JPH0512931A - Superconducting wire - Google Patents

Superconducting wire

Info

Publication number
JPH0512931A
JPH0512931A JP3164696A JP16469691A JPH0512931A JP H0512931 A JPH0512931 A JP H0512931A JP 3164696 A JP3164696 A JP 3164696A JP 16469691 A JP16469691 A JP 16469691A JP H0512931 A JPH0512931 A JP H0512931A
Authority
JP
Japan
Prior art keywords
wire
superconducting
stranded
matrix
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3164696A
Other languages
Japanese (ja)
Other versions
JP3073552B2 (en
Inventor
Mamoru Shimada
守 嶋田
Masayuki Hoshino
昌幸 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP03164696A priority Critical patent/JP3073552B2/en
Publication of JPH0512931A publication Critical patent/JPH0512931A/en
Application granted granted Critical
Publication of JP3073552B2 publication Critical patent/JP3073552B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To improve the current capacity in a superconducting wire for alternating current by reducing an AC loss in the superconducting wire and moreover enhancing the cooling efficiency. CONSTITUTION:The superconducting wire is constituted as a primary stranded wire such that superconducting element wires 13, in which superconducting filaments being embeded in a matrix, are stranded about a primary stranding center wire 15, the primary stranding center wire 15 is constituted by embeding a stabilizing material 17 in a matrix 16. The stabilizing material is constituted as a secondary stranded wire such that the primary stranded wire 10 being stranded about a secondary stranding center wire. Furthermore, the secondary stranded wire is constituted as a tertiary stranded wire such that it is stranded with a spacer about a tertiary stranding center wire. The increase in a bond current between superconducting filaments reduces an AC loss, furthermore the reduction in self magnetic field and the improvement in a cooling efficiency enhances the current capacity in a superconducting wire.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超電導線材に係り、特
に、交流用超電導線材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting wire, and more particularly to an AC superconducting wire.

【0002】[0002]

【従来の技術】NbTiを用いた金属系超電導線材は、現
在、磁気浮上列車や磁気共鳴断層撮影装置(MRI)等
の超電導コイルに広範に使用されるようになってきた
が、超電導線材をこのような直流用に応用するのではな
く交流用に応用する場合、特に周波数がパルス電流のよ
うな数ヘルツではなく商用周波数のような50または6
0ヘルツの場合には、変動磁界による交流損失をいかに
低減させることができるかが、交流用超電導線材の実用
化の鍵を握っている。
2. Description of the Related Art Metal-based superconducting wires made of NbTi have come to be widely used in superconducting coils for magnetic levitation trains and magnetic resonance tomography apparatuses (MRI) at present. When applied to alternating current rather than direct current such as 50 or 6 such as commercial frequency, the frequency is not a few hertz like pulse current.
In the case of 0 Hz, how to reduce the AC loss due to the fluctuating magnetic field is the key to the practical application of the AC superconducting wire.

【0003】周知のように、交流損失には、ヒステリシ
ス損失、結合損失および渦電流損失の3つがあるが、従
来技術では、このような交流損失を低減するため、様々
な工夫がなされている。
As is well known, there are three types of AC loss: hysteresis loss, coupling loss and eddy current loss. In the prior art, various measures have been taken to reduce such AC loss.

【0004】ヒステリシス損失は、変動磁界に対する超
電導フィラメント内でのピンニング力の仕事量である
が、この量は、フィラメントの直径と変動磁界の大きさ
に比例するため、フィラメントの直径を直流用フィラメ
ントよりもさらに細いサブミクロンオーダーにすること
により、ヒステリシス損失の低減が図られている。
Hysteresis loss is the work of pinning force in a superconducting filament with respect to a fluctuating magnetic field. This amount is proportional to the diameter of the filament and the magnitude of the fluctuating magnetic field. In addition, the hysteresis loss is reduced by making the submicron order even thinner.

