JPH08148327A - Superconducting magnet and particle accelerator with the superconducting magnet - Google Patents

Superconducting magnet and particle accelerator with the superconducting magnet

Info

Publication number
JPH08148327A
JPH08148327A JP28520794A JP28520794A JPH08148327A JP H08148327 A JPH08148327 A JP H08148327A JP 28520794 A JP28520794 A JP 28520794A JP 28520794 A JP28520794 A JP 28520794A JP H08148327 A JPH08148327 A JP H08148327A
Authority
JP
Japan
Prior art keywords
superconducting
magnetic field
conductor
magnet
superconducting magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28520794A
Other languages
Japanese (ja)
Inventor
Jiyurian Shida
ジュリアン 志田
Shunji Kakiuchi
俊二 垣内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP28520794A priority Critical patent/JPH08148327A/en
Publication of JPH08148327A publication Critical patent/JPH08148327A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE: To enhance the quench characteristics while reducing power consumption by employing a superconductor having such cross-section as reducing the coupling loss between the superconducting strands while taking account of the effect of correlation, between the aspect ratio of the cross-section of superconductor and the magnetic field and the inner resistance of the superconductor, on the coupling loss. CONSTITUTION: The superconductor 1 in the cross-section 2 of a superconducting electromagnet comprises a set of a plurality of superconducting strands 4 stranded with a predetermined transposition where superconducting filaments are arranged in a stabilization material. Assuming the flux density 3 of a magnetic field, to which the superconductor 1 is exposed, has a component Ba normal to the longitudinal direction of the superconductor 1 and a component Bb in parallel with the longitudinal direction of the superconductor 1 and the electric resistances in these two directions are ρa and ρb , respectively, the aspect ratio b/a of the cross-section of the conductor 1 is previously designed to minimize the total loss Pa+Pb between the superconducting strands thus reducing the total loss Pa+Pb between the superconducting strands 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超電導磁石の主たる構
成要素である超電導導体において、特に素線間の結合損
失を少なくするために素線を所定のピッチでツイストし
て形成した超電導導体およびこの超電導導体を用いた加
速器などの粒子偏向用双極電磁石や粒子収束用4極電磁
石、超電導大型ソレノイド装置、核融合用ポロイダルコ
イルのパルスマグネット、さらに超電導発電機、変圧器
などに使用される交流超電導電力機器に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting conductor which is a main component of a superconducting magnet, and in particular, a superconducting conductor formed by twisting the strands at a predetermined pitch in order to reduce the coupling loss between the strands. AC superconducting power used for particle deflection dipole magnets such as accelerators, particle converging quadrupole magnets, superconducting large solenoid devices, fusion poloidal coil pulse magnets, superconducting generators, transformers, etc. It is about equipment.

【0002】[0002]

【従来技術】この種の超電導導体の内、主として粒子加
速器に用いられることを特徴とするものの製作例として
は、アイシーエフエイ プロシーディングス オブ ワ
ークショップ オン エイシー スーパーコンダクティ
ブィティ,ケイイーケイ ブロシーディングス 92−
14 (1992年) 100項から108項(ICFAPr
oceedings of Workshop on AC SUPERCONDUCTIVITY, KEK
Proceedings 92-14December 1992 A)に纏められてい
る。
2. Description of the Related Art Among the superconducting conductors of this type, as a production example of the one mainly characterized by being used for a particle accelerator, as a production example of ICFA Proceedings of Workshop on AC Superconductivity, KE Broodings 92-
14 (1992) 100 to 108 (ICFAPr
oceedings of Workshop on AC SUPERCONDUCTIVITY, KEK
Proceedings 92-14December 1992 A).

【0003】元来、超電導磁石は、その使用目的に応じ
て大きく2種類に分類される。すなわち、一定の通電電
流を保持して運転する電磁石と、通電電流を変化させて
電磁石を励消磁することにより変動磁場を与えるような
運転をする電磁石である。後者の、通電電流を変化させ
て運転をする電磁石において、特に高速度で励消磁する
ことを特徴とする交流用超電導磁石では、超電導磁石を
構成する超電導導体内のフィラメント間及び素線間の鎖
交磁場変動による誘導電流(この誘導電流は超電導素線
内のフィラメントと結合してループを形成するために、
従来より結合電流とよばれている。)の発生に伴う不整
磁場を低減するため、または結合電流の発生に伴うジュ
ール発熱(このジュール発熱による損失は従来より結合
損失とよばれている。)がもたらすクエンチ電流劣化や
冷凍機の負荷増加を解決するための手段として、素線の
まわりに絶縁被覆層を設けたり、超電導素線の安定化材
の周りを高電気抵抗金属で覆うことにより前記結合電流
の遮断を図った例が数多くあり、そのひとつが特公昭5
3−56997号公報に記載されている。
Originally, superconducting magnets are roughly classified into two types according to the purpose of use. That is, an electromagnet that operates while maintaining a constant energizing current and an electromagnet that operates such that a varying magnetic field is provided by exciting and demagnetizing the electromagnet by changing the energizing current. In the latter, in the electromagnet that operates by changing the energizing current, especially in the superconducting magnet for alternating current characterized by being excited and demagnetized at a high speed, in the superconducting magnet that constitutes the superconducting magnet, the chains between filaments and strands in the superconducting conductor Induced current due to changes in the alternating magnetic field (This induced current is combined with the filament in the superconducting wire to form a loop,
It is conventionally called the coupling current. ) Of the asymmetric magnetic field, or due to the Joule heat generated by the generation of the coupling current (the loss due to this Joule heat is conventionally called the coupling loss) deterioration of the quench current and increase of the load of the refrigerator. As a means for solving the above, there are many examples in which an insulating coating layer is provided around the wire or the stabilizing material of the superconducting wire is covered with a metal having high electric resistance to interrupt the coupling current. , One of them is Shokoku Sho5
It is described in JP-A-3-56997.

【0004】また、フィラメントを所定のピッチでトラ
ンスポジションして前記フィラメント間すなわち素線内
の結合電流の遮断をより効果的にすることおよび素線を
所定のピッチでトランスポジションして前記素線間の結
合電流の遮断をより効果的にすることにより不整磁場や
結合損失を低減させた例が数多く実施されている。ま
た、これらの内2つを併せて実施した一例は、特公昭6
4−24314号公報に記載されている。そこでは、超
電導導体内での上記超電導素線および高電気抵抗金属ま
たは低電気抵抗金属の各々の配置の仕方を工夫し、もし
くはさらに素線を所定のピッチでツイストすることによ
り、交流電流を流す目的に使用した場合と、磁場を発生
させる目的に使用した場合の両方において共用すること
ができる比較的低交流損失の超電導導体について述べら
れている。
In addition, the filaments are transpositioned at a predetermined pitch to make it more effective to interrupt the coupling current between the filaments, that is, between the filaments. There are many examples in which the asymmetric magnetic field and the coupling loss are reduced by more effectively blocking the coupling current. An example of a combination of two of these is Japanese Patent Publication No. 6
It is described in Japanese Patent Publication No. 4-24314. There, an alternating current is made to flow by devising the method of arranging the superconducting element wire and the high electric resistance metal or the low electric resistance metal in the superconducting conductor, or by twisting the element wire at a predetermined pitch. It describes a superconducting conductor with a relatively low AC loss that can be used both for the purpose and for the purpose of generating a magnetic field.

【0005】また、超電導導体断面の幅の広い方の面が
超電導電磁石内部の磁石線の流れ方向に平行になるよう
に巻回すことによって超電導導体内のフィラメント間及
び素線間の鎖交磁場変動による誘導電流を低減させる方
法が特公昭58−66311号公報に記載されている
が、超電導導体断面そのもののアスペクト比およびこの
アスペクト比と磁場との相関が結合損失に及ぼす影響に
ついての記述はされておらず、検討されていないことが
わかる。
Further, by winding such that the wider surface of the cross section of the superconducting conductor is parallel to the flow direction of the magnet wire inside the superconducting electromagnet, fluctuation of interlinking magnetic field between filaments and strands in the superconducting conductor. Japanese Patent Publication No. 58-66311 discloses a method of reducing the induced current by the method, but it does not describe the aspect ratio of the cross section of the superconducting conductor itself and the effect of the correlation between this aspect ratio and the magnetic field on the coupling loss. No, it can be seen that it has not been considered.

【0006】特に粒子加速器等に代表されるような、比
較的大きな規模の装置に用いられている超電導磁石にお
いては、NbTi等の高価な超電導導体の全体量を低減
するために、超電導磁石を構成する超電導導体の短尺特
性に対して極めて高い負荷率(85%以上)で運転する
ことが望まれており、さらにまたクエンチ発生時に超電
導磁石内の超電導導体に局所的に高い熱負荷や電位差が
かかることによる損傷を避けるために、超電導磁石内の
全ての超電導導体が同様な負荷率で運転されることが望
まれている。
In particular, in a superconducting magnet used in a device of a relatively large scale, such as a particle accelerator, a superconducting magnet is constructed in order to reduce the total amount of expensive superconducting conductors such as NbTi. It is desired to operate at an extremely high load factor (85% or more) for the short length characteristics of the superconducting conductor, and furthermore, when quenching occurs, a high heat load or a potential difference is locally applied to the superconducting conductor in the superconducting magnet. It is desired that all superconducting conductors within the superconducting magnet be operated at similar load factors to avoid possible damage.

