JPH07111112A - Slow-response nbti superconductor - Google Patents

Slow-response nbti superconductor

Info

Publication number
JPH07111112A
JPH07111112A JP5255840A JP25584093A JPH07111112A JP H07111112 A JPH07111112 A JP H07111112A JP 5255840 A JP5255840 A JP 5255840A JP 25584093 A JP25584093 A JP 25584093A JP H07111112 A JPH07111112 A JP H07111112A
Authority
JP
Japan
Prior art keywords
layer
nbti
conductor
formed around
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5255840A
Other languages
Japanese (ja)
Inventor
Kazuya Daimatsu
一也 大松
Kenichi Takahashi
謙一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Original Assignee
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai filed Critical Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority to JP5255840A priority Critical patent/JPH07111112A/en
Publication of JPH07111112A publication Critical patent/JPH07111112A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/15Machines characterised by cable windings, e.g. high-voltage cables, ribbon cables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Windings For Motors And Generators (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To clarify the relation between predetermined parameters of fabrication requirements and the stability of a conductor so as to enhance stability by setting data of superconducting wire to predetermined values. CONSTITUTION:A low-response NbTi superconductor 1 is a rectangular swaged stranded cable comprising NbTi/CuCuNi three-layered superconducting wires 2 twisted together. Each of the superconducting wires 2 comprises a stabilizing Cu layer 3, an NbTi-filament-bundle 5 formed around the layer 3, a 10wt.%-Cu Ni layer 6 formed around the bundle 5, a stabilizing Cu layer 7 formed around the layer 6, and a 10wt.%-Cu Ni layer 8 formed around the layer 7. The bundle 5 comprises NbTi filaments 10 embedded in a matrix 11 of 10wt.%-Cu Ni, with Cu 9 disposed around each of the filaments 10. The effective Cu ratio of each of the wires 2 is 1.6 or more, the thickness of the layer 6 is 10mum or less, the twisting pitch of the wires 2 is nine to twelve times the diameter of each wire 2, and the void ratio of the conductor 1 is 13 to 15%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、低速応型NbTi超
電導導体に関するものであり、特に、超電導発電機等の
電力応用分野に利用される低速応型NbTi超電導導体
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low speed response type NbTi superconducting conductor, and more particularly to a low speed response type NbTi superconducting conductor used in electric power application fields such as a superconducting generator.

【0002】[0002]

【従来の技術】低速応型励磁型超電導発電機の界磁巻線
に用いるNbTi導体は、導体の高安定性と高電流密度
の最適な導体が要求される。たとえば、7万kW級低速
応機の発電機基本仕様と界磁巻線へ適用する導体の要求
特性は、以下の表1および表2に示すとおりである。
2. Description of the Related Art The NbTi conductor used for the field winding of a low speed excitation type superconducting generator is required to have an optimum conductor with high stability and high current density. For example, the basic specifications of a 70,000 kW class low-speed generator and the required characteristics of conductors applied to field windings are shown in Tables 1 and 2 below.

【0003】[0003]

【表1】 [Table 1]

【0004】[0004]

【表2】 [Table 2]

【0005】従来、これに沿った導体の作製が検討され
ていたが、要求特性を満たす導体は存在しなかった。
Conventionally, the production of a conductor in accordance with this has been studied, but no conductor satisfying the required characteristics has existed.

【0006】[0006]

【発明が解決しようとする課題】従来検討されていたこ
れらの導体は、NbTi/Cu/CuNi三層構造超電
導素線を用いた平角成型一重撚線であった。素線径は
1.6mmで、約9μmのNbTiフィラメント系の周
囲にCuを配置し、Cu−10wt%Niのマトリック
ス中にシングルスタックで埋込まれていた。断面構成と
しては、安定性を重視して安定化Cuをフィラメントバ
ンドル部の内外に配置し、安定性を高めた構成としてい
た。
These conductors that have been studied in the past were flat-molded single stranded wires using NbTi / Cu / CuNi three-layer structure superconducting wires. The wire diameter was 1.6 mm, Cu was arranged around a NbTi filament system of about 9 μm, and embedded in a single stack in a matrix of Cu-10 wt% Ni. As for the cross-sectional structure, the stability was emphasized and the stabilized Cu was arranged inside and outside the filament bundle portion to improve the stability.

