωm未満の比抵抗を意味し、両者には、少なくとも3倍以上の比抵抗差があることが望ましい。比抵抗差が3倍未満の場合には、高抵抗金属材と低抵抗金属材を複合化した際に、複合バリア線として有効となる大きい複合抵抗を得られないという問題があり、好ましくない。 Here, the high resistance of the high resistance metal material 6 means a specific resistance of 1 × 10 −8 Ωm to 5 × 10 −7 Ωm, and the low resistance of the low resistance metal wire 5 is 5 × 10 −9. It means a specific resistance of less than Ωm, and it is desirable that both have a specific resistance difference of at least 3 times. When the specific resistance difference is less than 3 times, there is a problem that when a high resistance metal material and a low resistance metal material are combined, a large composite resistance effective as a composite barrier wire cannot be obtained, which is not preferable.

表面が高抵抗金属材6で被覆された低抵抗金属線5からなる複合バリア線7における複合比抵抗ρ複合は、5×10-9Ωm〜3×10-7Ωmであることが望ましい。複合比抵抗ρ複合が3×10-7Ωmを越えると、加工性が著しく悪くなるため、好ましくない。なお、複合比抵抗ρ複合が5×10-9Ωm未満では、素線間結合損失が生じてしまい複合バリア線として有効ではないので、好ましくない。 The composite specific resistance ρ composite of the composite barrier wire 7 composed of the low resistance metal wire 5 whose surface is coated with the high resistance metal material 6 is preferably 5 × 10 −9 Ωm to 3 × 10 −7 Ωm. If the composite specific resistance ρ composite exceeds 3 × 10 −7 Ωm, the workability is remarkably deteriorated. If the composite specific resistance ρ composite is less than 5 × 10 −9 Ωm, an inter-element coupling loss occurs and is not effective as a composite barrier line.

なお、複合比抵抗ρ複合は、以下の式で与えられる。 The composite specific resistance ρ composite is given by the following equation.

ρ複合=λ低抵抗×ρ低抵抗+λ高抵抗×ρ高抵抗
λ低抵抗:低抵抗金属の複合バリア線に占める体積比
λ高抵抗:高抵抗金属の複合バリア線に占める体積比
ρ低抵抗:低抵抗金属の比抵抗
ρ高抵抗:高抵抗金属の比抵抗
複合バリア材の構成比(高抵抗金属材の低抵抗金属材に対する体積比λ高抵抗/λ低抵抗)は、選択したρ高抵抗とρ低抵抗に基づき、有効な複合比抵抗を得るように、またこの線材を使用する機器側の要求事項(例えば、運転時の磁界変化率によって決定される交流損失の許容レベル)を満たすように、適宜選択することができる。また、複合バリア材の層数は、この線材を使用する機器側の要求事項を満たすように、適宜選定することができる。
ρ composite = λ low resistance × ρ low resistance + λ high resistance × ρ high resistance
λ Low resistance : Volume ratio of low resistance metal in composite barrier wire λ High resistance : Volume ratio of high resistance metal in composite barrier wire ρ Low resistance : Specific resistance of low resistance metal ρ High resistance : Specific resistance of high resistance metal The composition ratio of the composite barrier material (volume ratio of high resistance metal material to low resistance metal material λ high resistance / λ low resistance ) is based on the selected ρ high resistance and ρ low resistance so as to obtain an effective composite specific resistance. Moreover, it can select suitably so that the requirements (for example, the tolerance | permissible level of the alternating current loss determined by the magnetic field change rate at the time of operation | use) which use this wire may be satisfy | filled. Further, the number of layers of the composite barrier material can be appropriately selected so as to satisfy the requirements on the device side using the wire.

ただし、複合バリア材の構成比が0.2倍未満では、素線間結合損失を低減するような有効な複合比抵抗を得ることが難しくなり、2倍を越えると、複合バリア自体の加工性が悪くなることから、0.2〜2倍であることが好ましい。   However, when the composition ratio of the composite barrier material is less than 0.2 times, it is difficult to obtain an effective composite specific resistance that reduces the coupling loss between the strands. Is preferably 0.2 to 2 times.

第2の実施形態
次に、以上説明した超電導素線を撚り合わせた、本発明の第2の実施形態に係る超電導撚線について説明する。
Second Embodiment Next, a superconducting stranded wire according to a second embodiment of the present invention in which the superconducting wires described above are twisted together will be described.

本発明の第2の実施形態に係る超電導撚線は、図2(a)に示すように、第1の実施形態に係る超電導素線10を16本撚り合わせた平角成型撚線11とすることができる。   As shown in FIG. 2A, the superconducting stranded wire according to the second embodiment of the present invention is a flat-molded stranded wire 11 obtained by twisting 16 superconducting strands 10 according to the first embodiment. Can do.

また、図2(b)に示すように、第1の実施形態に係る超電導素線10を7本撚り合わせて1次撚線20を作製し、それを14本撚り合わせて平角成型加工した2重平角撚線21とすることもできる。   Moreover, as shown in FIG.2 (b), the superconducting element wire 10 which concerns on 1st Embodiment is twisted, the primary twisted wire 20 is produced, 14 pieces are twisted, and the square forming process 2 It is also possible to use a straight flat stranded wire 21.