【0005】また、結合損失は、フィラメント間をルー
プ状に流れる電流による損失であるが、この量は、磁界
の時間変化率とフィラメントのツイストピッチの2乗に
比例し、フィラメント間、すなわち線材に直交する方向
の比抵抗に反比例するため、ツイストピッチを材料の限
界まで短くねじるとともに、比抵抗の大きなCuNiをフィ
ラメント間に入れることにより、結合損失の低減が図ら
れている。
The coupling loss is a loss due to a current flowing in a loop shape between filaments, and this amount is proportional to the time change rate of the magnetic field and the square of the twist pitch of the filaments, that is, between the filaments, that is, in the wire rod. Since it is inversely proportional to the specific resistance in the orthogonal direction, the twist pitch is twisted to the limit of the material, and CuNi having a large specific resistance is put between the filaments to reduce the coupling loss.

【0006】さらに、渦電流損失は、クエンチを防止す
るために線材方向に配置された比抵抗の小さな安定化材
に発生する渦電流による損失であるが、この量は、磁界
の時間変化率と渦電流の流れる径の2乗に比例し、かつ
安定化材の比抵抗に反比例する。このため、比抵抗の大
きなCuNiを線材方向に配置し、安定化材を線材方向に対
して平行に細かく分断して渦電流の流れる径を小さくす
ることにより、クエンチを回避するために安定化材に電
流を流すことができるようにしつつ、渦電流損失の低減
が図られている。
Further, the eddy current loss is the loss due to the eddy current generated in the stabilizing material having a small specific resistance arranged in the wire direction in order to prevent quenching. It is proportional to the square of the diameter of the eddy current and inversely proportional to the specific resistance of the stabilizing material. For this reason, CuNi with a large specific resistance is arranged in the wire direction, and the stabilizer is finely divided in parallel to the wire direction to reduce the diameter of the eddy current, thereby stabilizing the stabilizer in order to avoid quenching. The eddy current loss is reduced while allowing the electric current to flow through.

【0007】[0007]

【発明が解決しようとする課題】本出願人により平成3
年5月24日に出願された特願平3−120376号の
交流用超電導線材1を図5に示す。この超電導線材1
は、NbTiの極細フィラメント2をCuNiのマトリックス3
に埋め込み、かつ安定化材としてのCu4を中央付近に配
置した超電導素線5を7本よりあわせてある。この超電
導線材1では、フィラメント2の極細化が図られている
のでヒステリシス損失を低減することができる他、図5
でわかるように、安定化材としてのCuが細かく分断して
入れられているので、渦電流損失を低減することができ
る。さらに、フィラメント2をCuNiマトリックス3に埋
めてあるともに超電導素線5を捩じってあるので、結合
損失をある程度低減することができる。
[Problems to be Solved by the Invention]
FIG. 5 shows an AC superconducting wire 1 of Japanese Patent Application No. 3-120376 filed on May 24, 2013. This superconducting wire 1
Is a NbTi microfilament 2 and a CuNi matrix 3
7 pieces of superconducting element wires 5 each having a Cu 4 as a stabilizing material arranged in the vicinity of the center are combined. In this superconducting wire 1, since the filament 2 is made extremely thin, hysteresis loss can be reduced, and in addition, as shown in FIG.
As can be seen in, since Cu as a stabilizing material is finely divided and put, eddy current loss can be reduced. Further, since the filament 2 is embedded in the CuNi matrix 3 and the superconducting element wire 5 is twisted, the coupling loss can be reduced to some extent.

【0008】しかしながら、このような超電導線材1で
は、フィラメント2間を流れる結合電流は、超電導素線
5の直径方向に流れて中央部分を横断するので、比抵抗
の大きなCuNiマトリックス3だけではなく比抵抗の小さ
なCu4にも流れてしまい、かなりの結合損失が生じてし
まう。
However, in such a superconducting wire 1, since the coupling current flowing between the filaments 2 flows in the diameter direction of the superconducting element wire 5 and crosses the central portion, not only the CuNi matrix 3 having a large specific resistance but It also flows into Cu4, which has a low resistance, causing considerable coupling loss.