【0007】しかしながら、従来検討されていたこれら
の導体は、安定性が悪いという問題点があった。ここで
定義する導体の安定性とは、導体の臨界電流(Ic)測
定時においてIc到達までのトレーニングが少ないこ
と、および導体Icは素線Icの撚本数倍に到達するこ
とを意味する。したがって、導体のトレーニング回数が
多い場合には、発電機の初期運転時に導体の運転電流を
得るために多くの液体ヘリウムを消費することになり、
運転コストが膨大になるという問題があった。また、素
線Icの撚本数倍に到達しない場合には、設計した発電
機の性能が発揮できないという問題があった。
However, these conductors, which have been studied so far, have a problem of poor stability. The stability of the conductor defined here means that the training to reach Ic is small when the critical current (Ic) of the conductor is measured, and that the conductor Ic reaches the number of twists of the strand Ic several times. Therefore, if the conductor is trained many times, a large amount of liquid helium will be consumed to obtain the operating current of the conductor during the initial operation of the generator.
There was a problem that the operating cost would be huge. Further, if the number of twists of the strand Ic is not reached, there is a problem that the performance of the designed generator cannot be exhibited.

【0008】従来、このような安定性の問題は、導体の
各特性(臨界電流、交流損失、残留抵抗比等)を満足さ
せるために複雑な素線断面構成、および導体断面構成を
設定していることによるものであった。しかも、作製条
件のパラメータが多く、これらのパラメータの設定値と
導体の安定性との関係が不明であった。
Conventionally, such a problem of stability is caused by setting a complicated strand wire cross-section structure and conductor cross-section structure in order to satisfy each characteristic of the conductor (critical current, AC loss, residual resistance ratio, etc.). It was due to being there. Moreover, there are many parameters of the manufacturing conditions, and the relationship between the set values of these parameters and the stability of the conductor is unknown.

【0009】本発明の目的は、これらのパラメータの設
定値と導体の安定性との関係を明らかにし、安定性に優
れた低速応型NbTi超電導導体を提供することにあ
る。
An object of the present invention is to clarify the relationship between the set values of these parameters and the stability of the conductor, and to provide a low-speed response type NbTi superconducting conductor having excellent stability.

【0010】[0010]

【課題を解決するための手段】この発明による低速応型
NbTi超電導導体は、NbTi/Cu/CuNi三層
構造超電導素線を用いた平角成型撚線からなるNbTi
超電導導体であって、超電導素線は、第1の安定化Cu
層と、第1の安定化Cu層の周囲に形成された第1のC
u−10wt%Ni層と、第1のCu−10wt%Ni
層の周囲に形成されたNbTiフィラメントバンドル部
と、NbTiフィラメントバンドル部の周囲に形成され
た第2のCu−10wt%Ni層と、第2のCu−10
wt%Ni層の周囲に形成された第2の安定化Cu層
と、第2の安定化Cu層の周囲に形成された第3のCu
−10wt%Ni層とからなり、NbTiフィラメント
バンドル部は、周囲にCuが配置されたNbTiフィラ
メントがCu−10wt%Niのマトリックス中に埋込
まれた構造を有し、超電導素線の有効Cu比が1.6以
上であり、第2のCu−10wt%Ni層の厚さが10
μm以下であり、超電導素線を撚線する際のツイストピ
ッチが超電導素線径の9倍以上12倍以下であり、超電
導導体のボイド率が13%以上15%以下である。
A low-speed response type NbTi superconducting conductor according to the present invention is a NbTi composed of a rectangular shaped twisted wire using a NbTi / Cu / CuNi three-layer structure superconducting wire.
A superconducting conductor, wherein the superconducting element wire is a first stabilized Cu.
Layer and a first C formed around the first stabilizing Cu layer
u-10 wt% Ni layer and first Cu-10 wt% Ni layer
A NbTi filament bundle portion formed around the layer, a second Cu-10 wt% Ni layer formed around the NbTi filament bundle portion, and a second Cu-10
A second stabilizing Cu layer formed around the wt% Ni layer and a third Cu formed around the second stabilizing Cu layer
-10 wt% Ni layer, the NbTi filament bundle part has a structure in which NbTi filaments around which Cu is arranged are embedded in a matrix of Cu-10 wt% Ni, and the effective Cu ratio of the superconducting wire is Is 1.6 or more, and the thickness of the second Cu-10 wt% Ni layer is 10 or more.
μm or less, the twist pitch when twisting the superconducting element wire is 9 times or more and 12 times or less the diameter of the superconducting element wire, and the void ratio of the superconducting conductor is 13% or more and 15% or less.