更に、図2(c)に示すように、第1の実施形態に係る超電導素線10を3本撚り合わせて1次撚線30を作製し、その1次撚線を3本撚り合わせて2次撚線(3×3本撚線)31を作製し、その2次撚線60を4本撚り合わせて3次撚線(3×3×4本撚線)32を作製し、それを4本撚り合わせた後、ロール圧延などの成形加工を施し、断面が概略円形の4次撚線(3×3×4×4本撚線)33を構成することができる。   Furthermore, as shown in FIG.2 (c), the superconducting strand 10 which concerns on 1st Embodiment is twisted together, the primary twisted wire 30 is produced, and the primary twisted wire is twisted together and 2 A next stranded wire (3 × 3 stranded wire) 31 is produced, and four secondary stranded wires 60 are twisted together to produce a third stranded wire (3 × 3 × 4 stranded wire) 32, which is 4 After the main twisting, forming processing such as roll rolling can be performed to form a quaternary stranded wire (3 × 3 × 4 × 4 stranded wire) 33 having a substantially circular cross section.

あるいはまた、第1の実施形態に係る超電導素線を撚り合わせた超電導撚線を構成要素とし、管やテープ形状のSUS部材や銅部材と複合化して、大容量導体を製作することができる。超電導素線および撚線に適用する安定化材の材料によっては、製造中の加工硬化により残留抵抗比が低下するので、必要に応じて中間工程や最終工程に焼鈍工程を入れても良い。また、電流容量を調整したり、安定化銅量を調整したりするために、銅線と撚り合わすことも可能である。   Alternatively, a high-capacity conductor can be manufactured by using a superconducting stranded wire obtained by twisting the superconducting strands according to the first embodiment as a constituent element and combining it with a tube, a tape-shaped SUS member, or a copper member. Depending on the material of the stabilizing material applied to the superconducting element wire and the stranded wire, the residual resistance ratio decreases due to work hardening during production. Therefore, an annealing step may be included in the intermediate step or the final step as necessary. Moreover, in order to adjust a current capacity or adjust the amount of stabilized copper, it is also possible to twist with a copper wire.

以下、本発明の実施例及び比較例を示し、本発明の効果についてより具体的に説明する。   Examples of the present invention and comparative examples are shown below, and the effects of the present invention will be described more specifically.

実施例1
本実施例に係るNbTi超電導線の作製方法について、図3を参照して、具体的に説明する。
Example 1
A method for producing the NbTi superconducting wire according to this example will be specifically described with reference to FIG.

まず、残留抵抗比300の無酸素銅管の中にNb―47重量%Tiロッドを挿入し、複合ビレットを作製した。この複合ビレットに熱間押出加工と冷間加工を施すことによって、対辺寸法が4.5mmの断面略六角形の棒状の超電導1次素線(Cu/NbTi複合1次素線)を作製した。   First, a Nb-47 wt% Ti rod was inserted into an oxygen-free copper tube having a residual resistance ratio of 300 to produce a composite billet. By subjecting this composite billet to hot extrusion and cold processing, a rod-shaped superconducting primary strand (Cu / NbTi composite primary strand) having a substantially hexagonal cross section with an opposite side dimension of 4.5 mm was produced.

次いで、高抵抗金属であるCu−30wt%Niの管の中に、低抵抗金属である残留抵抗比300の無酸素銅ロッドを挿入し、複合ビレットを作製した。この複合ビレットに熱間押出加工と冷間加工を施すことによって、対辺寸法が4.5mmの断面略六角形の棒状の複合バリア線(CuNi/Cu複合バリア線)を作製した。この時、Cu−30wt%Niの構成比(無酸素銅に対する体積比)を0.6とした。   Next, an oxygen-free copper rod having a residual resistance ratio of 300, which is a low-resistance metal, was inserted into a tube of Cu-30 wt% Ni, which is a high-resistance metal, to produce a composite billet. By subjecting this composite billet to hot extrusion and cold processing, a bar-shaped composite barrier wire (CuNi / Cu composite barrier wire) having a substantially hexagonal cross section with an opposite side dimension of 4.5 mm was produced. At this time, the composition ratio of Cu-30 wt% Ni (volume ratio to oxygen-free copper) was set to 0.6.

超電導線の使用時温度である4.2KにおけるCu−30wt%Niの比抵抗は3×10−7Ωmであり、無酸素銅の比抵抗は1×10−10Ωmである。従って、複合比抵抗は、λ高抵抗=0.6/1.6、ρ高抵抗=3×10−7Ωm、λ低抵抗=1/1.6、ρ低抵抗=1×10−10Ωmであるので、(0.6/1.6)×3×10−7+(1/1.6)×10−10]=1.1×10−7Ωmとなる。 The specific resistance of Cu-30 wt% Ni at 4.2 K, which is the operating temperature of the superconducting wire, is 3 × 10 −7 Ωm, and the specific resistance of oxygen-free copper is 1 × 10 −10 Ωm. Therefore, the composite specific resistance is: λ high resistance = 0.6 / 1.6, ρ high resistance = 3 × 10 −7 Ωm, λ low resistance = 1 / 1.6, ρ low resistance = 1 × 10 −10 Ωm Therefore, (0.6 / 1.6) × 3 × 10 −7 + (1 / 1.6) × 10 −10 ] = 1.1 × 10 −7 Ωm.