【0007】ここで、負荷率とは次のように定義される
値を示す。図4において、横軸は超電導磁石を構成する
超電導導体が経験している磁場、縦軸は超電導導体に流
れている電流の密度すなわち、導体に流れている電流を
導体中の超電導体の断面積で割った値を表す。また、線
8は超電導導体が経験する磁場とその磁場における臨界
電流密度との関係を表している。さらに、線9は超電導
導体に流れる電流の密度と、そのときに発生する磁場と
の関係を表しており、点Aは超電導導体に要求される運
転条件を示している。いま、超電導導体に流れる電流の
密度を、要求される運転条件から大きくしていくと、超
電導導体の状態は点Aから線9に沿って図中の矢印の向
きに移動して行き、線8上の点A’まで達したときに電
流密度は臨界状態となる。ここに、線分OAと線分O
A’との長さの比を負荷率として定義する。上記の理由
により、内層と外層とが同じ輸送電流を担うことで電流
導入端子の数を減らすという要請から内層と外層の2層
の超電導導体を途中で接続して巻き回した超電導双極電
磁石においては、外層の超電導導体の方がより大きな電
流密度すなわち小さな断面積を持つ構造となっている。
同時に、装置の性能向上に伴う大電流化の要求に対して
超電導素線の本数が増加してきており、さらにまたフラ
ットワイズで巻き回される超電導導体において曲げ半径
rに対してa/rに比例する端部巻線時の歪を起因とす
るフィラメントの断線等による超電導導体の性能の劣化
を小さくするために、超電導導体断面の厚さを小さくす
る必要があり、このような理由によって超電導導体断面
のアスペクト比が大きな超電導導体が使われる結果とな
っている。
Here, the load factor indicates a value defined as follows. In FIG. 4, the horizontal axis represents the magnetic field experienced by the superconducting conductor that constitutes the superconducting magnet, and the vertical axis represents the density of the current flowing in the superconducting conductor, that is, the cross-sectional area of the current flowing in the superconducting conductor. Indicates the value divided by. Line 8 represents the relationship between the magnetic field experienced by the superconducting conductor and the critical current density in that magnetic field. Further, the line 9 represents the relationship between the density of the current flowing in the superconducting conductor and the magnetic field generated at that time, and the point A represents the operating condition required for the superconducting conductor. Now, when the density of the current flowing through the superconducting conductor is increased from the required operating condition, the state of the superconducting conductor moves from the point A along the line 9 in the direction of the arrow in the figure, and the line 8 The current density reaches a critical state when the point A ′ is reached. Here, line segment OA and line segment O
The ratio of the length with A'is defined as the load factor. For the above reasons, in order to reduce the number of current introducing terminals by causing the inner layer and the outer layer to carry the same transport current, in a superconducting dipole electromagnet in which two layers of the inner layer and the outer layer are superposed and connected in the middle, The outer superconducting conductor has a higher current density, that is, a smaller cross-sectional area.
At the same time, the number of superconducting wires has been increasing in response to the demand for higher current as the performance of the equipment improves, and in a superconducting conductor wound in a flat wise manner, the bending radius is proportional to a / r. The thickness of the superconducting conductor cross section must be reduced in order to reduce the deterioration of the performance of the superconducting conductor due to the filament breakage caused by the strain at the end winding. The result is that superconducting conductors with a large aspect ratio are used.

【0008】上記文献(タイシーエフエイ プロシーデ
ィングス)に纏められている世界の主要な超電導双極電
磁石の超電導導体断面のアスペクト比を以下に示す。
The aspect ratios of the cross sections of the superconducting conductors of the world's main superconducting dipole magnets summarized in the above-mentioned document (T.F.A. Proceedings) are shown below.

【0009】 ・米国 テバトロン 約6.2 ・独 ヘラ 約6.8 ・米国 リック 約8.3 ・欧州 エル・エッチ・シー 約7.6 (内層用・予定) ・欧州 エル・エッチ・シー 約11.5 (外層用・予定) ・米国 エス・エス・シー 約8.4 (内層用・計画中止) ・米国 エス・エス・シー 約10.1 (外層用・計画中止)-Tevatron of the United States about 6.2-Herla of Germany about 6.8-Rick of the United States about 8.3-Europe L Etch about 7.6 (for inner layer / planned) -Europe L Etch about 11 .5 (for outer layer / planned) ・ US SSC approximately 8.4 (for inner layer / plan discontinued) ・ US SSC approximately 10.1 (for outer layer / plan discontinued)

【0010】[0010]

【発明が解決しようとする課題】ところで、粒子加速器
においては、ビーム寿命がビーム管の真空度に依存する
こと、イベントを溜めるためには衝突回数が多い方が良
いこと、電力消費量が少ない方が良いこと等の理由によ
り、必要な速度にまで粒子を加速するための時間が短い
ものが要求されている。そのため、特に建設費の削減や
場所的、空間的都合のためにバイポーラ・サイクルで運
転される粒子加速器に象徴されるように、その超電導磁
石の交流損失が無視できないものとなっていることが指
摘されている。他方、製作面においても、超電導磁石に
おいて、必要な磁場形状及び磁場精度を出すために要求
される断面形状に合致させるために、図1のような超電
導導体の断面に対してその厚さ2aが超電導素線の直径
dの2倍(2d)より小さい値(86%〜93%)とな
るように撚線成型されていることに加えて、大電流が流
れている超電導導体が自らに働く電磁力によって動いた
ときの摩擦熱によるクエンチ発生を防ぐ目的で、製作時
に超電導導体に強い横方向の予備圧力が掛けられるため
に、剰え大きなアスペクト比により断面横方向の変動磁
場による素線間結合電流が誘導され易い上に、超電導素
線間の接触抵抗が小さな値となることによって、超電導
導体の断面形状に起因する超電導素線間の結合損失が上
記超電導磁石の交流損失に占められる割合が大きくなっ
ていることも指摘されている。
By the way, in the particle accelerator, the beam life depends on the vacuum degree of the beam tube, the number of collisions should be large in order to accumulate events, and the power consumption should be small. For reasons such as good performance, it is required that the time for accelerating the particles to the required speed be short. Therefore, it is pointed out that the AC loss of the superconducting magnet is not negligible, as symbolized by the particle accelerator operated in the bipolar cycle for the sake of reduction of construction cost and location and space. Has been done. On the other hand, in terms of manufacturing, in order to match the required magnetic field shape and the cross-sectional shape required to obtain the magnetic field accuracy in the superconducting magnet, the thickness 2a of the superconducting conductor as shown in FIG. In addition to being twisted and molded to have a value (86% to 93%) smaller than twice the diameter d of the superconducting element wire (2d), a superconducting conductor carrying a large current acts on itself. In order to prevent quenching due to frictional heat when moving by force, a strong lateral pre-pressure is applied to the superconducting conductor during manufacturing. Is easily induced and the contact resistance between the superconducting wires becomes a small value, so that the coupling loss between the superconducting wires due to the cross-sectional shape of the superconducting conductor is accounted for in the AC loss of the superconducting magnet. That proportion that has also been pointed out that is larger.

【0011】この問題を解決するために種々の対策が講
じられている。超電導素線のトランスポジションピッチ
を短くした場合には、フィラメント断線の恐れがあり、
方形の断面形状が要求される超電導導体においては、お
のずと素線のツイストピッチの限界が定められてしまう
困難がある。超電導素線の安定化材のなかにCuNi等
の高抵抗金属を複合して配置することにより、安定化材
の熱的性質すなわち熱伝導性と熱容量とを損なわずに、
その電気抵抗だけを高くする方法、表面に酸化銅黒化処
理等を施した超電導素線を通常の超電導素線と並列に配
置して交互に撚り合わせる一般にゼブラ(Zebur
a)と呼ばれている方法、超電導素線の表面に銀とスズ
の合金をメッキする一般にステブライト(Stabli
te)と呼ばれている方法によって超電導素線間の結合
損失を低減する方法が試みられている。
Various measures have been taken to solve this problem. If the transposition pitch of the superconducting wire is shortened, there is a risk of filament breakage,
In a superconducting conductor that requires a rectangular cross-sectional shape, it is naturally difficult to set the twist pitch limit of the wire. By arranging a composite of high resistance metal such as CuNi in the stabilizing material of the superconducting element wire, the thermal properties of the stabilizing material, that is, thermal conductivity and heat capacity are not impaired,
A method of increasing only the electric resistance, a superconducting element wire whose surface is subjected to copper oxide blackening treatment, etc. is arranged in parallel with a normal superconducting element wire and twisted alternately in general.
The method called a), in which the surface of the superconducting element wire is plated with an alloy of silver and tin, is generally Stabilite.
The method called te) has been attempted to reduce the coupling loss between the superconducting wires.

【0012】本発明は、このような技術的背景に鑑みて
なされたもので、その第1の目的は、超電導素線間の結
合損失が小さい断面形状の超電導導体を持つ超電導磁石
を提供することにある。また、第2の目的は、超電導素
線間の結合損失が小さい断面形状の超電導導体を持つ超
電導磁石を使用した粒子加速器を提供することにある。
The present invention has been made in view of the above technical background, and a first object thereof is to provide a superconducting magnet having a superconducting conductor having a cross-sectional shape in which the coupling loss between the superconducting element wires is small. It is in. A second object is to provide a particle accelerator using a superconducting magnet having a superconducting conductor having a cross-sectional shape with a small coupling loss between superconducting element wires.

【0013】[0013]

【課題を解決するための手段】上記第1の目的を達成す
るために各手段は、以下のように構成されている。
Means for Solving the Problems In order to achieve the first object, each means is constructed as follows.