【0011】ここで、超電導素線の有効Cu比とは、N
bTiと安定化Cu(第1の安定化Cuと第2の安定化
Cuとの和であって、NbTiフィラメント周囲の安定
化Cuを除く)との比である。
Here, the effective Cu ratio of the superconducting element wire is N
It is the ratio of bTi and stabilized Cu (the sum of the first stabilized Cu and the second stabilized Cu, excluding the stabilized Cu around the NbTi filament).

【0012】[0012]

【作用】本発明者らは、安定性に及ぼす要因を摘出する
ために試作した導体の差異を抽出し、特性要因別に検討
した結果、安定性に影響を与えるのは、電気的熱的特性
要因と機械的特性要因との相互作用であるという知見を
得た。ここで、電気的熱的特性要因とは、素線内の交流
損失低減用のCuNiバリア厚の増加や有効Cu比の減
少等による安定性の低下をいう。一方、機械的特性要因
とは、ボイド率やツイストピッチの低減により剛性が増
加したことによる導体の動きやすさの増加をいう。
The present inventors extracted the difference between the trial-produced conductors in order to identify the factors affecting the stability, and examined the results by characteristic factors. As a result, it was found that the electrical and thermal characteristic factors affect the stability. We obtained the finding that it is an interaction between the and mechanical characteristic factors. Here, the electrical and thermal characteristic factor means a decrease in stability due to an increase in the CuNi barrier thickness for reducing AC loss in the wire, a decrease in the effective Cu ratio, and the like. On the other hand, the mechanical characteristic factor means an increase in the easiness of movement of the conductor due to an increase in rigidity due to the reduction of the void ratio and the twist pitch.

【0013】さらに、本発明者らは、導体の機械的特性
を決めていると考えられる要因(ツイストピッチ、ボイ
ド率等)において、機械的特性の中で曲げ弾性係数が指
針として考慮できることを明らかにし、曲げ弾性係数が
導体のボイド率が小さいほど大きく、素線のツイストピ
ッチが短いほど大きいことを定量的に示した。この結果
から、導体の剛性が安定性と関係することを明らかにし
た。
Furthermore, the present inventors have made clear that, in factors (twist pitch, void ratio, etc.) that are considered to determine the mechanical properties of the conductor, the bending elastic modulus can be considered as a guideline among the mechanical properties. It was shown quantitatively that the bending elastic modulus was larger as the void ratio of the conductor was smaller, and was larger as the twist pitch of the wire was shorter. From this result, it was clarified that the rigidity of the conductor is related to the stability.

【0014】[0014]

【実施例】図1は、低速応型NbTi超電導導体の一例
の構成を示す断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a sectional view showing the structure of an example of a low-speed response type NbTi superconducting conductor.

【0015】図1を参照して、この低速応型NbTi超
電導導体1は、NbTi/Cu/CuNi三層構造超電
導素線2が撚り合わされて構成された平角成型撚線であ
る。
Referring to FIG. 1, this low-speed-response NbTi superconducting conductor 1 is a flat-shaped molded stranded wire formed by twisting NbTi / Cu / CuNi triple-layer superconducting wires 2.

【0016】超電導素線2は、第1の安定化Cu層3
と、その周囲に形成された第1のCu−10wt%Ni
層4と、その周囲に形成されたNbTiフィラメントバ
ンドル部5と、その周囲に形成された第2のCu−10
wt%Ni層6と、その周囲に形成された第2の安定化
Cu層7と、その周囲に形成された第3のCu−10w
t%Ni層8とから構成されている。
The superconducting wire 2 has a first stabilizing Cu layer 3
And the first Cu-10 wt% Ni formed around it
Layer 4, NbTi filament bundle part 5 formed around it, and second Cu-10 formed around it
wt% Ni layer 6, second stabilizing Cu layer 7 formed around it, and third Cu-10w formed around it
and a t% Ni layer 8.