次に、無酸素銅インゴットを熱間押出加工と冷間加工により対辺寸法4.5mmの断面六角形の棒状安定化材を製作した。   Next, an oxygen-free copper ingot was manufactured by hot extrusion and cold processing to produce a bar-shaped stabilizer having a hexagonal cross section with an opposite side dimension of 4.5 mm.

その後、安定化シースとなる内径166mm/外径220mmの無酸素銅管を作製し、この中に、コア部(Cuコア)として棒状安定化材(Cu:断面六角形)325本、その周囲に1次素線690本(これらによりフィラメント群部分を形成)、さらにその周囲に断面六角形の複合バリア線(CuNi/Cu複合バリア線)120本を、順次挿入して、2次複合ビレットを得た。   Thereafter, an oxygen-free copper tube having an inner diameter of 166 mm / outer diameter of 220 mm, which becomes a stabilizing sheath, is produced. In this, 325 rod-shaped stabilizers (Cu: hexagonal cross section) as core portions (Cu core), 690 primary strands (which form the filament group portion) and 120 composite barrier wires (CuNi / Cu composite barrier wires) having a hexagonal cross section are sequentially inserted around the primary strand to obtain a secondary composite billet. It was.

このようにして得た2次複合ビレットに対し、熱間押出加工を施した後、熱処理と冷間加工を繰り返して行い、更に、S方向、ピッチ15mmのツイスト加工と、最終伸線加工、および残留抵抗比を回復するための熱処理を経て、直径0.81mmφのNbTi超電導線を得た。   After subjecting the secondary composite billet thus obtained to hot extrusion processing, heat treatment and cold processing are repeated, and further, twisting processing in the S direction and a pitch of 15 mm, final wire drawing processing, and Through a heat treatment for recovering the residual resistance ratio, an NbTi superconducting wire having a diameter of 0.81 mmφ was obtained.

図3は、このようにして得たNbTi超電導線の断面を示す。図3において、無酸素銅管40内の中心に、325本の棒状安定化材が複合一体化されたCuコア41が配置され、その周囲に690本の1次素線が複合一体化されたフィラメント群42が配置され、更にその周囲に、120本の断面六角形のCuNi/Cu複合バリア線が複合一体化された、つまり、周方向において隣り合うCuNi/Cu複合バリア線が接するように、連続的に形成されたCuNi/Cu複合バリア線群43が配置され、無酸素銅管40内に収容されている。   FIG. 3 shows a cross section of the NbTi superconducting wire thus obtained. In FIG. 3, a Cu core 41 in which 325 rod-shaped stabilizers are combined and integrated is disposed at the center of the oxygen-free copper tube 40, and 690 primary strands are combined and integrated around it. The filament group 42 is arranged, and further, around it, 120 CuNi / Cu composite barrier wires having a hexagonal cross section are combined and integrated, that is, adjacent CuNi / Cu composite barrier wires in the circumferential direction are in contact with each other. A continuously formed CuNi / Cu composite barrier wire group 43 is arranged and accommodated in the oxygen-free copper tube 40.

本実施例により得たNbTi超電導線16本を、撚りピッチ65mmでZ方向に撚り合わせた後、ロール成型加工を施し、幅6.5mm×厚さ1.5mmの平角成型撚線を作製した。   Sixteen NbTi superconducting wires obtained in this example were twisted in the Z direction at a twisting pitch of 65 mm, and then roll-molded to produce a rectangular molded twisted wire having a width of 6.5 mm and a thickness of 1.5 mm.

比較例1
本比較例に係るNbTi超電導線の作製方法について、図4を参照して、具体的に説明する。
Comparative Example 1
A method of manufacturing the NbTi superconducting wire according to this comparative example will be specifically described with reference to FIG.

まず、残留抵抗比300の無酸素銅管の中にNb―47重量%Tiロッドを挿入し、複合ビレットを作製した。この複合ビレットに熱間押出加工と冷間加工を施すことによって、対辺寸法が1.65mmの断面略六角形の棒状の超電導1次素線(Cu/NbTi複合1次素線)を作製した。   First, a Nb-47 wt% Ti rod was inserted into an oxygen-free copper tube having a residual resistance ratio of 300 to produce a composite billet. The composite billet was subjected to hot extrusion and cold processing to produce a rod-shaped superconducting primary strand (Cu / NbTi composite primary strand) having a substantially hexagonal cross section with an opposite side dimension of 1.65 mm.

次いで、高抵抗金属であるCu−30wt%Niビレットに熱間押出加工と冷間加工を施すことによって、対辺寸法が1.65mmの断面略六角形の棒状の無垢バリア線(CuNi無垢バリア線)を作製した。ここで、六角対辺寸法を4.5mmではなく1.65mmとしたのは、実施例1において、最終直径が0.81mmφの場合には、複合バリア線の等価厚さが7μmであるので、それと合わせるためである。   Next, by subjecting Cu-30wt% Ni billet, which is a high-resistance metal, to hot extrusion and cold processing, a solid barrier wire (CuNi solid barrier wire) with a hexagonal cross section with an opposite side dimension of 1.65mm. Was made. Here, the hexagonal opposite side dimension is set to 1.65 mm instead of 4.5 mm. In Example 1, when the final diameter is 0.81 mmφ, the equivalent thickness of the composite barrier wire is 7 μm. This is to match.