【0014】すなわち、第1の手段は、複数本の超電導
素線を束ねて形成された超電導導体に垂直に印加される
一様な変動磁場に対して、素線間の鎖交磁場変動に基づ
く結合電流が流れにくくなるよう、前記超電導素線が所
定のピッチでツイストされて形成された超電導導体を巻
き回すことによって磁場を発生するとともに、通電電流
を励消磁することによって変動磁場を与える交流用超電
導磁石において、前記超電導導体断面の広い辺の長さを
狭い辺の長さで割った値(以下、「アスペクト比」と称
する。)を、変動磁場の磁場分布を考慮して超電導素線
間の結合損失が最も少なくなるように部分的に選択し
て、前記超電導導体を巻き回したことを特徴としてい
る。
That is, the first means is based on the variation of the interlinking magnetic field between the strands with respect to the uniform varying magnetic field applied perpendicularly to the superconducting conductor formed by bundling a plurality of superconducting element wires. A magnetic field is generated by winding a superconducting conductor formed by twisting the superconducting element wires at a predetermined pitch so that a coupling current does not easily flow. In a superconducting magnet, a value obtained by dividing the length of the wide side of the cross section of the superconducting conductor by the length of the narrow side (hereinafter referred to as “aspect ratio”) is taken into consideration between the superconducting element wires in consideration of the magnetic field distribution of the fluctuating magnetic field. It is characterized in that the superconducting conductor is wound so that it is partially selected so as to minimize the coupling loss.

【0015】第2の手段は、第1の手段と同様の前提の
交流超電導磁石において、前記アスペクト比が、当該超
電導導体の狭い辺に直交する変動磁場の絶対値を当該超
電導導体の広い辺に直交する変動磁場の絶対値で割った
値の平方根より大きく、平方根の2倍より小さくなるよ
うに前記超電導導体を形成したことを特徴としている。
A second means is an AC superconducting magnet based on the same premise as the first means, wherein the aspect ratio makes the absolute value of the fluctuating magnetic field orthogonal to the narrow side of the superconducting conductor to the wide side of the superconducting conductor. It is characterized in that the superconducting conductor is formed so as to be larger than a square root of a value obtained by dividing an absolute value of an orthogonal fluctuating magnetic field and smaller than twice the square root.

【0016】第3の手段は、第1の手段と同様の前提の
交流超電導磁石において、前記アスペクト比が、当該超
電導導体の狭い辺に直交する変動磁場の絶対値を当該超
電導導体の広い辺に直交する変動磁場の絶対値で割った
値と、当該超電導導体の広い辺に直交する方向の電気抵
抗率を当該超電導導体の狭い辺に直交する方向の電気抵
抗率で割った値の平方根とを掛け合わせた値の平方根よ
り大きく、平方根の3倍より小さくなるように前記超電
導導体を形成したことを特徴としている。
A third means is an AC superconducting magnet on the same premise as the first means, wherein the aspect ratio is such that the absolute value of the fluctuating magnetic field orthogonal to the narrow side of the superconducting conductor is set to the wide side of the superconducting conductor. The square root of the value obtained by dividing by the absolute value of the changing magnetic field orthogonal to each other, and the value obtained by dividing the electrical resistivity in the direction orthogonal to the wide side of the superconducting conductor by the electrical resistivity in the direction orthogonal to the narrow side of the superconducting conductor. It is characterized in that the superconducting conductor is formed so as to be larger than the square root of the multiplied value and smaller than three times the square root.

【0017】なお、第1ないし第3の手段において、前
記超電導導体は、前記ツイストされた超電導素線の集合
撚線を単位とし、複数の撚線をさらに少なくとも1回ツ
イストして形成するとよい。この場合、前記ツイストさ
れた超電導素線と、この超電導素線の集合撚線とのツイ
スト方向を同一にするとよい。さらに、前記超電導素線
が常電導転移し、通電電流が超電導素線から分流したと
きに電流を流す低抵抗金属からなる素線を、前記超電導
素線に対して並列に配置するとともに、前記低抵抗金属
からなる素線を前記超電導素線及び前記集合撚線と逆方
向にツイストするようにしてもよい。なお、前記集合撚
線の中央部に抵抗率の高い部材をさらに配置してもよい
し、前記超電導素線または前記低抵抗金属からなる素線
の中にさらに抵抗率の高い金属を複合して配置してもよ
い。配置される前記抵抗率の高い部材としては、CuN
iおよびCuSnの少なくとも一方を主成分とする材料
を使用することができ、合成樹脂からなる絶縁材によっ
て形成することもできる。また、前記抵抗率の高い金属
としては、CuNiおよびCuSnの少なくとも一方を
主成分とする材料によって形成することができる。
In the first to third means, the superconducting conductor may be formed by twisting a plurality of twisted wires at least once with the twisted superconducting element wires as a unit. In this case, it is preferable that the twisted superconducting element wire and the twisted strand of the superconducting element wire have the same twist direction. Further, the superconducting element wire undergoes a normal conduction transition, and an element wire made of a low-resistance metal that causes a current to flow when the energizing current is shunted from the superconducting element wire is arranged in parallel with the superconducting element wire, and A wire made of a resistance metal may be twisted in the opposite direction to the superconducting wire and the stranded wire. A member having a high resistivity may be further arranged in the central portion of the assembled stranded wire, or a metal having a higher resistivity may be combined in the superconducting wire or the wire made of the low resistance metal. You may arrange. As the arranged member having high resistivity, CuN is used.
A material containing at least one of i and CuSn as a main component can be used, and an insulating material made of synthetic resin can also be used. The metal having a high resistivity can be formed of a material containing at least one of CuNi and CuSn as a main component.

【0018】また、第4の手段は、前記超電導磁石を使
用した交流用超電導磁石の運転時の最大負荷率を85%
以上に設定したことを特徴としている。
The fourth means is that the maximum load factor during operation of the AC superconducting magnet using the superconducting magnet is 85%.
It is characterized by the above settings.

【0019】さらに、第2の目的を達成するため、第5
の手段は、粒子加速器に第1ないし第3の手段の交流用
超電導磁石を使用したことを特徴としている。
Further, in order to achieve the second object, the fifth object
This means is characterized in that the AC superconducting magnets of the first to third means are used in the particle accelerator.

【0020】この場合、交流超電導磁石には、アスペク
ト比が3以下のものを使用するとよく、鉄芯を備えるよ
うにしてもよい。また、発生する磁場は2n次成分(n
は自然数)をあるようにするとよい。また、この種の粒
子加速器は、核融合、電力貯蔵用、もしくは物性研究用
に使用される。
In this case, the AC superconducting magnet having an aspect ratio of 3 or less may be used, and an iron core may be provided. In addition, the generated magnetic field has a 2n-order component (n
Is a natural number). Further, this kind of particle accelerator is used for nuclear fusion, electric power storage, or physical property research.

【0021】前記超電導磁石はソレノイドまたはトロイ
ドのいずかに設定し、前記ソレノイドまたはトロイドの
いずれかの超電導磁石の断面内で磁場方向の磁石の軸両
端部側のアスペクト比が、磁石の軸中央部側のアスペク
ト比よりも小さくなるように設定してもよい。なお、こ
こでは、アスペクト比が1以下から1以上にまたがる場
合は、磁石中央部の超電導導体断面の長い方の辺を基準
にして、基準に対して平行な辺の長さを、基準に対して
平行でない辺の長さで割ったものをアスペクトとして考
える。
The superconducting magnet is set to either a solenoid or a toroid, and the aspect ratio on both ends of the axis of the magnet in the magnetic field direction in the cross section of the superconducting magnet of either the solenoid or the toroid is the center of the axis of the magnet. It may be set to be smaller than the aspect ratio on the copy side. In addition, here, when the aspect ratio extends from 1 or less to 1 or more, the length of the side parallel to the reference is based on the longer side of the cross section of the superconducting conductor at the center of the magnet. And divide it by the length of the side that is not parallel and consider it as the aspect.

【0022】[0022]

【作用】上記各手段は、基本的に交流用超電導導体の交
流損失が最も小さくなるように意図したものである。交
流用超電導導体の交流損失は、その損失機構から、超電
導フィラメント内のヒステリシス損失、常電導金属すな
わち安定化材内の渦電流損失、安定化材を介した超電導
フィラメント間の結合損失、そして安定化材を介した超
電導素線間の結合損失に大別される。このうち特に超電
導導体の断面形状に依存することがわかっている超電導
素線間の結合損失については、キャンベル,エイ.エ
ム.クライオジェニックス(1982 年) 3項から16項
(Campbell,A.M. Cryogenics.JANUARY(1982) 3)にお
ける考察をもとに、磁束密度(以下、表記上の制限に
より磁束密度を便宜的に「」で示す。)に晒されてい
る。超電導素線のトランスポジションピッチがLpであ
るような超電導導体について、超電導素線間の平均電気
抵抗率をρとすれば、磁束密度に垂直な方向の超電導
導体の幅を2a、磁束密度に平行な方向の超電導導体
の幅を2bとしたとき(図1参照)、次式のように導か
れる。求める単位体積当たりの結合損失をPで表わす
と、 P=( 2/ρ)・{Lp2 /16(a+b)2 }・〔a2 +b2 { (7a4 /30b4 )+a2 /6b2 }+ab(2a2 /3b2 )〕 ・・・(1) となる。この(1)式においては、超電導素線間の、導
体の狭い辺に直交する方向の電気抵抗率と導体の広い辺
に直交する方向の電気抵抗率(それぞれρa,ρbとす
る)を等しいとして扱っている。
The above-mentioned means are basically intended to minimize the AC loss of the AC superconducting conductor. The AC loss of a superconducting conductor for alternating current depends on its loss mechanism: hysteresis loss in the superconducting filament, eddy current loss in the normal conducting metal or stabilizing material, coupling loss between the superconducting filaments through the stabilizing material, and stabilization. It is roughly classified into the coupling loss between the superconducting wires through the material. Among them, regarding the coupling loss between the superconducting wires which is known to depend on the cross-sectional shape of the superconducting conductor, Campbell, A. M. Based on the consideration in Cryogenics (1982) 3 to 16 (Campbell, AM Cryogenics.JANUARY (1982) 3), the magnetic flux density B (hereinafter, the magnetic flux density is expediently limited by the notational limitation " B ).). For a superconducting conductor in which the transposition pitch of the superconducting element wire is Lp, if the average electrical resistivity between the superconducting element wires is ρ, the width of the superconducting conductor in the direction perpendicular to the magnetic flux density B is 2a and the magnetic flux density B is B. When the width of the superconducting conductor in the direction parallel to is 2b (see FIG. 1), the following equation is obtained. Denoting the coupling loss per unit volume calculated by the P, P = (B 2 / ρ) · {Lp 2/16 (a + b) 2} · [a 2 + b 2 {(7a 4 / 30b 4) + a 2 / 6b 2 } + ab (2a 2 / 3b 2 )] (1) In this equation (1), the electrical resistivity between the superconducting element wires in the direction orthogonal to the narrow side of the conductor and the electrical resistivity in the direction orthogonal to the wide side of the conductor (assumed to be ρ a and ρ b , respectively) Treated as equal.