【0009】また、交流用超電導フィラメント2はフィ
ラメント径が細いために超電導素線5も細くなってお
り、超電導素線5の電流容量は、例えば、20A程度で
ある。このため、図5の交流用超電導線材1をさらによ
りあわせて数千A程度の大電流容量にすることが実用化
のために必要となる。このような超電導撚線は、図6に
示すように、図5に示した超電導線材1を1次撚線と
し、この1次撚線1を絶縁処理したステンレス線6の回
りに例えば6本よりあわせて2次撚線7を構成し、さら
にこの2次撚線7を径の大きな絶縁処理したステンレス
線8の回りに例えば6本よりあわせて3次撚線9として
いる。
Further, since the superconducting filament 2 for AC has a small filament diameter, the superconducting element wire 5 is also thin, and the current capacity of the superconducting element wire 5 is, for example, about 20A. For this reason, it is necessary to put the AC superconducting wire 1 shown in FIG. 5 into a large current capacity of about several thousand amps for practical use. As shown in FIG. 6, such a superconducting stranded wire has a structure in which the superconducting wire 1 shown in FIG. 5 is used as a primary stranded wire, and the primary stranded wire 1 is insulated from the stainless steel wire 6 by, for example, 6 strands. A secondary stranded wire 7 is also formed, and the secondary stranded wire 7 is combined with, for example, six stainless steel wires 8 having a large diameter and subjected to an insulation treatment to form a tertiary stranded wire 9.

【0010】このような3次撚線9では、2次撚線7同
士が近接しているため、各2次撚線7自身に生じるいわ
ゆる自己磁界は、他の2次撚線7からの影響を受けてか
なり大きくなる。上述したように、各交流損失は、磁界
またはその時間変化率の大きさに依存するので、実際の
3次撚線9の交流損失は、2次撚線7単独で使用したと
きの損失から予想される3次撚線9の損失よりも、ずっ
と大きくなる。これに加え、2次撚線7が近接している
ことにより、単位断面積あたりの発熱量が大きくなって
冷却効率を低下させるため、3次撚線9の電流容量はさ
らに小さくなってしまう。
In such a tertiary twisted wire 9, since the secondary twisted wires 7 are close to each other, the so-called self-magnetic field generated in each secondary twisted wire 7 itself is influenced by other secondary twisted wires 7. It gets bigger and bigger. As described above, since each AC loss depends on the magnitude of the magnetic field or its rate of change over time, the actual AC loss of the tertiary twisted wire 9 is predicted from the loss when the secondary twisted wire 7 is used alone. It is much larger than the loss of the third stranded wire 9 that is generated. In addition to this, since the secondary twisted wires 7 are close to each other, the amount of heat generated per unit cross-sectional area is increased and the cooling efficiency is reduced, so that the current capacity of the tertiary twisted wires 9 is further reduced.

【0011】本発明は、上述した事情を考慮してなされ
たもので、超電導部分が常電導状態に転移したときのジ
ュール発熱による損傷を防止しつつ、正常な通電時の交
流損失を低減した超電導線材を提供することを目的とす
る。
The present invention has been made in consideration of the above-mentioned circumstances, and prevents damage due to Joule heat generation when the superconducting portion is changed to the normal conducting state, and at the same time reduces the AC loss during normal energization. The purpose is to provide a wire rod.

【0012】さらに、本発明は、この交流用超電導線材
をよりあわせた場合に、交流損失が小さくしかつ冷却効
率の高い構造とすることにより、大電流容量の交流用超
電導線材を提供することを目的とする。
Furthermore, the present invention provides a superconducting wire for alternating current with a large current capacity by providing a structure having a small AC loss and a high cooling efficiency when the superconducting wire for alternating current is twisted together. To aim.

【0013】[0013]

【課題を解決するための手段】前記課題は、超電導フィ
ラメントをマトリックスに埋め込んで超電導素線を構成
し、この超電導素線を、安定化材をマトリックスに埋め
込んだ中心線材の回りによりあわせて1次撚線を構成し
た超電導線材を提供することにより解決される。
[Means for Solving the Problems] The above-mentioned problem is that a superconducting filament is embedded in a matrix to form a superconducting element wire, and this superconducting element wire is aligned around a center wire material in which a stabilizing material is embedded in a matrix, The problem is solved by providing a superconducting wire having a stranded wire.

【0014】さらに、前記課題は、超電導フィラメント
および安定化材をマトリックスに埋め込んだ超電導線
を、中心線材の回りにスペーサーとともに交互によりあ
わせた撚線からなる超電導線材を提供することにより解
決される。
Further, the above-mentioned problems can be solved by providing a superconducting wire comprising a superconducting wire in which a superconducting filament and a stabilizing material are embedded in a matrix and which are alternately aligned around a center wire together with a spacer.