次に、無酸素銅インゴットに熱間押出加工と冷間加工を施し、対辺寸法1.65mmの断面六角形の棒状安定化材を製作した。   Next, the oxygen-free copper ingot was subjected to hot extrusion processing and cold processing to produce a rod-shaped stabilizer having a hexagonal cross section with an opposite side dimension of 1.65 mm.

その後、安定化シースとなる内径165mm/外径220mmの無酸素銅管を作製し、この中に、コア部(Cuコア)として棒状安定化材3168本、その周囲に1次素線5173本(これらによりフィラメント群部分を形成)、さらにその周囲にCuNi無垢バリア線336本を、順次挿入して、2次複合ビレットを得た。   Thereafter, an oxygen-free copper tube having an inner diameter of 165 mm / an outer diameter of 220 mm serving as a stabilizing sheath was produced. In this, 3168 rod-shaped stabilizers as a core portion (Cu core) and 5173 primary strands ( These formed a filament group portion), and 336 CuNi solid barrier wires were sequentially inserted therearound to obtain a secondary composite billet.

このようにして得た2次複合ビレットに対し、熱間押出加工を施した後、熱処理と冷間加工を繰り返して行い、更に、S方向、ピッチ15mmのツイスト加工と、最終伸線加工、および残留抵抗比を回復するための熱処理を経て、直径0.81mmφのNbTi超電導線を得た。   After subjecting the secondary composite billet thus obtained to hot extrusion processing, heat treatment and cold processing are repeated, and further, twisting processing in the S direction and a pitch of 15 mm, final wire drawing processing, and Through a heat treatment for recovering the residual resistance ratio, an NbTi superconducting wire having a diameter of 0.81 mmφ was obtained.

図4は、このようにして得たNbTi超電導線の断面を示す。図3において、無酸素銅管50内の中心に、3168本の安定化材が複合一体化されたCuコア51が配置され、その周囲に5173本の1次素線が複合一体化されたフィラメント群52が配置され、更にその周囲に336本のCuNi無垢バリア線が複合一体化されたCuNi無垢バリア線群53が配置され、無酸素銅管50内に収容されている。   FIG. 4 shows a cross section of the NbTi superconducting wire thus obtained. In FIG. 3, a Cu core 51 in which 3168 stabilizing materials are combined and integrated is arranged at the center of the oxygen-free copper tube 50, and a filament in which 5173 primary strands are combined and integrated around it. A group 52 is disposed, and a CuNi solid barrier wire group 53 in which 336 CuNi solid barrier wires are combined and integrated is disposed around the group 52 and accommodated in the oxygen-free copper tube 50.

本比較例により得たNbTi超電導超電導線16本を、撚りピッチ65mmでZ方向に撚り合わせた後、ロール成型加工を施し、幅6.5mm×厚さ1.5mmの平角成型撚線を作製した。   Sixteen NbTi superconducting superconducting wires obtained in this comparative example were twisted in the Z direction at a twisting pitch of 65 mm, and then roll-molded to produce a rectangular molded twisted wire having a width of 6.5 mm and a thickness of 1.5 mm. .

比較例2
本比較例に係るNbTi超電導線の作製方法について、図4を参照して、具体的に説明する。
Comparative Example 2
A method of manufacturing the NbTi superconducting wire according to this comparative example will be specifically described with reference to FIG.

まず、残留抵抗比300の無酸素銅管の中にNb―47重量%Tiロッドを挿入し、複合ビレットを作製した。この複合ビレットに熱間押出加工と冷間加工を施すことによって、対辺寸法が4.5mmの断面略六角形の棒状の超電導1次素線(Cu/NbTi複合1次素線)を作製した。   First, a Nb-47 wt% Ti rod was inserted into an oxygen-free copper tube having a residual resistance ratio of 300 to produce a composite billet. The composite billet was subjected to hot extrusion and cold processing to produce a rod-shaped superconducting primary strand (Cu / NbTi composite primary strand) having a substantially hexagonal cross section with an opposite side dimension of 4.5 mm.

次いで、高抵抗金属であるCu−10wt%Niビレットに熱間押出加工と冷間加工を施すことによって、対辺寸法が4.5mmの断面略六角形の棒状の無垢バリア線(CuNi無垢バリア線)を作製した。ここで、比較例1ではCu−30wt%Niを用いたのに対し、比較例2ではCu−10wt%Niを用いたのは、実施例1における複合バリア線の等価比抵抗1.1×10−7Ωmと同等の比抵抗とするためである。 Next, by subjecting Cu-10wt% Ni billet, which is a high-resistance metal, to hot extrusion and cold working, a solid barrier wire (CuNi solid barrier wire) with a hexagonal cross section with an opposite side dimension of 4.5mm. Was made. Here, in Comparative Example 1, Cu-30 wt% Ni was used, whereas in Comparative Example 2, Cu-10 wt% Ni was used because the equivalent specific resistance of the composite barrier wire in Example 1 was 1.1 × 10. This is because the specific resistance is equivalent to −7 Ωm.

次に、無酸素銅インゴットに熱間押出加工と冷間加工を施し、対辺寸法4.5mmの断面六角形の棒状安定化材を製作した。   Next, the oxygen-free copper ingot was subjected to hot extrusion processing and cold processing to produce a rod-shaped stabilizing material having a hexagonal cross section with an opposite side dimension of 4.5 mm.