【0023】いま、ρa,ρb の違いを考慮し、さらに、
図1及び図2に示すように、超電導導体1が導体の狭い
辺に直交する方向の磁束密度 a と導体の広い辺に直交
する方向の磁束密度 b とに晒されている場合を考える
と、それぞれの磁束密度の時間変化に対応する結合損失
a,b は(2)及び(3)式のようになる。
Now, considering the difference between ρ a and ρ b ,
As shown in FIGS. 1 and 2, consider a case where the superconducting conductor 1 is exposed to a magnetic flux density B a in a direction orthogonal to a narrow side of the conductor and a magnetic flux density B b in a direction orthogonal to a wide side of the conductor. And the coupling losses P a and P b corresponding to the changes over time of the respective magnetic flux densities are as shown in equations (2) and (3).

【0024】 Pa a 2 {Lp2 /16(a+b)2 }・{(1/ρa )・ (a2 +2a3 /3a+7b4 /30b2 )+(1/ρb )(a2 /6} ・・・(2) Pb b 2 {Lp2 /16(a+b)2 }・{(1/ρb )・ (b2 +2b3 /3a+7b4 /30a2 )+(1/ρa )(b2 /6} ・・・(3) 両方向の超電導素線間の結合損失は、それぞれPa,b
で与えられるので、超電導素線間の全結合損失はPa
b で与えられることになる。そこで、この全結合損失
a +Pb を近似的に最小にするような断面のアスペク
ト比b/aについて検討する。
[0024] P a = B a 2 {Lp 2/16 (a + b) 2} · {(1 / ρ a) · (a 2 + 2a 3 / 3a + 7b 4 / 30b 2) + (1 / ρ b) (a 2 / 6} ··· (2) P b = B b 2 {Lp 2/16 (a + b) 2} · {(1 / ρ b) · (b 2 + 2b 3 / 3a + 7b 4 / 30a 2) + (1 / ρ a) (b 2/6 } ··· (3) is coupling loss between both of the superconducting wire, respectively P a, P b
Therefore, the total coupling loss between superconducting wires is P a +
Will be given by P b . Therefore, the aspect ratio b / a of the cross section that approximately minimizes the total coupling loss P a + P b will be examined.

【0025】いま、3a<bであるような断面形状の超
電導導体を考えると、Pa,b はそれぞれ下記の(4)
及び(5)式のように近似される。これらをそれぞれP
a 'b ' で表すと、 Pa ' a 2 {Lp2 /16(a+b)2 ・a2 (1/ρa )+ (1/6ρb )} ・・・(4) Pb ’= b 2 {Lp2 /16(a+b)2 }・(7b4 /30a2 ) (1/ρb ) ・・・(5) となる。このとき、超電導素線間の全結合損失Pa +P
b の最小値は、(6)式のようになる。
Considering a superconducting conductor having a cross-sectional shape such that 3a <b, P a and P b are respectively defined by the following (4)
And the equation (5) is approximated. These are P
Expressed in a 'P b', P a '= B a 2 {Lp 2/16 (a + b) 2 · a 2 (1 / ρ a) + (1 / 6ρ b)} ··· (4) P b '= become B b 2 {Lp 2/16 (a + b) 2} · (7b 4 / 30a 2) (1 / ρ b) ··· (5). At this time, total coupling loss between the superconducting wires P a + P
The minimum value of b is as shown in equation (6).

【0026】 2 a b 2 〔(7/30ρb ){1/ρa )+(1/6ρb )}〕1/2 × {Lp2 /16(a+b)2 } ・・・(6) この最小値をとるときの断面のアスペクト比b/aは次
の(7)式で与えられる。
[0026] 2 B a B b b 2 [(7 / 30ρ b) {1 / ρ a) + (1 / 6ρ b)} ] 1/2 × {Lp 2/16 ( a + b) 2} ··· ( 6) The aspect ratio b / a of the cross section when this minimum value is obtained is given by the following equation (7).

【0027】 b/a=( a b 1/2 ・{(30/7)(ρb /ρa +1/6)}1/4 ・・・(7) さらに、(7)式右辺において、代表的な値としてρb
/ρa ≒1 とすると、 b/a=1.5( a b 1/2 ・・・(8) となる。つまり、アスペクト比b/aを ( a b )1/2<b/a<2( a b )1/2 ・・・(9) とすることによりその効果を得ることができる。
B / a = ( B a / B b ) 1/2 · {(30/7) (ρ b / ρ a +1/6)} 1/4 (7) Further, equation (7) On the right side, ρ b is a typical value
/ Ρ a ≒ 1 and when, b / a = 1.5 (B a / B b) 1/2 a (8). In other words, it is possible to obtain the effect by making the aspect ratio b / a (B a / B b) 1/2 <b / a <2 (B a / B b) 1/2 ··· (9) it can.

【0028】また、ρb /ρa ≫1/6の場合は、 b/a≒2.1( a b (ρb /ρa 1/2 1/2 ・・・(10) となり、アスペクト比b/aを、 ( a b ( ρb /ρa )1/2)1/2 <b/a< 3( a b ( ρb /ρa )1/2)1/2・・・(11) とすることによりその効果を得ることができる。When ρ b / ρ a >> 1/6, b / a≈2.1 ( B a / B bb / ρ a ) 1/2 ) 1/2 ... (10 ), and the aspect ratio b / a, (B a / B b (ρ b / ρ a) 1/2) 1/2 <b / a <3 (B a / B b (ρ b / ρ a) 1 The effect can be obtained by setting / 2 ) 1/2 ... (11).

【0029】[0029]

【実施例】以下、図面を参照し、本発明の実施例につい
て詳細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0030】図1は本発明の実施例に係る粒子加速器用
超電導双極電磁石の超電導導体の断面形状を示す説明
図、図2は粒子加速器用超電導双極磁石の外観を示す斜
視図である。これらの図において、超電導双極電磁石断
面内の超電導導体1は、安定化材中に超電導フィラメン
トを配置した超電導素線4を複数本、所定のトランスポ
ジションで撚り合わせた集合体でできている。超電導双
極電磁石には鉄芯7が付いており、また各々の超電導導
体は電流を理想的なcosθ分布に近づけるように巻か
れている。安定化材としては、例えば、銅、アルミニウ
ムなどの低抵抗金属が使用される。なお、安定化材とな
る素線は前記超電導素線が常電導転移し、通電電流が超
電導素線から分流したときに電流を流す低抵抗金属から
なる素線によって構成され、超電導素線に対して並列に
配置するとともに、低抵抗金属からなる素線を超電導素
線及び前記集合撚線と逆方向にツイストして配置され
る。
FIG. 1 is an explanatory view showing a sectional shape of a superconducting conductor of a superconducting dipole electromagnet for a particle accelerator according to an embodiment of the present invention, and FIG. 2 is a perspective view showing an appearance of the superconducting dipole magnet for a particle accelerator. In these figures, the superconducting conductor 1 in the cross section of the superconducting dipole electromagnet is made of an assembly in which a plurality of superconducting element wires 4 in which a superconducting filament is arranged in a stabilizing material are twisted in a predetermined transposition. The superconducting dipole electromagnet has an iron core 7, and each superconducting conductor is wound so as to bring the current close to an ideal cos θ distribution. As the stabilizer, for example, a low resistance metal such as copper or aluminum is used. In addition, the strand which becomes the stabilizing material is composed of a strand made of a low-resistance metal that causes a current to flow when the superconducting strand undergoes normal conduction transition and the energizing current is shunted from the superconducting strand, with respect to the superconducting strand. Are arranged in parallel with each other, and the wires made of a low resistance metal are twisted in the opposite direction to the superconducting wires and the assembled stranded wires.

【0031】超電導双極電磁石の断面2は中心磁場5を
作るための電流が流れる超電導導体1の集まりによって
形成されており、場所によって異なる磁場に晒されてい
る。そこで、電磁石断面内の特定の超電導導体1につい
て考える。
The cross section 2 of the superconducting dipole electromagnet is formed by a group of superconducting conductors 1 through which a current for producing a central magnetic field 5 flows, and is exposed to different magnetic fields depending on the place. Therefore, consider a specific superconducting conductor 1 in the cross section of the electromagnet.