【0015】[0015]

【作用】請求項1に記載した構成により、正常な通電時
の交流損失を低減することができるとともに、超電導部
分が常電導状態に転移したときに、ジュール発熱による
損傷を防止することができる。
With the structure according to the first aspect, it is possible to reduce the AC loss during normal energization and prevent damage due to Joule heat generation when the superconducting portion changes to the normal conducting state.

【0016】さらに、請求項3に記載した構成により、
超電導線材の交流損失を小さくかつ冷却効率を高くし
て、超電導線材の電流容量を大きくすることができる。
Further, according to the structure described in claim 3,
It is possible to reduce the AC loss of the superconducting wire and increase the cooling efficiency to increase the current capacity of the superconducting wire.

【0017】[0017]

【実施例】以下、本発明に係る超電導線材の実施例につ
いて、添付図面を参照して説明する。
Embodiments of the superconducting wire according to the present invention will be described below with reference to the accompanying drawings.

【0018】図1は、本発明に係る超電導線材の概略構
成例を示すものである。
FIG. 1 shows a schematic configuration example of a superconducting wire according to the present invention.

【0019】この超電導線材10は、CuNiマトリックス
11に超電導フィラメント12を入れた超電導素線13
を、1次撚中心線材15の回りに例えば6本よりあわせ
て構成した1次撚線である。1次撚中心線材15は、1
次撚線10の中央に配置されるもので、CuNiマトリック
ス16にCu17を入れて構成される。図1でわかるよう
に、超電導素線13は、結合損失を低減するため、1次
撚中心線材15の回りで捩じってある。超電導フィラメ
ント12は、NbTi合金でつくるのが好ましいが、Nb3 Sn
等の超電導フィラメントでもよい。また、撚本数は、素
線や撚線中心線材の径、素線の電流容量等に応じて、他
の本数でもよい。
This superconducting wire 10 comprises a superconducting element wire 13 in which a superconducting filament 12 is put in a CuNi matrix 11.
Is a primary twisted wire composed of, for example, six twisted wires around the primary twisted center wire 15. The primary twist center wire 15 is 1
It is arranged in the center of the next twisted wire 10, and is constructed by inserting Cu 17 into a CuNi matrix 16. As can be seen in FIG. 1, the superconducting wire 13 is twisted around the primary twist center wire 15 in order to reduce the coupling loss. The superconducting filament 12 is preferably made of NbTi alloy, but Nb 3 Sn
It may be a superconducting filament such as. Further, the number of twists may be another number depending on the diameter of the strands or the center wire of the strands, the current capacity of the strands, and the like.

【0020】さらに、図1に示す1次撚線10を、図2
に示すように、2次撚中心線材18の回りに例えば6本
よりあわせた2次撚線からなる超電導線材20を構成し
てもよい。
Further, the primary twisted wire 10 shown in FIG.
As shown in, a superconducting wire rod 20 may be formed around the secondary twisted central wire rod 18 by, for example, six twisted secondary twisted wires.

【0021】2次撚中心線材18は、比抵抗が大きくか
つ非磁性でありさらにコイルを巻く際に容易に曲げるこ
とのできる材料がよいが、上述の捩じり構造のため、コ
イルに通電したときに生ずる電磁力は、ほとんどこの2
次撚中心線材18に作用する。従って、構造強度の高い
ステンレス21が最も好ましい。また、このステンレス
への不要な電流の流入を回避するため、ホルマール絶縁
等の絶縁被覆22を施すのが好ましい。
The secondary twisted center wire 18 is preferably made of a material having a large specific resistance and non-magnetism and can be easily bent when the coil is wound. However, due to the above-mentioned twist structure, the coil is energized. The electromagnetic force that sometimes occurs is almost 2
It acts on the next twist center wire 18. Therefore, stainless steel 21 having high structural strength is most preferable. Further, in order to avoid unnecessary inflow of current into the stainless steel, it is preferable to provide an insulating coating 22 such as formal insulation.

【0022】次に、この超電導線材10、20の作用を
説明する。
Next, the operation of the superconducting wires 10 and 20 will be described.