その後、安定化シースとなる内径165mm/外径220mmの無酸素銅管を作製し、この中に、コア部(Cuコア)として棒状安定化材325本、その周囲に1次素線690本(これらによりフィラメント群部分を形成)、さらにその周囲にCuNi無垢バリア線120本を、順次挿入して、2次複合ビレットを得た。   Thereafter, an oxygen-free copper tube having an inner diameter of 165 mm / an outer diameter of 220 mm serving as a stabilizing sheath is produced. In this, 325 rod-shaped stabilizers as a core portion (Cu core), and 690 primary strands ( These formed a filament group part), and 120 CuNi solid barrier wires were sequentially inserted therearound to obtain a secondary composite billet.

このようにして得た2次複合ビレットに対し、熱間押出加工を施した後、熱処理と冷間加工を繰り返して行い、更に、S方向、ピッチ15mmのツイスト加工と、最終伸線加工、および残留抵抗比を回復するための熱処理を経て、直径0.81mmφのNbTi超電導線を得た。   After subjecting the secondary composite billet thus obtained to hot extrusion processing, heat treatment and cold processing are repeated, and further, twisting processing in the S direction and a pitch of 15 mm, final wire drawing processing, and Through a heat treatment for recovering the residual resistance ratio, an NbTi superconducting wire having a diameter of 0.81 mmφ was obtained.

このようにして得たNbTi超電導線の断面についても、比較例1と同様に図4のように形成されている。図4において、無酸素銅管50内の中心に、325本の棒状安定化材が複合一体化されたCuコア51が配置され、その周囲に690本の1次素線が複合一体化されたフィラメント群52が配置され、更にその周囲に120本の複合一体化されたCuNi無垢バリア線53が連続的に配置され、無酸素銅管50内に収容されている。   The cross section of the NbTi superconducting wire obtained in this way is also formed as shown in FIG. In FIG. 4, a Cu core 51 in which 325 rod-shaped stabilizers are combined and integrated is disposed at the center of the oxygen-free copper tube 50, and 690 primary strands are combined and integrated in the periphery thereof. A filament group 52 is arranged, and 120 composite-integrated CuNi solid barrier wires 53 are continuously arranged around the filament group 52 and accommodated in the oxygen-free copper tube 50.

本比較例により得たNbTi超電導線16本を、撚りピッチ65mmでZ方向に撚り合わせた後、ロール成型加工を施し、幅6.5mm×厚さ1.5mmの平角成型撚線を作製した。   Sixteen NbTi superconducting wires obtained according to this comparative example were twisted in the Z direction at a twist pitch of 65 mm, and then roll-molded to produce a rectangular molded twisted wire having a width of 6.5 mm and a thickness of 1.5 mm.

超電導線材の評価
実施例1、比較例1及び比較例2の超電導線の製造性と性能について、素線レベル及び撚線レベルでそれぞれ評価し、総合的にコストメリットを比較した。
Evaluation of superconducting wire The manufacturability and performance of the superconducting wires of Example 1, Comparative Example 1 and Comparative Example 2 were evaluated at the strand level and the stranded wire level, respectively, and cost merit was compared comprehensively.

素線レベルの特性評価においては、Ic(臨界電流、4.2Kでの10μV/mの電界で測定された値として定義される)を測定し、Jc(臨界電流密度、Ic/NbTi超電導断面積)に換算した。また、Ic測定時に得られるI−V曲線から、n値(V=K(I/Ic)、10μV/m〜100μV/mで定義される、Vは発生電圧、Iは通電電流、Kは定数である)を算出した。 In the characterization at the wire level, Ic (defined as the value measured with an electric field of 10 μV / m at 4.2 K) is measured, and Jc (critical current density, Ic / NbTi superconducting cross section). ). Further, from an IV curve obtained at the time of Ic measurement, n value (V = K (I / Ic) n , defined by 10 μV / m to 100 μV / m, V is a generated voltage, I is a conduction current, and K is Which is a constant).

また、ピックアップコイル法により、履歴損失、結合時定数(結合電流の時定数であり、結合損失は結合時定数に比例する)を測定した。履歴損失は磁界振幅±3T、0.04T/sでの三角波形の変動磁界を素線長手方向に垂直な方向に印加し、磁化を測定した後、それぞれの磁化−印加磁界曲線からその面積を積分することにより算出した。一方、結合時定数測定は、素線内結合時定数と素線間結合時定数を分離できるように、素線と撚線に対して別々に測定した。磁界振幅±0.01T、1〜25Hzのサイン波形の変動磁界を印加し、それぞれの磁化曲線からその面積を積分することにより交流損失を算出し、その周波数依存性から、結合損失時定数を求めた。   Further, the hysteresis loss and the coupling time constant (the coupling current time constant, which is proportional to the coupling time constant) were measured by the pickup coil method. For hysteresis loss, a triangular magnetic field with a magnetic field amplitude of ± 3 T and 0.04 T / s is applied in a direction perpendicular to the longitudinal direction of the wire, and after measuring the magnetization, the area is calculated from each magnetization-applied magnetic field curve. Calculated by integrating. On the other hand, the bonding time constant measurement was performed separately for the strand and the stranded wire so that the coupling time constant in the strand and the coupling time constant between the strands could be separated. Apply alternating magnetic field with sine waveform of magnetic field amplitude ± 0.01T, 1-25Hz, calculate the AC loss by integrating the area from each magnetization curve, and find the coupling loss time constant from its frequency dependence It was.