【0032】超電導電磁石断面内の超電導導体1は、安
定化材中に超電導フィラメントを配置した超電導素線4
を複数本、所定のトランスポジションで撚り合わせた集
合体でできている。この撚り合わせは、前記撚り合わさ
れた(以下、「ツイストされた」と称する。)超電導素
線の集合撚線を単位とし、複数の撚線をさらに少なくと
も1回ツイストして形成される。その場合、前記ツイス
トされた超電導素線と、この超電導素線の集合撚線との
ツイスト方向は同一である。超電導導体1が晒されてい
る磁場の磁束密度3の、超電導導体1の長手方向(縦方
向)に垂直な成分を a 、超電導導体1の長手方向に平
行な成分を b とし、さらに、これら二つの方向の電気
抵抗率をそれぞれρa,ρb とすると、超電導導体1の断
面アスペクト比b/aを、上記超電導素線間の結合損失
a +Pb が最小となるように(最小に近付けるよう
に)あらかじめ設計することにより、超電導素線4間の
結合損失Pa +Pb を低減することができる。ここで、
ρb /ρa の値については、計算もしくは測定によって
決定することができ、また、 a b の値について
は、経験磁場が最大であることが知らされている部位6
の超電導導体1が晒されている磁場の計算値を単独に用
いる方法や、電磁石の断面を形成する個々の超電導導体
1が晒されている磁場を計算する方法が考えられる。こ
のうち後者では、超電導電磁石全体の超電導素線4の結
合損失Pa +Pb の合計を最小にするように超電導導体
の断面アスペクト比b/aを決定することができる。
The superconducting conductor 1 in the cross section of the superconducting electromagnet is a superconducting element wire 4 in which a superconducting filament is arranged in a stabilizing material.
It is made up of an aggregate of a plurality of twisted strands in a predetermined transposition. This twist is formed by twisting a plurality of twisted wires at least once, using the twisted (hereinafter referred to as “twisted”) superconducting element wires as a unit. In that case, the twisted direction of the twisted superconducting element wire and the collective twisted wire of this superconducting element wire are the same. A component of the magnetic flux density 3 of the magnetic field to which the superconducting conductor 1 is exposed, which is perpendicular to the longitudinal direction (longitudinal direction) of the superconducting conductor 1, is B a , and a component parallel to the longitudinal direction of the superconducting conductor 1 is B b . Letting the electrical resistivities in these two directions be ρ a and ρ b , respectively , the cross-sectional aspect ratio b / a of the superconducting conductor 1 is set so that the coupling loss P a + P b between the superconducting element wires becomes the minimum (minimum By designing in advance so that the coupling loss P a + P b between the superconducting wires 4 can be reduced. here,
The value of ρ b / ρ a can be determined by calculation or measurement, and the value of B a / B b is known to be the maximum empirical field 6
The method of independently using the calculated value of the magnetic field to which the superconducting conductor 1 is exposed, and the method of calculating the magnetic field to which the individual superconducting conductors 1 forming the cross section of the electromagnet are exposed can be considered. In the latter case, the cross-sectional aspect ratio b / a of the superconducting conductor can be determined so as to minimize the total of the coupling loss P a + P b of the superconducting element wires 4 of the entire superconducting electromagnet.

【0033】以下、超電導双極電磁石の断面において、
中心磁場5を作るための電流が理想的なcosθ分布を
するように超電導導体1が巻かれていると仮定して、超
電導電磁石全体の超電導素線4間の結合損失Pa +Pb
の合計を最小にするような超電導導体1の断面アスペク
ト比b/aを評価する。
Hereinafter, in the cross section of the superconducting dipole electromagnet,
Assuming that the superconducting conductor 1 is wound so that the current for producing the central magnetic field 5 has an ideal cos θ distribution, the coupling loss P a + P b between the superconducting element wires 4 of the entire superconducting electromagnet.
The cross-sectional aspect ratio b / a of the superconducting conductor 1 that minimizes the total of

【0034】図3(a)において、符号21で示した部
分は、この評価で模擬した電流が理想的なcosθ分布
をするように巻かれている超電導双極電磁石の断面であ
り、図3(b)における符号22で示した部分は、実際
の計算に用いたcosθ分布の層状電流を示している。
簡単にするために、超電導双極電磁石には鉄芯7が付い
ており、超電導導体1が巻かれている領域において磁場
の磁束密度3はそのY成分のみを持ち、かつ、各々の超
電導導体1が原点Oに対して放射状に位置して巻かれて
いると仮定する。電流がcosθ分布をするための超電
導導体1の巻線密度nを図3(b)のX軸からの角度θ
の関数として、 n(θ)=(N/2)cosθ ・・・(12) で与えると(Nは全巻数)、各々のθの値に対応する超
電導素線間結合損失dPa " , dPb " はそれぞれ、 dPa " ={Lp2 /16(a+b)2 }・ ・{(1/ρa )(a2 +2a3 /3b+7a4 /30b2 ) +(1/ρb ) a2 /6}2 (N/2)sin2 θcosθdθ ・・・(13) dPb " ={Lp2 /16(a+b)2 } ・{(1/ρb )(b2 +2b3 /3a+7b4 /30a2 ) +(1/ρa )b2 /6}2 (N/2)cos2 θdθ ・・・(14) となり、これらをθ=0からθ=π/2まで加え合わせ
ることにより全結合損失を得る。
In FIG. 3A, a portion indicated by reference numeral 21 is a cross section of the superconducting dipole electromagnet wound so that the current simulated in this evaluation has an ideal cos θ distribution, and FIG. The part indicated by reference numeral 22 in) indicates the layered current of the cos θ distribution used in the actual calculation.
For simplification, the superconducting dipole electromagnet is provided with an iron core 7, the magnetic flux density 3 of the magnetic field has only its Y component in the region where the superconducting conductor 1 is wound, and each superconducting conductor 1 is It is assumed that the winding is located radially with respect to the origin O. The winding density n of the superconducting conductor 1 for making the current have a cos θ distribution is defined by the angle θ from the X axis in FIG. 3B.
, N (θ) = (N / 2) cos θ (12) (N is the total number of turns), the coupling loss dP a " , dP between the superconducting element wires corresponding to each value of θ. b ", respectively, dP a" = {Lp 2 /16 (a + b) 2} · · {(1 / ρ a) (a 2 + 2a 3 / 3b + 7a 4 / 30b 2) + (1 / ρ b) a 2 / 6} B y 2 (N / 2) sin 2 θcosθdθ ··· (13) dP b "= {Lp 2/16 (a + b) 2} · {(1 / ρ b) (b 2 + 2b 3 / 3a + 7b 4 / 30a 2) + (1 / ρ a) b 2/6} B y 2 (N / 2) cos 2 θdθ ··· (14) becomes, by summing them from theta = 0 to θ = π / 2 Get the total coupling loss.

【0035】すなわち、 Pa " =∫2 dPa " =(1/3)2 (N/2){Lp2 /16(a+b)2 } ・{(1/ρa )(a2 +2a3 /3b+7a4 /30b2 ) +(1/ρb )a2 /6} ・・・(15) Pb " =∫2 dPb " =(2/3)2 (N/2){Lp2 /16(a+b)2 } ・{(1/ρb )(b2 +2b3 /3a+7b4 /30a2 ) +(1/ρa )b2 /6} ・・・(16) となる。ただし、y は磁束密度のY成分である。[0035] That is, P a "= ∫ 2 dP a" = (1/3) B y 2 (N / 2) {Lp 2/16 (a + b) 2} · {(1 / ρ a) (a 2 + 2a 3 / 3b + 7a 4 / 30b 2) + (1 / ρ b) a 2/6} ··· (15) P b "= ∫ 2 dP b" = (2/3) B y 2 (N / 2) { lp 2/16 (a + b ) 2} · {(1 / ρ b) become (b 2 + 2b 3 / 3a + 7b 4 / 30a 2) + (1 / ρ a) b 2/6} ··· (16). However, B y is the Y component of the magnetic flux density.

【0036】上記(15)及び(16)式における係数
1/3、2/3をそれぞれ超電導双極電磁石の超電導導
体に対する縦方向磁場因子、横方向磁場因子と呼ぶ。各
々の超電導電磁石の磁場分布に対応する磁場因子によっ
て超電導導体の断面アスペクト比b/aを最適化するこ
とが本発明の特徴である。
The coefficients 1/3 and 2/3 in the above equations (15) and (16) are called the vertical magnetic field factor and the horizontal magnetic field factor for the superconducting conductor of the superconducting dipole electromagnet, respectively. It is a feature of the present invention that the cross-sectional aspect ratio b / a of the superconducting conductor is optimized by the magnetic field factor corresponding to the magnetic field distribution of each superconducting electromagnet.

【0037】以上、超電導双極電磁石を例にとって説明
したが、一般に2n極の超電導電磁石において、電流が
理想的なcosθ分布をするように超電導導体1が巻か
れている場合、上記縦方向磁場因子、横方向磁場因子は
それぞれ1/3n、2/3nとなることが同様に示され
る。
The superconducting dipole electromagnet has been described above as an example. Generally, in a 2n-pole superconducting electromagnet, when the superconducting conductor 1 is wound so that the current has an ideal cos θ distribution, the above-mentioned longitudinal magnetic field factor, It is similarly shown that the lateral magnetic field factors are 1 / 3n and 2 / 3n, respectively.