【0023】超電導素線13が捩じられているため結合
損失が低下するが、本実施例では、さらに、超電導フィ
ラメント12が比抵抗の大きなCuNiマトリックス11に
埋め込まれ、超電導フィラメント12間には比抵抗の小
さなCuが存在しないため、変動磁界により超電導フィラ
メント間に形成されるループに誘起される結合電流が減
少する。従って、交流通電時の結合損失を有効に低減す
ることができる。
Since the superconducting element wire 13 is twisted, the coupling loss is reduced. However, in the present embodiment, the superconducting filament 12 is further embedded in the CuNi matrix 11 having a large specific resistance, and the superconducting filament 12 has a relatively high resistance. Since Cu with low resistance is not present, the coupling current induced in the loop formed between the superconducting filaments by the varying magnetic field is reduced. Therefore, it is possible to effectively reduce the coupling loss during AC energization.

【0024】また、図3(a) に示すように、通常は、超
電導素線13にほとんど電圧が発生していないので、超
電導素線13を流れる電流が1次撚中心線材15に流れ
込むことはないが、図3(b) に示すように、超電導素線
13が何等かの原因で常電導に転移したとき、超電導素
線13を流れていた電流は、常電導転移部に生ずる電圧
のため、超電導素線13と1次撚中心線材15との接点
を介して、1次撚中心線材15のCuNiマトリックス16
を通過しさらにCu17に流れ込むので、電流が常電導転
移部分に流れることによるジュール発熱を防止すること
ができる。電流の流れなくなった常電導部分は、液体ヘ
リウム(図示せず)による冷却作用によって一定時間後
に臨界温度以下となり、常電導部分は超電導状態に戻っ
て元のように電流が超電導素線13を流れるようにな
る。
Further, as shown in FIG. 3 (a), normally, almost no voltage is generated in the superconducting wire 13, so that the current flowing through the superconducting wire 13 does not flow into the primary twist center wire 15. However, as shown in Fig. 3 (b), when the superconducting element wire 13 changes to normal conducting for some reason, the current flowing through the superconducting element wire 13 is due to the voltage generated at the normal conducting transition part. , The CuNi matrix 16 of the primary twist center wire 15 through the contact point between the superconducting wire 13 and the primary twist center wire 15.
Since it passes through and further flows into Cu 17, it is possible to prevent Joule heat generation due to the current flowing to the normal conduction transition portion. The normal-conducting part where the current has stopped flowing becomes below the critical temperature after a certain time due to the cooling action of liquid helium (not shown), and the normal-conducting part returns to the superconducting state and the current flows through the superconducting element wire 13 as before. Like

【0025】次に、本発明に係る超電導線材の第2の実
施例を説明する。
Next, a second embodiment of the superconducting wire according to the present invention will be described.

【0026】図4は、本発明の超電導撚線としての超電
導線材30の概略構成例を示すものである。
FIG. 4 shows an example of a schematic structure of a superconducting wire 30 as a superconducting stranded wire of the present invention.

【0027】この超電導線材30は、超電導素線13を
1次撚中心線材15の回りに例えば6本よりあわせた1
次撚線10を、2次撚中心線材18の回りに例えば6本
よりあわせて2次撚線20を構成し、この超電導線とし
ての2次撚線20を、3次撚中心線材31の回りに、ス
ペーサー32とともに、例えば6本ずつよりあわせて3
次撚線30としたものである。
This superconducting wire 30 is made by combining the superconducting element wire 13 around the primary twist center wire 15 with, for example, six wires.
A secondary twisted wire 20 is formed by combining, for example, six secondary twisted wires 10 around the secondary twisted center wire material 18, and the secondary twisted wire 20 as the superconducting wire is wound around the third twisted center wire material 31. Together with the spacer 32, for example, twist 6 pieces each
The next twisted wire 30 is used.