なお、素線間結合損失の測定は、磁界を平角成型撚線の幅広面に対し垂直方向から印加し、素線内結合損失と素線間結合損失の合計を測定して、全体の結合時定数を求めた後、素線内結合時定数を差し引くことで、素線間結合時定数を算出した。   The inter-element coupling loss is measured by applying a magnetic field from the direction perpendicular to the wide surface of the flat rectangular twisted wire and measuring the total of intra-element coupling loss and inter-element coupling loss. After obtaining the constant, the inter-element coupling time constant was calculated by subtracting the intra-element coupling time constant.

一方、通電安定性については、中・高磁界領域では、素線レベルで動的安定化条件を満たすことから、実施例及び比較例のいずれの素線も、臨界電流測定においてクエンチ等の通電不安定性は観測されず、同等の安定性を確認することができた。加工性に関しては、20kmあたりの断線回数で確認を行った。   On the other hand, in terms of energization stability, dynamic stabilization conditions are satisfied at the strand level in the middle and high magnetic field regions. No qualitative observation was observed, and equivalent stability could be confirmed. Regarding the workability, confirmation was performed by the number of disconnections per 20 km.

下記表1に、実施例および比較例の諸元および上述した各種評価結果について示す。

Figure 2012190595
Table 1 below shows the specifications of the examples and comparative examples and the various evaluation results described above.
Figure 2012190595

上記表1から、以下のことがわかる。
まず、実施例1と比較例1との製造性の比較では、組立製造性について、実施例1では良好であったが、比較例1では、素線対辺寸法が小さいため、銅管への挿入本数が非常に多く、ビレット組立は極めて困難であった。また、実施例1と比較例1の押出加工はともに良好ではあったが、実施例1では断線が生じなかったのに対し、比較例1では10回もの断線が発生した。結果として、実施例1は比較例1よりも30%も高い歩留を得た。
From Table 1 above, the following can be understood.
First, in the comparison of manufacturability between Example 1 and Comparative Example 1, the assembly manufacturability was good in Example 1, but in Comparative Example 1, since the opposite-side dimension of the strand was small, it was inserted into a copper tube. The number of the billets was very large, and the billet assembly was extremely difficult. Moreover, although the extrusion process of Example 1 and Comparative Example 1 was both good, the disconnection did not occur in Example 1, whereas the disconnection occurred 10 times in Comparative Example 1. As a result, Example 1 obtained a 30% higher yield than Comparative Example 1.

次に、実施例1と比較例1との性能の比較は以下の通りであった。臨界電流密度は、実施例1の方が7%程度高い性能を示した。比較例1では、n値も小さいことから、フィラメントが細いため、長手方向のフィラメント形状が不均一になっていると考えられる。また、比較例1のフィラメント径が実施例1の0.37倍であることから、理論上期待される63%の履歴損失の低減効果は見られず、履歴損失は25%程度低減されたに過ぎなかった。この原因として、フィラメント形状が不均一となったことと、フィラメント間隔が小さくなりすぎて、近接効果による履歴損失の増大が発生していると考えられる。   Next, the performance comparison between Example 1 and Comparative Example 1 was as follows. The critical current density was about 7% higher in Example 1. In Comparative Example 1, since the n value is small, it is considered that the filament shape in the longitudinal direction is not uniform because the filament is thin. Moreover, since the filament diameter of Comparative Example 1 is 0.37 times that of Example 1, the theoretically expected reduction effect of 63% is not seen, and the hysteresis loss is reduced by about 25%. It wasn't too much. This is considered to be due to the fact that the filament shape became non-uniform and the filament spacing became too small, resulting in an increase in hysteresis loss due to the proximity effect.

実施例1においては、近接効果による履歴損失の増大は発生しなかった。また、素線内結合時定数と素線間結合時定数の両方において、実施例1の方が優れた性能であった。   In Example 1, an increase in history loss due to the proximity effect did not occur. The performance of Example 1 was superior in both the intra-element coupling time constant and the inter-element coupling time constant.

実施例1と比較例2との製造性の比較は以下の通りであった。実施例1と比較例2とは同等のビレット組立性であったが、比較例2では、押出時に押出圧力が設備上限に近くなり、不安定な押出加工性であった。また、実施例1では断線が生じなかったのに対し、比較例1では1回断線が発生した。結果として、実施例1は比較例1よりも10%高い歩留を得た。   Comparison of manufacturability between Example 1 and Comparative Example 2 was as follows. Example 1 and Comparative Example 2 had the same billet assemblability, but in Comparative Example 2, the extrusion pressure was close to the equipment upper limit during extrusion, and the extrusion processability was unstable. In Example 1, no disconnection occurred, whereas in Comparative Example 1, one disconnection occurred. As a result, Example 1 obtained a 10% higher yield than Comparative Example 1.