【0038】図5に縦方向磁場因子、横方向磁場因子が
それぞれ1/3、2/3の場合における全結合損失(規
格化損失)Pa "+Pb " のρb /ρa =1の場合のアス
ペクト比b/aに対する変化の様子を示す。この図か
ら、電流が理想的なcosnθ分布をするように超電導
導体1が巻かれており、鉄芯7の効果により超電導導体
1が巻かれている領域において磁場コイル内部領域の理
想的な成分のみを持つと仮定した場合、現存する粒子加
速器用超電導電磁石の超電導導体1の断面形状(b/a
=6〜12)では超電導素線間結合損失Pa "+Pb " が
大きいことがわかる。なお、図5においては、アスペク
ト比b/aが約8以上の場合については図示を省略し
た。
FIG. 5 shows ρ b / ρ a = 1 of the total coupling loss (normalized loss) P a "+ P b " when the longitudinal magnetic field factor and the lateral magnetic field factor are 1/3 and 2/3, respectively. In the case of, the change of the aspect ratio b / a is shown. From this figure, the superconducting conductor 1 is wound so that the current has an ideal cosnθ distribution, and only the ideal component of the magnetic coil internal region is wound in the region where the superconducting conductor 1 is wound due to the effect of the iron core 7. , The cross-sectional shape of the superconducting conductor 1 of the existing superconducting electromagnet for particle accelerator (b / a
= 6 to 12), it can be seen that the coupling loss between superconducting element wires P a "+ P b " is large. In FIG. 5, the illustration is omitted when the aspect ratio b / a is about 8 or more.

【0039】図6にρb /ρa の変化に対して超電導素
線間結合損失Pa "+Pb " の最小値を与える断面アクペ
クト比b/aの値の変化を示す。現在の粒子加速器用超
電導電磁石のρb /ρa の値を1以下と考えると、図6
により、超電導素線間結合損失Pa "+Pb " の合計を最
小にするような超電導導体の断面アスペクト比は、製造
上及び完成品の形状上の制限を考慮してほぼ1であると
いえる。
FIG. 6 shows a change in the value of the cross-section aspect ratio b / a which gives the minimum value of the coupling loss P a "+ P b " between the superconducting wires with respect to the change of ρ b / ρ a . Considering the value of ρ b / ρ a of the current superconducting electromagnet for particle accelerator as 1 or less, FIG.
As a result, the cross-sectional aspect ratio of the superconducting conductor that minimizes the sum of the coupling loss P a "+ P b " between the superconducting element wires is approximately 1 in consideration of the manufacturing and finished product shape restrictions. I can say.

【0040】すなわち、アクペクト比が小さくなること
はフラットワイズで巻き回される曲げ半径rに対してa
/rに比例する端部巻線時の歪が大きくなることを表し
ている。この対策として撚線の中央部に抵抗率の高い部
材を配置した超電導導体について考える。この場合、ρ
b /ρa の値が大きくなると考えられる。このときのρ
b /ρa の値を3〜10程度と考えると、図6により、
ρb /ρa >1において超電導素線間結合損失Pa "+P
b " の合計を最小にするような超電導導体1の最適断面
アスペクト比b/aは約1〜2であることがわかる。実
際に採用する断面アスペクト比b/aとしては、上記歪
の影響、製作性や費用を検討することにより、これより
僅かに大きい約3が望ましい。これは、先に挙げた実際
の超電導双極電磁石の断面アスペクト比b/aのいずれ
と比較しても1/2〜1/4の値となっている。なお、
上記抵抗率の高い部材は、例えばCuNiあるいはCu
Snのように抵抗率の高い金属の少なくとも一方を主成
分とする材料、もしくは抵抗率の高い合成樹脂からなる
絶縁材によって形成される。
That is, the fact that the aspect ratio is small means that a is relative to the bending radius r wound in a flatwise manner.
It means that the distortion at the end winding, which is proportional to / r, becomes large. As a countermeasure, we consider a superconducting conductor in which a member with high resistivity is placed in the center of the stranded wire. In this case, ρ
It is considered that the value of b / ρ a becomes large. Ρ at this time
Considering the value of b / ρ a to be about 3 to 10, according to FIG.
Coupling loss P a "+ P between superconducting wires when ρ b / ρ a > 1
It can be seen that the optimum cross-sectional aspect ratio b / a of the superconducting conductor 1 that minimizes the sum of " b " is about 1 to 2. The cross-sectional aspect ratio b / a that is actually adopted is the influence of the above strain, Considering the manufacturability and the cost, a slightly larger value of about 3 is desirable, which is 1/2 to any of the above-mentioned cross-sectional aspect ratios b / a of actual superconducting dipole electromagnets. The value is 1/4.
The member having a high resistivity is, for example, CuNi or Cu.
It is formed of a material containing at least one of metals having a high resistivity such as Sn as a main component, or an insulating material made of a synthetic resin having a high resistivity.

【0041】本発明の特徴である、各々の超電導電磁石
の磁場分布に対応する磁場因子によって超電導導体1の
断面アスペクト比b/aを最適化することは粒子加速器
用超電導電磁石以外の超電導電磁石にも容易に適応でき
る。例として、代表的なソレノイドコイル及びトロイド
コイルの磁場分布の状態及び本発明を適用した場合の断
面形状の概略を図7及び図8に示す。
The optimization of the cross-sectional aspect ratio b / a of the superconducting conductor 1 by the magnetic field factor corresponding to the magnetic field distribution of each superconducting electromagnet, which is a feature of the present invention, is applicable to superconducting electromagnets other than the superconducting electromagnet for the particle accelerator. Easy to adapt. As an example, the states of the magnetic field distributions of typical solenoid coils and toroid coils and the schematic cross-sectional shapes when the present invention is applied are shown in FIGS. 7 and 8.

【0042】図7において、(a)はソレノイドコイル
の磁場分布の様子を、(b)は本発明を適用した場合の
断面形状を表しており、また、(c)はソレノイドコイ
ル装置の外観を表す。ソレノイドコイルは全体の断面2
の磁場分布を用いて各々の部位の超電導導体1の断面ア
スペクト比b/aを最適化する目的で全体を3段に分割
して巻き回されている。この例では磁束密度の比 a
b が大きな値をとる磁石の軸中央部10では超電導導
体1の断面アスペクト比b/aは4に設定され、 a
b の値が1に近い磁石の軸中央部両端11ではアスペ
クト比b/aが約1に設定されている。さらにそれより
も端部側の軸端部12では a b の値が1よりも小
さくなるのに対応して超電導導体の断面アスペクト比b
/aが約0.4に設定され、コイルの軸両端部側に移動
するに従ってコイル軸中央部のアスペクト比より小さく
なっている。ここで、アスペクト比b/aが1以下から
1以上にまたがる場合は同方位に基準を揃えて表示し
た。
In FIG. 7, (a) shows the state of the magnetic field distribution of the solenoid coil, (b) shows the sectional shape when the present invention is applied, and (c) shows the appearance of the solenoid coil device. Represent Solenoid coil is the entire cross section 2
For the purpose of optimizing the cross-sectional aspect ratio b / a of the superconducting conductor 1 at each part by using the magnetic field distribution, the whole is divided into three stages and wound. In this example, the magnetic flux density ratio B a /
In the axial center portion 10 of the magnet where B b has a large value, the cross-sectional aspect ratio b / a of the superconducting conductor 1 is set to 4, B a /
The aspect ratio b / a is set to about 1 at both ends 11 of the shaft center portion of the magnet whose B b value is close to 1. Further, at the shaft end 12 closer to the end than that, the cross-sectional aspect ratio b of the superconducting conductor corresponds to the fact that the value of B a / B b becomes smaller than 1.
/ A is set to about 0.4 and becomes smaller than the aspect ratio of the central portion of the coil axis as it moves toward both ends of the coil axis. Here, when the aspect ratio b / a extends from 1 or less to 1 or more, the reference is displayed in the same direction.

【0043】さらに、図8において、(a)は本発明を
適用した場合のトロイドコイルの断面形状を表してお
り、(b)はトロイドコイル装置の外観を表す。トロイ
ドコイルは全体の断面2の磁場分布を用いて各々の部位
の超電導導体の断面アスペクト比b/aを最適化する目
的で全体を2段に分割して巻き回されている。この例で
は磁束密度の比 a b が大きな値をとる磁石の軸中
央部10では超電導導体1の断面アスペクト比b/aは
4に設定され、 a b の値が1に近い磁石の中央部
両端11ではアスペクト比b/aは約1に設定されてい
る。
Further, in FIG. 8, (a) shows the sectional shape of the toroid coil when the present invention is applied, and (b) shows the appearance of the toroid coil device. The toroid coil is divided into two stages and wound for the purpose of optimizing the cross-sectional aspect ratio b / a of the superconducting conductor in each part by using the magnetic field distribution of the whole cross-section 2. In this example, the cross-sectional aspect ratio b / a of the superconducting conductor 1 is set to 4 in the axial center portion 10 of the magnet where the magnetic flux density ratio B a / B b takes a large value, and the value of B a / B b is set to 1. The aspect ratio b / a is set to about 1 at both ends 11 of the central portion of the nearby magnet.