【0028】超電導素線13は、CuNiマトリックスにNb
TiやNb3 Sn等の超電導フィラメントを埋めた図1に示す
本発明の第1の実施例の超電導素線であり、1次撚中心
線材15は、同様に図1に示す1次撚中心線材15に対
応させるのがよいが、超電導素線13を、安定化材を超
電導素線内に埋め込んだ図5に示したような超電導素線
として、これを7本よりあわせて1次撚線10としても
よい。
The superconducting wire 13 is made of CuNi matrix and Nb.
1 is a superconducting element wire of a first embodiment of the present invention shown in FIG. 1 in which a superconducting filament such as Ti or Nb 3 Sn is embedded, and a primary twist center wire 15 is a primary twist center wire similarly shown in FIG. It is better to correspond to No. 15, but the superconducting element wire 13 is a superconducting element wire as shown in FIG. 5 in which a stabilizing material is embedded in the superconducting element wire. May be

【0029】2次撚中心線材18、3次撚中心線材31
およびスペーサー32は、比抵抗が大きくかつ非磁性体
であり、また、コイル製作が容易なように適度な弾性を
有していればよく、ホルマール絶縁を施したステンレス
線が最も好ましい。また、コイル製造時の巻きを容易に
するため、3次撚中心線材31は、複数の線に分けて構
成し、中心線材全体の曲げ剛性を低減することが好まし
い。
Secondary twist center wire 18, Third twist center wire 31
The spacer 32 has a large specific resistance, is a non-magnetic material, and has an appropriate elasticity so that the coil can be easily manufactured, and a formal-insulated stainless wire is most preferable. Further, in order to facilitate winding at the time of manufacturing the coil, it is preferable that the tertiary twist center wire rod 31 is divided into a plurality of wires to reduce the bending rigidity of the whole center wire rod.

【0030】次に、この超電導線材30の作用を説明す
る。
Next, the operation of this superconducting wire 30 will be described.

【0031】2次撚線20は、スペーサー32によって
互いに隔てられているので、2次撚線相互の距離は大き
くなる。従って、各2次撚線20が他の2次撚線20に
及ぼす磁界強度が減少し、自己磁界は小さくなる。従っ
て、超電導フィラメントに生じるヒステリシス損失、超
電導フィラメント間を流れる結合電流による結合損失お
よび安定化材を流れる渦電流損失が各々減少するので、
超電導線材30全体に生ずる交流損失を有効に低減する
ことができる。また、スペーサー32によって2次撚線
20が分散配置されているので、発生したジュール熱を
効率よく冷却することができる。
Since the secondary twisted wires 20 are separated from each other by the spacer 32, the distance between the secondary twisted wires becomes large. Therefore, the magnetic field strength exerted by each secondary twisted wire 20 on the other secondary twisted wires 20 is reduced, and the self-magnetic field is reduced. Therefore, since the hysteresis loss generated in the superconducting filament, the coupling loss due to the coupling current flowing between the superconducting filaments, and the eddy current loss flowing in the stabilizing material are reduced respectively,
AC loss generated in the entire superconducting wire 30 can be effectively reduced. Further, since the secondary twisted wires 20 are dispersed and arranged by the spacers 32, the generated Joule heat can be efficiently cooled.

【0032】このような交流損失の低減および冷却効率
の向上により、超電導線材30の電流容量は、大きく改
善される。
By reducing the AC loss and improving the cooling efficiency, the current capacity of the superconducting wire 30 is greatly improved.

【0033】なお、第2の実施例では、2次撚線を超電
導線とし、3次撚線を超電導撚線とした場合について説
明したが、1次撚線を超電導線とし、これを中心線材の
回りにスペーサーとともに交互によりあわせた2次撚線
を超電導撚線としてもよいし、超電導素線を超電導線と
し、これを中心線材の回りにスペーサーとともに交互に
よりあわせた1次撚線を超電導撚線としてもよい。
In the second embodiment, the case where the secondary stranded wire is the superconducting wire and the tertiary stranded wire is the superconducting stranded wire has been described. However, the primary stranded wire is the superconducting wire and this is the center wire. The secondary stranded wire that is alternately aligned with the spacer around the superconducting stranded wire may be used as the superconducting stranded wire. It may be a line.

【0034】また、本発明の実施例では、超電導用線材
を交流用に用いるものとして説明したが、本発明は、こ
れに限定されるものではなく、直流用に用いてもよい。
In the embodiments of the present invention, the superconducting wire is used for alternating current, but the present invention is not limited to this and may be used for direct current.