次に、実施例1と比較例2との性能の比較は以下の通りであった。臨界電流密度、n値、履歴損失ともに同等の性能を示した。しかしながら、素線内結合時定数と素線間結合時定数の両方において、実施例1の方が優れた性能を示した。これは、複合バリアが結合損失低減に対し効果的に機能していることを意味している。   Next, the performance comparison between Example 1 and Comparative Example 2 was as follows. The critical current density, n value, and hysteresis loss showed equivalent performance. However, Example 1 showed better performance in both the intra-element coupling time constant and the inter-element coupling time constant. This means that the composite barrier functions effectively for reducing the coupling loss.

以上説明したように、実施例1に係るNbTi超電導線材は、比較例1及び2に対して、Jc、n値、履歴損失等の性能は同等以上であり、特に結合損失の低減効果において優れた性能を有している。さらに、製造歩留が高く、コスト低減において優れた利点を有している。   As described above, the NbTi superconducting wire according to Example 1 has performances such as Jc, n value, and hysteresis loss that are equal to or higher than those of Comparative Examples 1 and 2, and is particularly excellent in the effect of reducing the coupling loss. Has performance. Furthermore, the production yield is high, and it has excellent advantages in cost reduction.

1…安定化金属線、2…超電導フィラメント、3…安定化材、4…超電導一次素線、5…低抵抗金属線、6…高抵抗金属材、7…複合バリア線、8…安定化金属シース、10…超電導素線、11…平角成型撚線、20,30…1次撚線、21…2重平角撚線、31…2次撚線、32…3次撚線、33…4次撚線、40,50…無酸素銅管、41,51…Cuコア、42,52…フィラメント群、43…CuNi/Cu複合バリア線群、53…CuNi無垢バリア線群。   DESCRIPTION OF SYMBOLS 1 ... Stabilized metal wire, 2 ... Superconducting filament, 3 ... Stabilizing material, 4 ... Superconducting primary strand, 5 ... Low resistance metal wire, 6 ... High resistance metal material, 7 ... Composite barrier wire, 8 ... Stabilization metal Sheath, 10 ... superconducting wire, 11 ... flat-shaped stranded wire, 20,30 ... primary stranded wire, 21 ... double flat stranded wire, 31 ... secondary stranded wire, 32 ... tertiary stranded wire, 33 ... quaternary Twisted wire, 40, 50 ... oxygen-free copper tube, 41, 51 ... Cu core, 42, 52 ... filament group, 43 ... CuNi / Cu composite barrier wire group, 53 ... CuNi solid barrier wire group.

Claims (7)

超電導フィラメントを含む複数本の超電導一次素線と、
前記複数本の超電導一次素線の外周であって、周方向に連続的に配置された、高抵抗金属材により表面が被覆された低抵抗金属線を含む複数本の金属複合バリア線
を具備することを特徴とする超電導撚線用素線。
A plurality of superconducting primary wires including a superconducting filament;
A plurality of metal composite barrier wires including a low resistance metal wire, the outer periphery of the plurality of superconducting primary strands and continuously disposed in the circumferential direction and having a surface coated with a high resistance metal material. A superconducting stranded wire.
前記複数本の金属複合バリア線の外側に第1の安定化金属層が配置され、
超電導一次素線は、前記超電導フィラメントの周囲に第2の安定化金属層が被覆されてなることを特徴とする請求項1に記載の超電導撚線用素線。
A first stabilizing metal layer is disposed outside the plurality of metal composite barrier wires;
2. The superconducting stranded wire according to claim 1, wherein the superconducting primary strand is formed by coating a second stabilizing metal layer around the superconducting filament.
前記金属複合バリア線における、前記低抵抗金属線に対する前記高抵抗金属材の体積比が、0.2〜2倍であることを特徴とする請求項1又は2に記載の超電導撚線用素線。   The strand for superconducting stranded wire according to claim 1 or 2, wherein a volume ratio of the high-resistance metal material to the low-resistance metal wire in the metal composite barrier wire is 0.2 to 2 times. . 前記超電導フィラメントがNbTiからなり、前記低抵抗金属線が銅からなり、前記高抵抗金属材がNi、MnおよびSiからなる群から選ばれた1種類以上を含む銅合金からなることを特徴とする請求項1〜3のいずれか1項に記載の超電導撚線用素線。   The superconducting filament is made of NbTi, the low-resistance metal wire is made of copper, and the high-resistance metal material is made of a copper alloy containing at least one selected from the group consisting of Ni, Mn and Si. The strand for superconducting stranded wires according to any one of claims 1 to 3. 請求項1〜4のいずれか1項に記載の超電導撚線用素線を2本以上撚りあわせて構成された超電導撚線。   A superconducting stranded wire formed by twisting two or more strands for a superconducting stranded wire according to any one of claims 1 to 4. 超電導フィラメントを含む複数本の超電導一次素線と、高抵抗金属材により表面が被覆された低抵抗金属線を含む複数本の金属複合バリア線を作成する工程と、
安定化金属シース内に、前記複数本の超電導一次素線を配置し、その外周に前記複数本の金属複合バリア線を一層以上配置して、複合ビレットを作製する工程と、
前記複合ビレットに熱間押出加工を施す工程
を具備することを特徴とする超電導撚線用素線の製造方法。
Creating a plurality of superconducting primary strands including a superconducting filament and a plurality of metal composite barrier wires including a low resistance metal wire whose surface is coated with a high resistance metal material;
Placing the plurality of superconducting primary strands in a stabilized metal sheath, arranging one or more of the plurality of metal composite barrier wires on the outer periphery thereof, and producing a composite billet;
A method for producing a strand for a superconducting stranded wire, comprising a step of subjecting the composite billet to hot extrusion.
前記超電導一次素線と前記金属複合バリア線が、同一サイズの断面六角形状を有することを特徴とする請求項6に記載の超電導撚線用素線の製造方法。   The method of manufacturing a superconducting stranded wire according to claim 6, wherein the superconducting primary strand and the metal composite barrier wire have a hexagonal cross section of the same size.
JP2011051507A 2011-03-09 2011-03-09 Elemental wire for superconducting twisted cable, and superconducting twisted cable Pending JP2012190595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011051507A JP2012190595A (en) 2011-03-09 2011-03-09 Elemental wire for superconducting twisted cable, and superconducting twisted cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011051507A JP2012190595A (en) 2011-03-09 2011-03-09 Elemental wire for superconducting twisted cable, and superconducting twisted cable