【0044】[0044]

【発明の効果】本発明によれば、超電導磁石の主たる構
成要素である超電導導体において、特に素線間の結合損
失を少なくするために素線を所定のピッチでツイストし
て形成した超電導導体およびこの超電導導体を用いた交
流超電導電力機器において、超電導導体断面のアスペク
ト比と磁場、及び超電導導体内の抵抗との相関が結合損
失に及ぼす影響を考慮し、超電導素線間の結合損失が小
さいような断面形状を持つ超電導導体を用いることによ
り、クエンチ特性に優れ、全体の電力消費量が小さく、
磁場均一性の高い交流超電導磁石及び当該超電導磁石を
使用した粒子加速器などの電力機器を提供することがで
きる。
According to the present invention, in the superconducting conductor which is a main constituent element of the superconducting magnet, the superconducting conductor formed by twisting the strands at a predetermined pitch in order to reduce the coupling loss between the strands, and Considering the effect of the correlation between the aspect ratio of the cross section of the superconducting conductor, the magnetic field, and the resistance in the superconducting conductor on the coupling loss in the AC superconducting power equipment using this superconducting conductor, consider that the coupling loss between the superconducting wires is small. By using a superconducting conductor with a unique cross-sectional shape, it has excellent quench characteristics and low overall power consumption.
It is possible to provide an AC superconducting magnet having high magnetic field homogeneity and a power device such as a particle accelerator using the superconducting magnet.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る超電導双極電磁石の超電
導導体の断面形状を示す説明図である。
FIG. 1 is an explanatory view showing a cross-sectional shape of a superconducting conductor of a superconducting dipole electromagnet according to an embodiment of the present invention.

【図2】実施例に係る粒子加速器用超電導双極磁石の外
観を示す斜視図である。
FIG. 2 is a perspective view showing an appearance of a superconducting dipole magnet for a particle accelerator according to an example.

【図3】電流が理想的なcosθ分布をするように巻か
れている超電導双極電磁石の断面形状及びcosθ分布
の層状電流を示す説明図である。
FIG. 3 is an explanatory diagram showing a cross-sectional shape of a superconducting dipole electromagnet wound so that an electric current has an ideal cos θ distribution and a layered current having a cos θ distribution.

【図4】超電導導体の負荷率の定義を示す説明図であ
る。
FIG. 4 is an explanatory diagram showing a definition of a load factor of a superconducting conductor.

【図5】超電導磁石全結合損失の超電導導体断面アスペ
クト比に対する変化を示す図である。
FIG. 5 is a diagram showing a change in total coupling loss of a superconducting magnet with respect to a cross-sectional aspect ratio of a superconducting conductor.

【図6】超電導磁石全結合損失の超電導導体断面アスペ
クト比の最小値の電気抵抗率比に対する変化を示す図で
ある。
FIG. 6 is a diagram showing a change in the total coupling loss of superconducting magnets with respect to the electrical resistivity ratio of the minimum value of the cross-sectional aspect ratio of the superconducting conductor.

【図7】本発明を適用した超電導ソレノイド電磁石を示
す説明図である。
FIG. 7 is an explanatory view showing a superconducting solenoid electromagnet to which the present invention is applied.

【図8】本発明を適用した超電導トロイド電磁石を示す
説明図である。
FIG. 8 is an explanatory view showing a superconducting toroid electromagnet to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1 超電導導体 2 超電導双極電磁石の断面 3 磁場の磁束密度 4 超電導素線 5 中心磁場 6 超電導導体が晒されている磁場が最も大きい部位 7 鉄芯 8 超電導導体が経験する磁場とその磁場における臨界
電流密度との関係 9 超電導導体に流れる電流の密度とそのときに発生す
る磁場との関係 10 ソレノイドまたはトロイド電磁石の軸中央部の超
電導導体 11 ソレノイドまたはトロイド電磁石の軸中央部両端
の超電導導体 12 ソレノイドまたはトロイド電磁石の軸両端部の超
電導導体
1 superconducting conductor 2 cross section of superconducting dipole magnet 3 magnetic flux density of magnetic field 4 superconducting element wire 5 central magnetic field 6 site where the magnetic field is exposed to the superconducting conductor 7 iron core 8 magnetic field experienced by the superconducting conductor and critical current in the magnetic field Relationship with density 9 Relationship between density of current flowing in superconducting conductor and magnetic field generated at that time 10 Superconducting conductor in central part of solenoid or toroid electromagnet shaft 11 Superconducting conductor at both ends of central part of solenoid or toroid electromagnet 12 Solenoid or Superconducting conductors on both ends of the shaft of the toroid electromagnet

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 複数本の超電導素線を束ねて形成された
超電導導体に垂直に印加される一様な変動磁場に対し
て、素線間の鎖交磁場変動に基づく結合電流が流れにく
くなるよう、前記超電導素線が所定のピッチでツイスト
されて形成された超電導導体を巻き回すことによって磁
場を発生するとともに、通電電流を励消磁することによ
って変動磁場を与える交流用超電導磁石において、 前記超電導導体断面の広い辺の長さを狭い辺の長さで割
った値を、変動磁場の磁場分布を考慮して超電導素線間
の結合損失が最も少なくなるように部分的に選択して、
前記超電導導体を巻き回したことを特徴とする交流用超
電導磁石。
1. With respect to a uniform fluctuating magnetic field applied perpendicularly to a superconducting conductor formed by bundling a plurality of superconducting element wires, it becomes difficult for a coupling current to flow due to interlinking magnetic field fluctuation between the element wires. As described above, in the superconducting magnet for alternating current, which generates a magnetic field by winding a superconducting conductor formed by twisting the superconducting element wires at a predetermined pitch, and gives a fluctuating magnetic field by deenergizing a flowing current, the superconducting magnet A value obtained by dividing the length of the wide side of the conductor cross section by the length of the narrow side is partially selected in consideration of the magnetic field distribution of the fluctuating magnetic field so that the coupling loss between the superconducting wires is minimized,
A superconducting magnet for alternating current, wherein the superconducting conductor is wound.
【請求項2】 複数本の超電導素線を束ねて形成された
超電導導体に垂直に印加される一様な変動磁場に対し
て、素線間の鎖交磁場変動に基づく結合電流が流れにく
くなるよう、前記超電導素線が所定のピッチでツイスト
されて形成された超電導導体を巻き回すことによって磁
場を発生するとともに、通電電流を励消磁することによ
って変動磁場を与える交流用超電導磁石において、 前記超電導導体断面の広い辺の長さを狭い辺の長さで割
った値が、当該超電導導体の狭い辺に直交する変動磁場
の絶対値を当該超電導導体の広い辺に直交する変動磁場
の絶対値で割った値の平方根より大きく、平方根の2倍
より小さくなるように前記超電導導体が形成されている
ことを特徴とする交流用超電導磁石。
2. With respect to a uniform fluctuating magnetic field applied perpendicularly to a superconducting conductor formed by bundling a plurality of superconducting element wires, it becomes difficult for a coupling current to flow due to an interlinking magnetic field fluctuation between the element wires. As described above, in the superconducting magnet for alternating current, which generates a magnetic field by winding a superconducting conductor formed by twisting the superconducting element wires at a predetermined pitch, and gives a fluctuating magnetic field by deenergizing a flowing current, the superconducting magnet The value obtained by dividing the length of the wide side of the conductor cross section by the length of the narrow side is the absolute value of the varying magnetic field orthogonal to the narrow side of the superconducting conductor and the absolute value of the varying magnetic field orthogonal to the wide side of the superconducting conductor. A superconducting magnet for alternating current, wherein the superconducting conductor is formed so as to be larger than a square root of a divided value and smaller than twice the square root.
【請求項3】 複数本の超電導素線を束ねて形成された
超電導導体に垂直に印加される一様な変動磁場に対し
て、素線間の鎖交磁場変動に基づく結合電流が流れにく
くなるよう、前記超電導素線が所定のピッチでツイスト
されて形成された超電導導体を巻き回すことによって磁
場を発生するとともに、通電電流を励消磁することによ
って変動磁場を与える交流用超電導磁石において、 前記超電導導体断面の広い辺の長さを狭い辺の長さで割
った値が、当該超電導導体の狭い辺に直交する変動磁場
の絶対値を当該超電導導体の広い辺に直交する変動磁場
の絶対値で割った値と、当該超電導導体の広い辺に直交
する方向の電気抵抗率を当該超電導導体の狭い辺に直交
する方向の電気抵抗率で割った値の平方根とを掛け合わ
せた値の平方根より大きく、平方根の3倍より小さくな
るように前記超電導導体が形成されていることを特徴と
する交流用超電導磁石。
3. A coupling current based on a variation in interlinking magnetic field between strands becomes difficult to flow against a uniform varying magnetic field applied perpendicularly to a superconducting conductor formed by bundling a plurality of superconducting element wires. As described above, in the superconducting magnet for alternating current, which generates a magnetic field by winding a superconducting conductor formed by twisting the superconducting element wires at a predetermined pitch, and gives a fluctuating magnetic field by deenergizing a flowing current, the superconducting magnet The value obtained by dividing the length of the wide side of the conductor cross section by the length of the narrow side is the absolute value of the varying magnetic field orthogonal to the narrow side of the superconducting conductor and the absolute value of the varying magnetic field orthogonal to the wide side of the superconducting conductor. Greater than the square root of the product of the divided value and the square root of the value obtained by dividing the electrical resistivity in the direction orthogonal to the wide side of the superconducting conductor by the electrical resistivity in the direction orthogonal to the narrow side of the superconducting conductor. , AC superconducting magnet, characterized in that said superconducting conductors are formed to be less than 3 times the square root.
【請求項4】 前記超電導導体が、前記ツイストされた
超電導素線の集合撚線を単位とし、複数の撚線をさらに
少なくとも1回ツイストして形成されていることを特徴
とする請求項1、2及び3のいずれか1に記載の交流用
超電導磁石。
4. The superconducting conductor is formed by twisting a plurality of twisted wires at least once by using a set twisted wire of the twisted superconducting element wires as a unit. The superconducting magnet for alternating current according to any one of 2 and 3.
【請求項5】 前記ツイストされた超電導素線と、この
超電導素線の集合撚線とのツイスト方向が同一であるこ
とを特徴とする請求項4記載の交流用超電導磁石。
5. The superconducting magnet for alternating current according to claim 4, wherein the twisted superconducting element wires and the collective twisted wire of the superconducting element wires have the same twist direction.
【請求項6】 前記超電導素線が常電導転移し、通電電
流が超電導素線から分流したときに電流を流す低抵抗金
属からなる素線を、さらに前記超電導素線に対して並列
に配置するとともに、前記低抵抗金属からなる素線を前
記超電導素線及び前記集合撚線と逆方向にツイストした
ことを特徴とする請求項4または5に記載の交流用超電
導磁石。
6. An element wire made of a low-resistance metal that causes a current to flow when the superconducting element wire undergoes a normal conduction transition and an energizing current is shunted from the superconducting element wire, is further arranged in parallel with the superconducting element wire. The superconducting magnet for alternating current according to claim 4 or 5, wherein the element wire made of the low-resistance metal is twisted in a direction opposite to the superconducting element wire and the assembled stranded wire.
【請求項7】 前記集合撚線の中央部に抵抗率の高い部
材をさらに配置したことを特徴とする請求項4ないし6
のいずれか1に記載の交流用超電導磁石。
7. A member having a high resistivity is further arranged in the central portion of the assembled stranded wire.
1. A superconducting magnet for alternating current according to any one of 1.
【請求項8】 前記超電導素線または前記低抵抗金属か
らなる素線の中にさらに抵抗率の高い金属を複合して配
置したことを特徴とする請求項6または7に記載の交流
用超電導磁石。
8. A superconducting magnet for alternating current according to claim 6, wherein a metal having a higher resistivity is arranged in combination in the superconducting element wire or the element wire made of the low resistance metal. .
【請求項9】 前記抵抗率の高い部材がCuNiおよび
CuSnの少なくとも一方を主成分とする材料によって
形成されていることを特徴とする請求項7記載の交流用
超電導磁石。
9. The superconducting magnet for alternating current according to claim 7, wherein the member having a high resistivity is formed of a material containing at least one of CuNi and CuSn as a main component.
【請求項10】 前記抵抗率の高い部材が合成樹脂から
なる絶縁材によって形成されていることを特徴とする請
求項7記載の交流用超電導磁石。
10. The superconducting magnet for alternating current according to claim 7, wherein the member having a high resistivity is formed of an insulating material made of synthetic resin.
【請求項11】 前記抵抗率の高い金属がCuNiおよ
びCuSnの少なくとも一方を主成分とする材料によっ
て形成されていることを特徴とする請求項8記載の交流
用超電導磁石。
11. The AC superconducting magnet according to claim 8, wherein the metal having a high resistivity is formed of a material containing at least one of CuNi and CuSn as a main component.
【請求項12】 請求項1ないし11のいずれか1に記
載の交流用超電導磁石の運転時の最大負荷率が85%以
上に設定されていることを特徴とする交流用超電導磁
石。
12. A superconducting magnet for alternating current, wherein the maximum load factor during operation of the superconducting magnet for alternating current according to claim 1 is set to 85% or more.
【請求項13】 請求項1ないし12のいずれか1に記
載の交流用超電導磁石を備えた粒子加速器。
13. A particle accelerator equipped with the superconducting magnet for alternating current according to claim 1. Description:
【請求項14】 超電導導体断面の広い辺の長さを狭い
辺の長さで割った値が3以下の交流用超電導磁石を使用
したことを特徴とする請求項13記載の粒子加速器。
14. The particle accelerator according to claim 13, wherein an AC superconducting magnet having a value obtained by dividing a length of a wide side of a cross section of the superconducting conductor by a length of a narrow side of 3 or less is used.
【請求項15】 鉄芯をさらに備えたことを特徴とする
請求項13記載の粒子加速器。
15. The particle accelerator according to claim 13, further comprising an iron core.
【請求項16】 発生する磁場が2n次成分(nは自然
数)であることを特徴とする請求項13、14及び15
のいずれか1に記載の粒子加速器。
16. The magnetic field to be generated is a 2n-order component (n is a natural number), 13, 14, and 15.
2. The particle accelerator according to any one of 1.
【請求項17】 前記超電導磁石がソレノイドまたはト
ロイドのいずかであることを特徴とする請求項1ないし
12のいずれか1に記載の交流用超電導磁石。
17. The AC superconducting magnet according to claim 1, wherein the superconducting magnet is either a solenoid or a toroid.
【請求項18】 前記ソレノイドまたはトロイドのいず
れかの超電導磁石の断面内で磁場方向の磁石の軸両端部
側の超電導導体断面の広い辺の長さを狭い辺の長さで割
った値が、磁石の軸中央部側の超電導導体断面の広い辺
の長さを狭い辺の長さで割った値よりも小さく設定され
ていることを特徴とする請求項17記載の交流用超電導
磁石。
18. A value obtained by dividing a wide side length of a superconducting conductor cross section on both axial ends of the magnet in a magnetic field direction in a cross section of the superconducting magnet of the solenoid or the toroid by a narrow side length, 18. The AC superconducting magnet according to claim 17, wherein the length is set smaller than a value obtained by dividing the length of the wide side of the cross section of the superconducting conductor on the axial center side of the magnet by the length of the narrow side.
JP28520794A 1994-11-18 1994-11-18 Superconducting magnet and particle accelerator with the superconducting magnet Pending JPH08148327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28520794A JPH08148327A (en) 1994-11-18 1994-11-18 Superconducting magnet and particle accelerator with the superconducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28520794A JPH08148327A (en) 1994-11-18 1994-11-18 Superconducting magnet and particle accelerator with the superconducting magnet