【0017】また、NbTiフィラメントバンドル部5
は、周囲にCu9が配置されたNbTiフィラメント1
0が、Cu−10wt%Niのマトリックス11中に埋
込まれて構成されている。 (実験例)図1のように構成され、表3に示す緒元を有
する3種の導体を作製した。
Further, the NbTi filament bundle portion 5
Is an NbTi filament 1 with Cu9 arranged around it.
0 is embedded in a matrix 11 of Cu-10 wt% Ni. (Experimental Example) Three kinds of conductors having the specifications shown in Table 3 were constructed as shown in FIG.

【0018】導体(A)は、本願発明の実施例であり、
表2に示す要求特性を満足するように作製したものであ
る。導体(B)は、比較のため、導体(A)からツイス
トピッチの低減を図ることにより交流損失を低減させな
がら、臨界電流や残留抵抗比(RRR)とのバランスを
図った導体構成である。導体(C)も、比較のため、導
体(B)からさらに臨界電流と残留抵抗比(RRR)の
大幅な向上を図った上、ツイストピッチを低減させた素
線を用い、かつフル導体のボイド率低減(従来の14%
台から12%台へ低減)によるコンパクション化を図っ
た導体である。
The conductor (A) is an embodiment of the present invention,
It was manufactured so as to satisfy the required characteristics shown in Table 2. For comparison, the conductor (B) has a conductor configuration that balances the critical current and the residual resistance ratio (RRR) while reducing the AC loss by reducing the twist pitch from the conductor (A). For comparison, the conductor (C) also has a significantly improved critical current and residual resistance ratio (RRR) from the conductor (B), and uses a wire with a reduced twist pitch, and is a full conductor void. Rate reduction (14% of conventional)
It is a conductor designed for compaction by reducing from the stand to 12%).

【0019】[0019]

【表3】 [Table 3]

【0020】このようにして得られた3種類の導体特性
を比較すると、導体(A)が安定性(導体のIc測定時
においてIc到達までのトレーニングが少ないこと、お
よび導体Icは素線Icの撚本数倍に到達することと定
義)の点で良好であることが、試験結果から明らかにな
った。一方、臨界電流や交流損失との最適化を行って改
良した導体(B)と導体(C)は、導体の安定性が悪い
という試験結果となった。
Comparing the three types of conductor characteristics obtained in this way, the conductor (A) is stable (less training is required to reach Ic when measuring the Ic of the conductor, and the conductor Ic is the same as that of the wire Ic). It is clear from the test results that it is favorable in terms of reaching the number of twists several times). On the other hand, the conductor (B) and the conductor (C) improved by optimizing the critical current and the AC loss have a test result that the stability of the conductor is poor.

【0021】これらのことから、前述のように、安定性
に及ぼす要因を摘出するために導体の差異を抽出し、特
性要因別に整理、検討した結果、安定性に影響を与える
のは、電気的熱的特性要因と機械的特性要因の相互作用
であるという知見が得られた。ここで、電気的熱的要因
とは、素線内の交流損失低減用のCuNiバリア厚の増
加や有効Cu比の減少等による安定性の低下をいう。ま
た、機械的特性要因とは、ボイド率やツイストピッチの
低減により剛性が増加したことによる導体の動きやすさ
の増加をいう。
From these facts, as described above, the difference in conductors was extracted in order to extract the factors affecting the stability, and the results were sorted and examined according to the characteristic factors. As a result, it is the electrical factors that affect the stability. It was found that it is an interaction between thermal characteristic factors and mechanical characteristic factors. Here, the electrical and thermal factors mean a decrease in stability due to an increase in the CuNi barrier thickness for reducing the AC loss in the wire and a decrease in the effective Cu ratio. Further, the mechanical characteristic factor means an increase in the easiness of movement of the conductor due to an increase in rigidity due to the reduction of the void ratio and the twist pitch.

【0022】これらの具体的な結果を、表4および表5
に示す。
These concrete results are shown in Tables 4 and 5.
Shown in.