Publications (1)

Publication Number Publication Date
JP2012190595A true JP2012190595A (en) 2012-10-04

Family

ID=47083566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011051507A Pending JP2012190595A (en) 2011-03-09 2011-03-09 Elemental wire for superconducting twisted cable, and superconducting twisted cable

Country Status (1)

Country Link
JP (1) JP2012190595A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112820470A (en) * 2021-01-05 2021-05-18 中国科学院合肥物质科学研究院 MgB2CICC conductor structure and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065130A (en) * 1992-06-18 1994-01-14 Furukawa Electric Co Ltd:The Composite multi-core nbti superconductive wire
JPH07111112A (en) * 1993-10-13 1995-04-25 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Slow-response nbti superconductor
JPH07141939A (en) * 1993-11-22 1995-06-02 Furukawa Electric Co Ltd:The Manufacture of element wire for low ac loss nbti superconductive twisted wire
JPH10321058A (en) * 1997-03-17 1998-12-04 Sumitomo Electric Ind Ltd Superconducting conductor for alternating current
JP2008147175A (en) * 2006-11-14 2008-06-26 Furukawa Electric Co Ltd:The Nbti superconducting multi-core for pulse, and nbti superconduting molded stranded wire for pulse

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065130A (en) * 1992-06-18 1994-01-14 Furukawa Electric Co Ltd:The Composite multi-core nbti superconductive wire
JPH07111112A (en) * 1993-10-13 1995-04-25 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Slow-response nbti superconductor
JPH07141939A (en) * 1993-11-22 1995-06-02 Furukawa Electric Co Ltd:The Manufacture of element wire for low ac loss nbti superconductive twisted wire
JPH10321058A (en) * 1997-03-17 1998-12-04 Sumitomo Electric Ind Ltd Superconducting conductor for alternating current
JP2008147175A (en) * 2006-11-14 2008-06-26 Furukawa Electric Co Ltd:The Nbti superconducting multi-core for pulse, and nbti superconduting molded stranded wire for pulse

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112820470A (en) * 2021-01-05 2021-05-18 中国科学院合肥物质科学研究院 MgB2CICC conductor structure and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP6155253B2 (en) Compound superconducting wire and manufacturing method thereof
JP5000252B2 (en) NbTi superconducting wire
JPH0261764B2 (en)
JP2013062239A (en) Nb3Sn SUPERCONDUCTING WIRE AND METHOD FOR MANUFACTURING THE SAME
JP2009016334A (en) Method of manufacturing mgb2 superconducting wire
JP6247813B2 (en) NbTi superconducting wire
JP6585519B2 (en) Precursor for producing Nb3Sn superconducting wire, and method for producing Nb3Sn superconducting wire
WO2007099820A1 (en) PRECURSOR FOR MANUFACTURE OF Nb3Sn SUPERCONDUCTING WIRE ROD, AND Nb3Sn SUPERCONDUCTING WIRE ROD
US20050103519A1 (en) Low loss superconducting cable in conduit conductor
JP2012190595A (en) Elemental wire for superconducting twisted cable, and superconducting twisted cable
JP4414558B2 (en) Superconducting cable
JP5117166B2 (en) NbTi superconducting multi-core wire for pulse and NbTi superconducting molded stranded wire for pulse
KR20230096080A (en) Aluminum-Carbon Metal Matrix Composite Magnet Wires
JPH08148327A (en) Superconducting magnet and particle accelerator with the superconducting magnet
JP2009004128A (en) BRONZE-PROCESS Nb3Sn SUPERCONDUCTING WIRE, AND PRECURSOR THEREOF
WO1991002364A1 (en) Superconductive wire
WO2022075127A1 (en) Nbti superconducting multi-core wire
JP3646059B2 (en) Aluminum stabilized superconducting conductor
JPH08264039A (en) Superconducting cable
JP5170897B2 (en) Flat superconducting molded stranded wire and method for manufacturing the same
JP2876667B2 (en) Aluminum stabilized superconducting wire
WO2023089919A1 (en) Niobium-aluminum precursor wire, niobium-aluminum precursor twisted wire, niobium-aluminum superconducting wire, and niobium-aluminum superconducting twisted wire
WO2017211561A1 (en) Electric conductor comprising multiple sub-conductors separated by matrix material
JP5100459B2 (en) NbTi superconducting wire and method for manufacturing the same
JPH09245539A (en) Superconductive wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151013