Publications (1)

Publication Number Publication Date
JPH08148327A true JPH08148327A (en) 1996-06-07

Family

ID=17688494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28520794A Pending JPH08148327A (en) 1994-11-18 1994-11-18 Superconducting magnet and particle accelerator with the superconducting magnet

Country Status (1)

Country Link
JP (1) JPH08148327A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277322A (en) * 1999-03-26 2000-10-06 Toshiba Corp High-temperature superconducting coil, high-temperature superconducting magnet using the same, and high- temperature superconducting magnet system
JP2002075727A (en) * 2000-08-31 2002-03-15 Kyushu Electric Power Co Inc Superconducting coil, its manufacturing method, and superconductor used for the same
WO2004039133A1 (en) * 2002-10-25 2004-05-06 Japan Science And Technology Agency Electron accelerator and radiotherapy apparatus using same
JP2005303054A (en) * 2004-04-13 2005-10-27 Fuji Electric Systems Co Ltd Superconducting coil
JP2007324335A (en) * 2006-05-31 2007-12-13 Sumitomo Electric Ind Ltd Superconducting coil
JP2008244280A (en) * 2007-03-28 2008-10-09 Sumitomo Electric Ind Ltd Superconducting coil and superconducting device having the same
CN106028618A (en) * 2016-07-14 2016-10-12 威海贯标信息科技有限公司 Low-power consumption micro betatron

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277322A (en) * 1999-03-26 2000-10-06 Toshiba Corp High-temperature superconducting coil, high-temperature superconducting magnet using the same, and high- temperature superconducting magnet system
JP2002075727A (en) * 2000-08-31 2002-03-15 Kyushu Electric Power Co Inc Superconducting coil, its manufacturing method, and superconductor used for the same
WO2004039133A1 (en) * 2002-10-25 2004-05-06 Japan Science And Technology Agency Electron accelerator and radiotherapy apparatus using same
US7190764B2 (en) 2002-10-25 2007-03-13 Japan Science And Technology Agency Electron accelerator and radiotherapy apparatus using same
JP2005303054A (en) * 2004-04-13 2005-10-27 Fuji Electric Systems Co Ltd Superconducting coil
JP2007324335A (en) * 2006-05-31 2007-12-13 Sumitomo Electric Ind Ltd Superconducting coil
JP2008244280A (en) * 2007-03-28 2008-10-09 Sumitomo Electric Ind Ltd Superconducting coil and superconducting device having the same
CN106028618A (en) * 2016-07-14 2016-10-12 威海贯标信息科技有限公司 Low-power consumption micro betatron

Similar Documents

Publication Publication Date Title
US5038127A (en) Process for reducing eddy currents in a superconductor strip, and a superconductor arrangement
US5929385A (en) AC oxide superconductor wire and cable
US11257611B2 (en) Superconducting wire rod and superconducting coil
JPH08148327A (en) Superconducting magnet and particle accelerator with the superconducting magnet
US20050103519A1 (en) Low loss superconducting cable in conduit conductor
JP2001093721A (en) High-temperature superconducting magnet
US7019608B2 (en) Superconducting transformer
JP4757985B2 (en) Superconducting coil, manufacturing method thereof and superconducting conductor used therefor
WO1991002364A1 (en) Superconductive wire
JP2001229750A (en) Superconducting cable
JPH10321058A (en) Superconducting conductor for alternating current
Sugimoto et al. Development of Cu-Nb Reinforced Nb3Sn Wires
JP2725541B2 (en) Multifilament superconducting wire
WO2022075127A1 (en) Nbti superconducting multi-core wire
JPH0146963B2 (en)
JP2003007150A (en) Minimizing method of alternating current loss of high- temperature superconductive wire
WO2022244409A1 (en) Superconducting conductor and winding
JP2525016B2 (en) Superconducting wire
Lacaze et al. Coil performances of superconducting cables of AC applications
JP2012190595A (en) Elemental wire for superconducting twisted cable, and superconducting twisted cable
JP3073552B2 (en) Superconducting wire
JPH08124433A (en) Superconducting element wire and superconducting stranded cable
Ohmatsu et al. Development of Bi-2223 cable conductors
JP3363164B2 (en) Superconducting conductor
JPH01107421A (en) Superconductor and manufacture thereof