【0023】[0023]

【表4】 [Table 4]

【0024】[0024]

【表5】 [Table 5]

【0025】表4を参照して、電気的熱的要因として
は、NbTiフィラメントバンドル部を仕切るCuNi
バリアの厚みが導体(A)では10μmであるのに対
し、導体(B)と導体(C)ではいずれも20μm以上
配置されている。このため、交流損失は導体(B)と導
体(C)が小さい値を示すが、この設定が安定性を悪く
している要因と判明した。さらに、NbTiと、NbT
iフィラメント周囲を除く安定化Cuとの比率(有効C
u比)も、安定性に寄与していることがわかった。この
有効Cu比は、表4中の結果から、1.6以上必要であ
る。一方、従来から安定性に影響するとされていた残留
抵抗比(RRR)と臨界電流密度(Jc)は、安定性と
の明らかな相関は見られなかった。
Referring to Table 4, the electrical and thermal factors are CuNi that partitions the NbTi filament bundle portion.
The thickness of the barrier is 10 μm in the conductor (A), whereas it is 20 μm or more in both the conductor (B) and the conductor (C). Therefore, the AC loss shows a small value in the conductor (B) and the conductor (C), but it was found that this setting is a factor that deteriorates the stability. Furthermore, NbTi and NbT
Ratio with stabilized Cu excluding around i-filament (effective C
It was also found that the u ratio) also contributed to the stability. From the results shown in Table 4, this effective Cu ratio needs to be 1.6 or more. On the other hand, the residual resistance ratio (RRR) and the critical current density (Jc), which were conventionally considered to affect the stability, did not show a clear correlation with the stability.

【0026】表5を参照して、機械的要因としては、素
線のツイストピッチと導体のボイド率が導体の安定性に
寄与することがわかった。ツイストピッチは16mm
(素線径の10倍)の場合に安定性が良好で、12.5
mm(素線径の7.8倍)の場合に安定性が悪くなっ
た。したがって、素線径の10倍程度のツイストピッチ
がよいことが明らかとなった。また、ツイスト方向と撚
線方向も同一の方が好ましいことがわかった。
With reference to Table 5, it was found that as mechanical factors, the twist pitch of the wire and the void ratio of the conductor contribute to the stability of the conductor. Twist pitch is 16mm
Stability is good when (10 times the wire diameter), and 12.5
In the case of mm (7.8 times the wire diameter), the stability deteriorated. Therefore, it was clarified that a twist pitch of about 10 times the wire diameter is good. It was also found that it is preferable that the twist direction and the twisted wire direction are the same.

【0027】次に、導体の機械的特性を決めていると考
えられる要因(ツイストピッチ、ボイド率)の具体的数
値を実験的に検討するために、表6に示す導体を作製
し、試験を行った。
Next, in order to experimentally examine specific numerical values of factors (twist pitch, void ratio) that are considered to determine the mechanical properties of the conductor, the conductors shown in Table 6 were prepared and tested. went.

【0028】[0028]

【表6】 [Table 6]

【0029】このようにして得られた導体について、機
械的特性の代表として曲げ弾性係数とこれらのパラメー
タとの相関を、導体(A)を1として整理した。その結
果を図2および図3に示す。
With respect to the conductor thus obtained, the bending elastic modulus as a representative of the mechanical properties and the correlation between these parameters were arranged with the conductor (A) as 1. The results are shown in FIGS. 2 and 3.

【0030】図2は、ボイド率(%)と曲げ弾性係数
(kg/mm2 )との関係を示す図である。
FIG. 2 is a diagram showing the relationship between the void fraction (%) and the bending elastic modulus (kg / mm 2 ).

【0031】また、図3は、ツイストピッチ(mm)と
曲げ弾性係数(kg/mm2 )との関係を示す図であ
る。
FIG. 3 is a diagram showing the relationship between the twist pitch (mm) and the bending elastic modulus (kg / mm 2 ).