【0035】[0035]

【発明の効果】超電導フィラメントをマトリックスに埋
め込んだ超電導素線を、安定化材をマトリックスに埋め
込んだ中心線材の回りによりあわせた1次撚線からなる
超電導線材により、クエンチ防止のための安定化を行い
つつ、超電導線材の交流損失を小さくすることができ
る。
EFFECT OF THE INVENTION A superconducting wire made up of a primary stranded wire in which a superconducting element wire in which a superconducting filament is embedded in a matrix is matched around a central wire material in which a stabilizing material is embedded in a matrix, and stabilization for preventing quenching is achieved. While doing so, it is possible to reduce the AC loss of the superconducting wire.

【0036】また、超電導フィラメントおよび安定化材
をマトリックスに埋め込んだ超電導線を、中心線材の回
りにスペーサーとともに交互によりあわせた撚線からな
る超電導線材により、超電導線材の交流損失を小さくす
ることができ、また、冷却効率を向上させることができ
るので、超電導線材の電流容量を大きくすることができ
る。
Further, the AC loss of the superconducting wire can be reduced by using the superconducting wire consisting of twisted wires in which the superconducting filament and the stabilizing material are embedded in a matrix and are alternately arranged around the center wire together with the spacer. Moreover, since the cooling efficiency can be improved, the current capacity of the superconducting wire can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る1次撚線の概略断面図。FIG. 1 is a schematic sectional view of a primary twisted wire according to an embodiment of the present invention.

【図2】図1に示す1次撚線をよりあわせて構成した2
次撚線の概略断面図。
FIG. 2 is a view in which the primary stranded wire shown in FIG.
Schematic sectional view of the next twisted wire.

【図3】(a) は通常時の電流の流れ方を示す説明図、
(b) は超電導部分が常電導状態に転移した場合の電流の
流れ方を示す説明図。
FIG. 3 (a) is an explanatory diagram showing how current flows in a normal state,
(b) is an explanatory view showing how the current flows when the superconducting portion is changed to the normal conducting state.

【図4】図2に示す2次撚線をよりあわせて構成した3
次撚線の概略断面図。
FIG. 4 is a view of a structure formed by twisting the secondary twisted wires shown in FIG.
Schematic sectional view of the next twisted wire.

【図5】本出願人により出願された特願平3−1203
76号の超電導線材の概略断面図。
FIG. 5: Japanese Patent Application No. 3-1203 filed by the applicant
The schematic sectional drawing of the superconducting wire of No. 76.

【図6】図5に示す1次撚線をステンレス線の回りによ
りあわせて2次撚線とし、さらにこの2次撚線を径の大
きなステンレス線の回りによりあわせた3次撚線の概略
断面図。
FIG. 6 is a schematic cross section of a tertiary twisted wire in which the primary twisted wire shown in FIG. 5 is wound around a stainless steel wire to form a secondary twisted wire, and the secondary twisted wire is wound around a stainless steel wire having a large diameter. Fig.

【符号の説明】[Explanation of symbols]