【0032】図2および図3を参照して、曲げ弾性係数
は導体のボイド率が小さいほど大きく、素線のツイスト
ピッチが短いほど大きいことがわかった。具体的には、
ツイストピッチは素線径の9倍から12倍、ボイド率は
13%から15%がよいことがわかった。
With reference to FIGS. 2 and 3, it has been found that the bending elastic modulus increases as the void ratio of the conductor decreases, and increases as the twist pitch of the wire decreases. In particular,
It was found that the twist pitch is preferably 9 to 12 times the wire diameter and the void ratio is 13 to 15%.

【0033】[0033]

【発明の効果】以上説明したように、この発明によれ
ば、安定性に優れた低速応型NbTi超電導導体が得ら
れる。
As described above, according to the present invention, a low-speed response type NbTi superconducting conductor having excellent stability can be obtained.

【0034】したがって、この発明による低速応型Nb
Ti超電導導体は、導体の臨界電流(Ic)測定時にお
いてIc到達までのトレーニングが少なく、導体Icが
素線Icの撚本数倍に到達することができる。
Therefore, the low-speed response type Nb according to the present invention
The Ti superconducting conductor requires less training to reach Ic when the critical current (Ic) of the conductor is measured, and the conductor Ic can reach the number of twists of the strand Ic.

【図面の簡単な説明】[Brief description of drawings]

【図1】低速応型NbTi超電導導体の一例の構成を示
す断面図である。
FIG. 1 is a cross-sectional view showing a configuration of an example of a low-speed response type NbTi superconducting conductor.

【図2】ボイド率と曲げ弾性係数との関係を示す図であ
る。
FIG. 2 is a diagram showing a relationship between a void fraction and a bending elastic modulus.

【図3】ツイストピッチと曲げ弾性係数との関係を示す
図である。
FIG. 3 is a diagram showing a relationship between a twist pitch and a bending elastic modulus.

【符号の説明】[Explanation of symbols]

1 低速応型NbTi超電導導体 2 NbTi/Cu/CuNi三層構造超電導素線 3 第1の安定化Cu層 4 第1のCu−10wt%Ni層 5 NbTiフィラメントバンドル部 6 第2のCu−10wt%Ni層 7 第2の安定化Cu層 8 第3のCu−10wt%Ni層 9 Cu 10 NbTiフィラメント 11 Cu−10wt%Niのマトリックス 1 Slow response type NbTi superconducting conductor 2 NbTi / Cu / CuNi three-layer structure superconducting element wire 3 First stabilizing Cu layer 4 First Cu-10 wt% Ni layer 5 NbTi filament bundle part 6 Second Cu-10 wt% Ni Layer 7 Second stabilizing Cu layer 8 Third Cu-10 wt% Ni layer 9 Cu 10 NbTi filament 11 Cu-10 wt% Ni matrix

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 NbTi/Cu/CuNi三層構造超電
導素線を用いた平角成型撚線からなるNbTi超電導導
体であって、 前記超電導素線は、 第1の安定化Cu層と、 前記第1の安定化Cu層の周囲に形成された第1のCu
−10wt%Ni層と、 前記第1のCu−10wt%Ni層の周囲に形成された
NbTiフィラメントバンドル部と、 前記NbTiフィラメントバンドル部の周囲に形成され
た第2のCu−10wt%Ni層と、 前記第2のCu−10wt%Ni層の周囲に形成された
第2の安定化Cu層と、 前記第2の安定化Cu層の周囲に形成された第3のCu
−10wt%Ni層とからなり、 前記NbTiフィラメントバンドル部は、周囲にCuが
配置されたNbTiフィラメンがCu−10wt%Ni
のマトリックス中に埋込まれた構造を有し、 前記超電導素線の有効Cu比が1.6以上であり、 前記第2のCu−10wt%Ni層の厚さが10μm以
下であり、 前記超電導素線を撚線する際のツイストピッチが前記超
電導素線径の9倍以上12倍以下であり、 前記超電導導体のボイド率が13%以上15%以下であ
る、低速応型NbTi超電導導体。
1. A NbTi superconducting conductor comprising a flat-shaped molded stranded wire using a NbTi / Cu / CuNi three-layer structure superconducting element wire, wherein the superconducting element wire comprises a first stabilizing Cu layer and the first stabilizing Cu layer. First Cu formed around the stabilized Cu layer of
A -10 wt% Ni layer, an NbTi filament bundle portion formed around the first Cu-10 wt% Ni layer, and a second Cu-10 wt% Ni layer formed around the NbTi filament bundle portion. A second stabilized Cu layer formed around the second Cu-10 wt% Ni layer, and a third Cu formed around the second stabilized Cu layer
-10 wt% Ni layer, and in the NbTi filament bundle portion, NbTi filaments around which Cu is arranged are Cu-10 wt% Ni.
Of the superconducting element wire, the effective Cu ratio of the superconducting element wire is 1.6 or more, and the thickness of the second Cu-10 wt% Ni layer is 10 μm or less. A low-speed response type NbTi superconducting conductor, wherein a twist pitch when twisting the strands is 9 times or more and 12 times or less of the diameter of the superconducting element wire, and a void ratio of the superconducting conductor is 13% or more and 15% or less.
JP5255840A 1993-10-13 1993-10-13 Slow-response nbti superconductor Withdrawn JPH07111112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5255840A JPH07111112A (en) 1993-10-13 1993-10-13 Slow-response nbti superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5255840A JPH07111112A (en) 1993-10-13 1993-10-13 Slow-response nbti superconductor

Publications (1)

Publication Number Publication Date
JPH07111112A true JPH07111112A (en) 1995-04-25

Family

ID=17284326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5255840A Withdrawn JPH07111112A (en) 1993-10-13 1993-10-13 Slow-response nbti superconductor

Country Status (1)

Country Link
JP (1) JPH07111112A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007013095A (en) * 2005-05-30 2007-01-18 Toshiba Corp Superconductive coil device
JP2008147175A (en) * 2006-11-14 2008-06-26 Furukawa Electric Co Ltd:The Nbti superconducting multi-core for pulse, and nbti superconduting molded stranded wire for pulse
JP2012190595A (en) * 2011-03-09 2012-10-04 Furukawa Electric Co Ltd:The Elemental wire for superconducting twisted cable, and superconducting twisted cable

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007013095A (en) * 2005-05-30 2007-01-18 Toshiba Corp Superconductive coil device
JP2008147175A (en) * 2006-11-14 2008-06-26 Furukawa Electric Co Ltd:The Nbti superconducting multi-core for pulse, and nbti superconduting molded stranded wire for pulse
JP2012190595A (en) * 2011-03-09 2012-10-04 Furukawa Electric Co Ltd:The Elemental wire for superconducting twisted cable, and superconducting twisted cable

Similar Documents

Publication Publication Date Title
US5581220A (en) Variable profile superconducting magnetic coil
US5604473A (en) Shaped superconducting magnetic coil
JPH07111112A (en) Slow-response nbti superconductor
US5387891A (en) Coil configuration having twisted ends and being made of a conductor with superconducting filaments
AU694296B2 (en) Variable profile superconducting magnetic coil
GB1030975A (en) Superconductor wires and cables
Gregory et al. Composite conductors containing many filaments of Nb 3 Sn
Randall et al. Fabrication and properties of multifilament Nb 3 Sn conductors
JP3143908B2 (en) Superconducting conductor
JPH10321058A (en) Superconducting conductor for alternating current
JPH0817263A (en) Superconductive stranded wire conductor
JPS62285319A (en) Ac superconductor
JPH10162663A (en) Aluminum stabilized superconductor
JPH1092235A (en) Ac superconductive conductor
Petrovich et al. Critical current of multifilamentary Nb 3 Sn-insert coil and long sample bend tests
JP2588207B2 (en) Superconducting stranded wire for AC
Sampson New Superconducting Material for Magnet Applications
JPH06325632A (en) Superconductive flat square molded stranded wire
JP3119514B2 (en) Superconducting conductor
JPH04334816A (en) Nbti superconducting wire for alternating current
Yamada et al. SHORT SAMPLE TEST DATA V
JPH10154422A (en) Nb-ti superconducting wire rod
Ayai et al. Development of Bi based superconducting wires
Waltman et al. Stability Measurements of Aluminum-Stabilized Nb-Ti and Bronze Matrix Nb3Sn Potted Superconducting Magnets
Hassenzahl et al. The Effect of High Compressive Stress on the Critical Current in Multistrand Nb 3 Sn Conductors

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001226