1 1次撚線 2 超電導フィラメント 3 マトリックス 4 安定化材 5 超電導素線 6 2次撚中心線 7 2次撚線 8 3次撚中心線材 9 3次撚線 10 1次撚線 11 マトリックス 12 超電導フィラメント 13 超電導素線 15 1次中心線材 16 マトリックス 17 安定化材 18 2次中心線材 20 2次撚線 21 ステンレス鋼 30 3次撚線 31 3次撚中心線材 32 スペーサー 1 Primary stranded wire 2 Superconducting filament 3 matrix 4 Stabilizer 5 Superconducting wires 6 Secondary twist center line 7 Secondary stranded wire 8 Third twist center wire 9 Third strand 10 Primary stranded wire 11 matrix 12 Superconducting filament 13 Superconducting wires 15 Primary center wire 16 matrix 17 Stabilizer 18 Secondary center wire 20 Secondary stranded wire 21 stainless steel 30 Third stranded wire 31 Third twist center wire 32 spacer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 超電導フィラメントをマトリックスに埋
め込んで超電導素線を形成し、この超電導素線を、安定
化材をマトリックスに埋め込んだ中心線材の回りにより
あわせて1次撚線を構成したことを特徴とする超電導線
材。
1. A primary stranded wire is formed by embedding a superconducting filament in a matrix to form a superconducting element wire, and combining the superconducting element wire around a center wire material having a stabilizing material embedded in the matrix. Superconducting wire rod.
【請求項2】 超電導フィラメントをマトリックスに埋
め込んで超電導素線を形成し、この超電導素線を、安定
化材をマトリックスに埋め込んだ中心線材の回りにより
あわせて1次撚線を構成し、この1次撚線を中心線材の
回りによりあわせて2次撚線を構成したことを特徴とす
る超電導線材。
2. A superconducting element wire is formed by embedding a superconducting filament in a matrix, and the superconducting element wire is combined around a center wire material having a stabilizing material embedded in the matrix to form a primary twisted wire. A superconducting wire, characterized in that a secondary twisted wire is formed by combining the next twisted wire around the center wire.
【請求項3】 超電導フィラメントおよび安定化材をマ
トリックスに埋め込んだ超電導線を、中心線材の回りに
スペーサーとともに交互によりあわせて超電導撚線を構
成したことを特徴とする超電導線材。
3. A superconducting wire comprising a superconducting wire in which a superconducting filament and a stabilizing material are embedded in a matrix, and the superconducting stranded wire is alternately arranged around a center wire together with a spacer.
【請求項4】 前記マトリックスはCuNiでできており、
前記超電導フィラメントはNbTi合金でできており、前記
安定材はCuでできており、前記中心線材および前記スペ
ーサーはホルマール絶縁されたステンレス線であること
を特徴とする請求項1乃至3のいずれかに記載の超電導
線材。
4. The matrix is made of CuNi,
4. The superconducting filament is made of an NbTi alloy, the stabilizer is made of Cu, and the center wire and the spacer are formal-insulated stainless wires. The described superconducting wire.
JP03164696A 1991-07-04 1991-07-04 Superconducting wire Expired - Fee Related JP3073552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03164696A JP3073552B2 (en) 1991-07-04 1991-07-04 Superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03164696A JP3073552B2 (en) 1991-07-04 1991-07-04 Superconducting wire

Publications (2)

Publication Number Publication Date
JPH0512931A true JPH0512931A (en) 1993-01-22
JP3073552B2 JP3073552B2 (en) 2000-08-07

Family

ID=15798135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03164696A Expired - Fee Related JP3073552B2 (en) 1991-07-04 1991-07-04 Superconducting wire

Country Status (1)

Country Link
JP (1) JP3073552B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108447614A (en) * 2018-01-11 2018-08-24 华北电力大学 A kind of quasi-isotropic high engineering current density high-temperature superconductor conductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108447614A (en) * 2018-01-11 2018-08-24 华北电力大学 A kind of quasi-isotropic high engineering current density high-temperature superconductor conductor
CN108447614B (en) * 2018-01-11 2020-07-24 中天集团上海超导技术有限公司 Quasi-isotropic high-engineering current density high-temperature superconducting conductor

Also Published As

Publication number Publication date
JP3073552B2 (en) 2000-08-07

Similar Documents

Publication Publication Date Title
JPH0512931A (en) Superconducting wire
JPH08148327A (en) Superconducting magnet and particle accelerator with the superconducting magnet
Verhaege et al. A new class of AC superconducting conductors
JPH0475642B2 (en)
JPH08264039A (en) Superconducting cable
JPH10321058A (en) Superconducting conductor for alternating current
JPS5866311A (en) Superconductive magnet
JP3176951B2 (en) Superconducting wire and superconducting coil for AC using the same
JP3119514B2 (en) Superconducting conductor
JPH10106826A (en) Superconducting coil
JP2003007150A (en) Minimizing method of alternating current loss of high- temperature superconductive wire
JPH02273417A (en) Superconductor
JPH08124433A (en) Superconducting element wire and superconducting stranded cable
JPH0146963B2 (en)
JPH05198223A (en) Superconductive wire rod
JPH10106364A (en) Superconductive apparatus and its manufacture
JPH07312124A (en) Superconductive wire material
JPH06223641A (en) Superconductor and superconducting current limiter trigger coil using same
JPH1092235A (en) Ac superconductive conductor
JPS62180910A (en) Superconductor
GB1572236A (en) Electrical conductors
JPS5960817A (en) Superconductive conductor
JP2001006454A (en) Superconductor
JPS62285319A (en) Ac superconductor
JPH0963367A (en) Superconducting stranded wire conductor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees