JPH10106364A - Superconductive apparatus and its manufacture - Google Patents

Superconductive apparatus and its manufacture

Info

Publication number
JPH10106364A
JPH10106364A JP8280288A JP28028896A JPH10106364A JP H10106364 A JPH10106364 A JP H10106364A JP 8280288 A JP8280288 A JP 8280288A JP 28028896 A JP28028896 A JP 28028896A JP H10106364 A JPH10106364 A JP H10106364A
Authority
JP
Japan
Prior art keywords
superconducting
wire
wires
conductor
twisted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8280288A
Other languages
Japanese (ja)
Other versions
JP3705309B2 (en
Inventor
Sakutaro Yamaguchi
作太郎 山口
Kazutake Senoo
和威 妹尾
Masao Morita
正夫 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP28028896A priority Critical patent/JP3705309B2/en
Publication of JPH10106364A publication Critical patent/JPH10106364A/en
Application granted granted Critical
Publication of JP3705309B2 publication Critical patent/JP3705309B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To make electric current distribution in paralleled superconductive wires uniform by selecting one or a plurality of element wires from respective element wire bundles of multiple stranded superconductive conductor, connecting the selected element wires with one element wire bundle of another multiple stranded superconductive conductor, and displacing the selected element wires. SOLUTION: In this superconductive apparatus, one superconductive element wire 9 is selected respectively from superconductive strand bundles 10a-1, 10a-2, 10a-3 of 3×3 double-stranded superconductor 15a and replaced by joining each of the selected wires with one of superconductive strand bundle 10b-1 of another double-stranded superconductor 15b. Consequently, since the magnetic bonding between superconductive strands 9, which are magnetically firmly bonded in the same superconductive strand bundle, is lowered, unbalance of electric current distribution due to stranding disorder is hardly caused. Moreover, as compared with a method using a conventional electric resistance, no heat is generated based on Joule's law, so that consumption of liquid helium can be lowered.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超電導装置及びそ
の製造方法に関し、特に、核融合装置等に適用して好適
な超電導磁石等の超電導装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting device and a method for manufacturing the same, and more particularly to a superconducting device such as a superconducting magnet suitable for use in a nuclear fusion device.

【0002】[0002]

【従来の技術】電気抵抗がない超電導線を用いた並列超
電導線路1でなる回路の一例を図21に示す。ここでL
1,L2はそれぞれの超電導線路2の自己インダクタン
スである。M12は超電導線路間の相互インダクタンス
である。i1,i2はそれぞれ電流を示す。添字1,2
は各々の超電導線路を表す。
2. Description of the Related Art FIG. 21 shows an example of a circuit including a parallel superconducting line 1 using a superconducting wire having no electric resistance. Where L
1 and L2 are the self-inductances of the respective superconducting lines 2. M12 is a mutual inductance between the superconducting lines. i1 and i2 each indicate a current. Subscripts 1, 2
Represents each superconducting line.

【0003】いま、電源3より一定電圧を印加して電流
を変化させる場合を考える。この場合の回路方程式は次
式(10)のようになる。
Now, consider the case where a constant voltage is applied from the power supply 3 to change the current. The circuit equation in this case is as shown in the following equation (10).

【0004】 L1di1/dt+M12di2/dt=V L2di2/dt+M12di1/dt=V …(10)L1di1 / dt + M12di2 / dt = V L2di2 / dt + M12di1 / dt = V (10)

【0005】図22に示される回路の等価回路の回路方
程式は次式(11)のように変形される。
A circuit equation of an equivalent circuit of the circuit shown in FIG. 22 is modified as in the following equation (11).

【0006】 (L1−M12)di1/dt+M12(di1+di2)/dt=V (L2−M12)di2/dt+M12(di1+di2)/dt=V …(11)(L1-M12) di1 / dt + M12 (di1 + di2) / dt = V (L2-M12) di2 / dt + M12 (di1 + di2) / dt = V (11)

【0007】図22において、電流変化率をdi/dt
とするとき、並列部分の両端電圧(L1−M12)di
1/dtと(L2−M12)di2/dtは同一になる
ため、電流変化率di/dtの比は、(L1−M12)
と(L2−M12)の逆数の比になる。即ち、並列超電
導線路1を構成する各超電導線路2の電流配分は(L1
−M12)および(L2−M12)に支配される。
In FIG. 22, the current change rate is di / dt.
, The voltage across the parallel portion (L1-M12) di
Since 1 / dt and (L2-M12) di2 / dt are the same, the ratio of the current change rate di / dt is (L1-M12)
And the reciprocal ratio of (L2-M12). That is, the current distribution of each superconducting line 2 constituting the parallel superconducting line 1 is (L1
-M12) and (L2-M12).

【0008】例えば、並列超電導線路として、2本の超
電導線で巻回された超電導コイルを考えたとき、超電導
線の線長の違いや平均的な巻半径の違いにより、2本の
超電導線についてインダクタンスの差が生じるために、
均等には電流が流れない。2本の超電導線で巻回された
インダクタンス1H(ヘンリー)の超電導コイルにおい
て、各超電導線の自己インダクタンスの差は0.001
〜0.0001Hになると考えられるが、この程度のイ
ンダクタンスの乱れさえも電流分布のアンバランスの原
因となる。
For example, when a superconducting coil wound by two superconducting wires is considered as a parallel superconducting line, the two superconducting wires may have different lengths or different average winding radii. Because of the difference in inductance,
Current does not flow evenly. In a superconducting coil having an inductance of 1H (Henry) wound by two superconducting wires, the difference in self-inductance of each superconducting wire is 0.001.
Although it is considered to be about 0.0001H, even such a disturbance in inductance may cause an imbalance in current distribution.

【0009】また、超電導並列回路の一例である、大電
流容量の超電導撚り線導体においては、並列超電導線路
を構成する各々の超電導素線間の磁気的結合係数は1に
近く、相互インダクタンスMの大きさは自己インダクタ
ンスLとほぼ同じ大きさになるため、L−Mの値は極め
て小さくなり、超電導素線のわずかな自己インダクタン
スLのばらつきでさえも電流分布のアンバランスの原因
となりえる。
In a superconducting stranded conductor having a large current capacity, which is an example of a superconducting parallel circuit, the magnetic coupling coefficient between the superconducting wires constituting the parallel superconducting line is close to 1 and the mutual inductance M is small. Since the size is almost the same as the self-inductance L, the value of LM becomes extremely small, and even a slight variation in the self-inductance L of the superconducting wire can cause an imbalance in the current distribution.

【0010】上記の理由により、現状、超電導撚り線導
体においては、超電導素線の電気絶縁を施さず、電気的
に接触させることで、電流が超電導素線間で自由に分布
できる構成にして、電流のアンバランスが生じないよう
にしている。しかし、電気絶縁を施していない超電導素
線で構成される超電導撚り線導体で製作された超電導磁
石を励磁したとき、超電導撚り線導体に横方向磁界が印
加され、超電導素線間を流れる結合電流が誘導されるた
めに損失が発生する。この損失は結合損失とよばれ、液
体ヘリウムの消費の増加などの問題を引き起こす。
[0010] For the above reasons, at present, the superconducting stranded conductor has a configuration in which the electric current can be freely distributed between the superconducting strands by electrically contacting the superconducting strands without providing electrical insulation. Current unbalance is prevented. However, when a superconducting magnet made of a superconducting stranded wire conductor composed of superconducting wires without electrical insulation is excited, a transverse magnetic field is applied to the superconducting stranded wire conductor, and the coupling current flowing between the superconducting wires is Is induced, a loss occurs. This loss is called coupling loss and causes problems such as increased consumption of liquid helium.

【0011】最近では、図23に示す様に、超電導撚り
線導体の電流分布の均一化を図るための手段として、電
気抵抗5を各超電導線路2に直列に付ける(「バランス
抵抗」という)方法がある。この方法においては、並列
部の両端電圧がほぼ各超電導線路2の電流と抵抗値の積
と等しくなるような電気抵抗5を備えることにより、抵
抗の大きさで電流分布のバランスをとることが可能であ
る(参考文献 英文論文 S. Torii et. al. 「ANALYSI
S OF DEGRADATION IN AC SUPERCONDUCTING CABLES」IEE
E TRANSACTIONS ON APPLIED APPLIED SUPERCONDUCTIVIT
Y, VOL.3, NO1,1993)。
Recently, as shown in FIG. 23, as a means for making the current distribution of the superconducting twisted wire conductor uniform, a method of attaching an electric resistance 5 in series to each superconducting line 2 (referred to as "balance resistance"). There is. In this method, by providing the electric resistance 5 such that the voltage between both ends of the parallel portion becomes substantially equal to the product of the current and the resistance value of each superconducting line 2, the current distribution can be balanced by the magnitude of the resistance. (Reference: English paper S. Torii et. Al. “ANALYSI
S OF DEGRADATION IN AC SUPERCONDUCTING CABLES '' IEE
E TRANSACTIONS ON APPLIED APPLIED SUPERCONDUCTIVIT
Y, VOL.3, NO1,1993).

【0012】また、1995年秋季低温工学・超電導学
会においては、図24に示すように、超電導撚り線導体
8について、超電導素線9間を周期的に電気的接触部6
を介して短絡するアイデアが提案されている。短絡する
ピッチを、撚りピッチの整数倍にすることで、理想的に
は前述の超電導素線9間を循環する結合電流は発生しな
い(参考文献 1995年第54回秋季低温工学・超電
導学会講演概要集 P192(横浜国立大学)、P19
6(東芝))。
[0012] Further, in the autumn of 1995, the Society of Low Temperature Engineering and Superconductivity, as shown in FIG. 24, as shown in FIG.
The idea of shorting through is proposed. Ideally, the above-mentioned coupling current circulating between the superconducting wires 9 does not occur by making the short-circuiting pitch an integral multiple of the twisting pitch (Reference literature: Outline of the 54th Autumn Meeting of Low Temperature Engineering and Superconductivity Society of Japan in 1995) Shu P192 (Yokohama National University), P19
6 (Toshiba)).

【0013】[0013]

【発明が解決しようとする課題】上記した電流分布均一
化のための従来の方法においては、バランス抵抗部分に
おいてジュール発熱が生じるため、液体ヘリウム中など
の低温部分にこのようなバランス抵抗を配置することは
できない。また、各超電導素線に電気抵抗をつける方法
では、本発明と比較して、余分なジュール損失が発生す
ることになる。
In the above-mentioned conventional method for making the current distribution uniform, Joule heat is generated in the balance resistor portion. Therefore, such a balance resistor is disposed in a low temperature portion such as liquid helium. It is not possible. In addition, in the method of providing electric resistance to each superconducting element wire, an extra Joule loss occurs as compared with the present invention.

【0014】さらに、電流変化率が大きい場合には、イ
ンダクタンスのばらつきによる電流のアンバランスを改
善するための十分な大きさの抵抗値(インピーダンス)
が得られず、電流分布均一効果は小さい。
Further, when the current change rate is large, a sufficiently large resistance value (impedance) for improving current imbalance due to variation in inductance is provided.
Cannot be obtained, and the current distribution uniformity effect is small.

【0015】しかしながら、現状では、超電導素線に絶
縁が施されている場合において、超電導並列回路を実現
するためには、バランス抵抗が不可欠であると考えられ
ている。
However, at present, when the superconducting wires are insulated, it is considered that a balance resistor is indispensable to realize a superconducting parallel circuit.

【0016】また、超電導素線間を短絡する方法も、多
重撚り超電導導体15にこれらの方法を適用したとき、
製作が困難であり、且つ撚り乱れが発生した際に、異な
った超電導素線束にある超電導素線同士により、電気的
接触部を介して閉回路が形成され、超電導コイルが作る
変動磁界が鎖交した際に、大きな循環電流が発生し、結
合損失やクエンチが発生する可能性があるという問題が
あった。
The method of short-circuiting between superconducting wires is also described in the case where these methods are applied to the multi-stranded superconducting conductor 15.
When manufacturing is difficult and twisting occurs, a closed circuit is formed by superconducting wires in different superconducting wire bundles through electrical contacts, and the fluctuating magnetic field created by the superconducting coil is interlinked. In such a case, there is a problem that a large circulating current is generated, which may cause a coupling loss or a quench.

【0017】したがって本発明は、上記した問題点に鑑
みてなされたものであって、その目的は、極力ジュール
損失による液体ヘリウムの消費を少なくし、且つ容易に
並列超電導線路の電流分布を均一化する超電導装置を提
供することにある。
SUMMARY OF THE INVENTION Accordingly, the present invention has been made in view of the above problems, and has as its object to reduce the consumption of liquid helium due to Joule loss as much as possible and to easily equalize the current distribution of parallel superconducting lines. To provide a superconducting device.

【0018】[0018]

【課題を解決するための手段】前記目的は、本発明によ
れば下記記載の手段によって達成される。
The above object is achieved according to the present invention by the following means.

【0019】請求項1に記載の発明においては、多重撚
りされた超電導導体の、各々の超電導素線束から1ある
いは複数の超電導素線を選択し、別の多重撚り超電導導
体の一つの超電導素線束に連結させることで、転置を行
う。これにより、同一の超電導素線束内で、磁気的に強
く結合していた超電導素線束同士の磁気的結合を弱める
ことにより、撚り乱れに起因する、電流分布のアンバラ
ンスを解消できる。
According to the first aspect of the present invention, one or a plurality of superconducting wires are selected from each superconducting wire bundle of the multi-twisted superconducting conductor, and one superconducting wire bundle of another multi-twisted superconducting conductor is selected. The transposition is performed by connecting to. Thus, by weakening the magnetic coupling between the superconducting element bundles that are strongly magnetically coupled within the same superconducting element bundle, it is possible to eliminate the imbalance in the current distribution due to the twisting disorder.

【0020】請求項2に記載の発明においては、多重撚
りされた超電導導体の、各々の超電導素線束から1ある
いは複数の超電導素線を選択し、束ねて電気抵抗を取り
付ける。かかる構成により、超電導素線間の電流分布の
アンバランスを解消できる。
According to the second aspect of the present invention, one or a plurality of superconducting wires are selected from each superconducting wire bundle of the multi-twisted superconducting conductors, and the superconducting wires are bundled and an electric resistance is attached. With this configuration, it is possible to eliminate imbalance in the current distribution between the superconducting wires.

【0021】請求項3に記載の発明においては、多重撚
りされた超電導導体の、各々の超電導素線束から1本あ
るいは複数の超電導素線を選択し、束ねてインダクタン
スを取り付けるものである。このため、電流分布のアン
バランスを解消できる。
According to the third aspect of the present invention, one or a plurality of superconducting wires are selected from each superconducting wire bundle of the multi-twisted superconducting conductors, and the superconducting wires are bundled and an inductance is attached thereto. For this reason, imbalance in the current distribution can be eliminated.

【0022】請求項4に記載の発明においては、超電導
撚り線導体の、一部において1本あるいは複数本ごと
に、磁性体からなるパイプを備える。これにより、その
区間の超電導素線の自己インダクタンスが大きくできる
ために、電流分布のアンバランスを解消できる。
According to the fourth aspect of the present invention, the superconducting stranded conductor is provided with a pipe made of a magnetic material for one or more of the superconducting stranded conductors. As a result, the self-inductance of the superconducting element wire in that section can be increased, so that imbalance in the current distribution can be eliminated.

【0023】請求項5に記載の発明においては、超電導
素線の一部に並列電気抵抗を有しており、これにより、
偏流発生時にある超電導素線で臨界電流を越えた場合に
は自動的に電気抵抗が発生し電流分布のアンバランスを
解消できる。
According to the fifth aspect of the present invention, a part of the superconducting element wire has a parallel electric resistance, whereby
When a critical current is exceeded by a certain superconducting wire at the time of occurrence of a drift, an electric resistance is automatically generated and the imbalance of the current distribution can be eliminated.

【0024】請求項6に記載の発明においては、超電導
素線に直列に臨界電流が既知の完全安定化超電導線を有
しており、これにより、超電導素線に流れる電流が臨界
電流以上になると電気抵抗が発生し電流分布のアンバラ
ンスを解消できる。
In the invention according to claim 6, a fully stabilized superconducting wire having a known critical current is provided in series with the superconducting wire, whereby when the current flowing through the superconducting wire becomes more than the critical current. Electric resistance is generated, and imbalance in current distribution can be eliminated.

【0025】請求項7に記載の発明においては、多重撚
りされた超電導導体の、各々の超電導素線束から1本あ
るいは複数の超電導素線を選択し、請求項5あるいは6
に記載の回路が取り付けられているために、超電導素線
に流れる電流が臨界電流以上になると、電流分布のアン
バランスを解消できる。
In the invention according to claim 7, one or a plurality of superconducting wires are selected from each superconducting wire bundle of the multi-stranded superconducting conductor.
When the current flowing through the superconducting element wire is equal to or greater than the critical current, the imbalance of the current distribution can be eliminated because the circuit described in (1) is attached.

【0026】請求項8に記載の発明においては、超電導
素線の絶縁が低次の撚りにおいて一部除去されているた
めに、低次の超電導素線束内の超電導素線の電流分布は
均一になり、高次の撚りの超電導素線束間はオーバオー
ルの電流分布が比較的均一であるために、全体的に電流
分布のアンバランスを解消できる。同時に、ある超電導
素線においてクエンチが発生した際も、容易に隣接超電
導素線に転流可能なために、超電導撚り線導体の安定性
が向上する。
In the eighth aspect of the present invention, since the insulation of the superconducting wires is partially removed in the low-order twist, the current distribution of the superconducting wires in the low-order superconducting wire bundle is uniform. In other words, since the overall current distribution is relatively uniform between the higher-order twisted superconducting element bundles, the imbalance of the current distribution can be entirely eliminated. At the same time, even when a quench occurs in a certain superconducting wire, the commutation to an adjacent superconducting wire can be easily performed, so that the stability of the superconducting twisted wire conductor is improved.

【0027】請求項9に記載の発明においては、超電導
撚り線導体の、超電導素線の絶縁被覆を除去する作業
を、撚り線工程において実施するために各超電導素線の
絶縁を剥した箇所が確実に電気的に接触する。
According to the ninth aspect of the present invention, the operation of removing the insulating coating of the superconducting strand of the superconducting stranded wire conductor is performed in the stranded wire step. Ensures electrical contact.

【0028】請求項10又は11に記載の発明において
は、絶縁を一部除去した超電導撚り線導体を低融点金属
浴をくぐるらせることにより、低融点金属で結合するも
のである。前記の方法により製作することで、容易に超
電導素線間の結合が可能になる。
According to the tenth or eleventh aspect of the present invention, the superconducting stranded wire conductor from which a part of the insulation is removed is passed through a low-melting metal bath to be bonded with a low-melting metal. By manufacturing by the above method, coupling between superconducting wires can be easily achieved.

【0029】請求項12に記載の発明においては、超電
導素線同士あるいは超電導線と電気抵抗を低融点金属接
続した後に、余分な低融点金属を熱風で吹き飛ばすこと
で接続部を仕上げている。前記の方法により製作するこ
とにより、余計な電気的な接触が生じない。
In the twelfth aspect of the invention, after the superconducting wires are connected to each other or the superconducting wire and the electric resistance are connected to the low melting point metal, the connection portion is finished by blowing off excess low melting point metal with hot air. By manufacturing according to the method described above, no extra electrical contact occurs.

【0030】[0030]

【発明の実施の形態】以下に本発明の実施例について図
面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0031】[0031]

【実施例1】本発明の一実施例について図1を参照して
説明する。3×3撚りされた2重撚り超電導導体15a
の、各々の超電導素線束10a,10b,10cから超
電導素線9を1本ずつ選択し、別の2重撚り超電導導体
15bの一つの超電導素線束10aに連結させること
で、転置を行った例を示している。
Embodiment 1 An embodiment of the present invention will be described with reference to FIG. 3 × 3 twisted double stranded superconductor 15a
Example in which transposition is performed by selecting one superconducting wire 9 from each of the superconducting wire bundles 10a, 10b, and 10c and connecting it to one superconducting wire bundle 10a of another double-stranded superconducting conductor 15b. Is shown.

【0032】本実施例の動作原理を説明する前に、3×
3超電導撚り線導体15の両端に正弦波電圧Ve-jωを
印加した場合の回路方程式、式(1)について説明す
る。
Before explaining the operation principle of this embodiment, 3 ×
The circuit equation and equation (1) when a sine wave voltage Ve- is applied to both ends of the three superconducting stranded conductors 15 will be described.

【0033】[0033]

【数1】 (Equation 1)

【0034】ここで超電導素線9の自己インダクタンス
Lの添字は超電導素線9の番号、超電導素線9間の同士
の相互インダンタンスM,mの添字は前が超電導素線9
の番号、後ろの数字が磁気的結合の対象となる超電導素
線9の番号を示す。番号1,2,3、4,5,6および
7,8,9の超電導素線9が、それぞれ異なった超電導
素線束10を構成している。
Here, the suffix of the self-inductance L of the superconducting wire 9 is the number of the superconducting wire 9, and the suffix of the mutual inductance M, m between the superconducting wires 9 is before the superconducting wire 9.
, And the number after it indicates the number of the superconducting element wire 9 to be magnetically coupled. The superconducting wires 9 of numbers 1, 2, 3, 4, 5, 6 and 7, 8, 9 constitute different superconducting wire bundles 10, respectively.

【0035】3×3超電導撚り線導体15のインピーダ
ンスマトリックスはインダクタンスマトリックスに−j
ωを乗じて得られる。このインピーダンスマトリックス
において一次撚り超電導素線束10を構成する超電導素
線9同士は幾何学的距離が小さいために、磁気的結合が
大きく、超電導素線9間の相互インダクタンスMは、ほ
とんど超電導素線9そのものの自己インダクタンスLと
等しくなる。次に異なった超電導素線束10にある2本
の超電導素線9間の相互インダクタンスmは幾何学的に
距離が離れているために、同一超電導素線束10に属す
る超電導素線9間の相互インダクタンスMと比較して幾
分小さい。大文字Mは磁気的結合が強いことを、小文字
mは磁気的結合が弱いことをそれぞれ示す。
The impedance matrix of the 3 × 3 superconducting stranded conductor 15 is obtained by adding -j to the inductance matrix.
Multiplied by ω. In this impedance matrix, since the superconducting wires 9 constituting the primary twisted superconducting wire bundle 10 have a small geometric distance, magnetic coupling is large, and the mutual inductance M between the superconducting wires 9 is almost equal to that of the superconducting wires 9. It becomes equal to the self-inductance L of itself. Next, since the mutual inductance m between the two superconducting wires 9 in the different superconducting wire bundles 10 is geometrically large, the mutual inductance m between the superconducting wires 9 belonging to the same superconducting wire bundle 10 is large. Somewhat smaller than M. A capital letter M indicates that the magnetic coupling is strong, and a small letter m indicates that the magnetic coupling is weak.

【0036】以下に、具体的に撚り乱れの影響を計算し
た例を以下に示す。超電導素線の自己インダクタンスを
1.392mH、同一超電導素線束内の超電導素線同士
の相互インダクタンスを1.365mH、異なった超電
導素線束にある超電導素線同士の相互インダクタンスを
1.255mHとし、撚り乱れにより一本の超電導線の
自己インダクタンスがわずかに小さい値1.380mH
になったと仮定して計算した。本来は、撚り乱れが生じ
た時、相互インダクタンスも変化するが、本計算では簡
略化のために、自己インダクタンスのみを変化させた。
インダクタンスマトリックスは表1のようになる。
Hereinafter, an example in which the influence of twist disorder is specifically calculated will be described below. The self-inductance of the superconducting wires is 1.392 mH, the mutual inductance between the superconducting wires in the same superconducting wire bundle is 1.365 mH, the mutual inductance between the superconducting wires in different superconducting wire bundles is 1.255 mH, and the twisting is performed. Due to the disturbance, the self-inductance of one superconducting wire is a small value of 1.380 mH.
It was calculated assuming that Originally, when twisting occurs, the mutual inductance also changes, but in this calculation, only the self-inductance was changed for simplicity.
The inductance matrix is as shown in Table 1.

【0037】[0037]

【表1】 [Table 1]

【0038】この様な超電導撚り線導体の両端に交流電
圧印加した場合の電流分布は図25のようになる。
FIG. 25 shows a current distribution when an AC voltage is applied to both ends of such a superconducting stranded conductor.

【0039】小さい自己インダクタンスを与えた超電導
素線束の中の超電導素線(番号1)に大きな電流が流れ
ていることが分る。一方、3つの超電導素線束を比較し
た場合、電流のバランス(3本の超電導素線に流れる電
流の和を比較する。)は保たれている。
It can be seen that a large current is flowing through the superconducting wire (No. 1) in the superconducting wire bundle given a small self-inductance. On the other hand, when comparing the three superconducting element bundles, the current balance (comparing the sum of the currents flowing through the three superconducting element wires) is maintained.

【0040】以上より、超電導素線9の撚り乱れがある
場合に、1次撚りを構成する3本の超電導素線9におい
ては、超電導素線9間の電流分布がアンバランスが発生
しやすい。一方、超電導素線束10の電磁気的中心線は
比較的離れているために、超電導素線束10間の電流分
布は、アンバランスになりにくい。
As described above, when the superconducting wires 9 are twisted and disordered, the current distribution among the superconducting wires 9 tends to be unbalanced in the three superconducting wires 9 constituting the primary twist. On the other hand, since the electromagnetic center line of superconducting element bundle 10 is relatively far away, the current distribution between superconducting element bundles 10 is unlikely to be unbalanced.

【0041】本実施例の、動作原理を説明する。The operation principle of this embodiment will be described.

【0042】2本の3×3撚り超電導導体15aおよび
15bにおいて、図1に示すような転置を行う。式
(2)に、このような3×3撚り超電導導体に正弦波電
圧Ve-jωを印加した場合の回路方程式を示す。ωは角
速度で、ω=周波数f×2πである。
The transposition as shown in FIG. 1 is performed on the two 3 × 3 twisted superconducting conductors 15a and 15b. Equation (2) shows a circuit equation when a sine wave voltage V ej ω is applied to such a 3 × 3 twisted superconductor. ω is the angular velocity, ω = frequency f × 2π.

【0043】[0043]

【数2】 (Equation 2)

【0044】上式(2)の第1項において磁気的に強く
結合していた超電導素線9同士は、第2項のマトリック
スにおいては磁気的結合が小さくなるために、撚り乱れ
による電流分布のアンバランスが生じにくい。
The superconducting wires 9 which were strongly magnetically coupled in the first term of the above equation (2) have a small magnetic coupling in the matrix of the second term. Unbalance is less likely to occur.

【0045】前述と同様に具体的な計算を行った例を示
す。前述の様な撚り乱れを仮定した2本の3×3撚り超
電導導体15を転置を行って接続した場合を示してい
る。式2の第1項に相当するインダクタンスマトリック
スは表1と同様の数値を、第2項に相当するインダクタ
ンスマトリックスが表2の数値を代入して計算した。
An example in which a specific calculation is performed in the same manner as described above will be described. This figure shows a case where two 3 × 3 twisted superconducting conductors 15 are connected by transposition assuming the above-mentioned twist disorder. The inductance matrix corresponding to the first term of Equation 2 was calculated by substituting the same numerical values as in Table 1, and the inductance matrix corresponding to the second term by substituting the numerical values of Table 2.

【0046】[0046]

【表2】 [Table 2]

【0047】交流電圧印加時の電流分布は図26のよう
になる。電流分布のアンバランスは図25と比較して緩
和されていることが分かる。
FIG. 26 shows a current distribution when an AC voltage is applied. It can be seen that the imbalance of the current distribution is reduced as compared with FIG.

【0048】本実施例は、従来の電気抵抗を用いた電流
分布の均一化法に比べ、ジュール発熱がないために、液
体ヘリウムの消費が低減できる。
In the present embodiment, since no Joule heat is generated, the consumption of liquid helium can be reduced as compared with the conventional method of equalizing the current distribution using electric resistance.

【0049】[0049]

【実施例2】本発明の第2の実施例について、図2を参
照して説明する。3×3撚り超電導導体15の、各々の
超電導素線束10から1本の超電導素線9を選択し、束
ねて電気抵抗5を取り付けている。この様な構成の3×
3撚り超電導導体15に正弦波電圧Ve-jωを印加した
場合の回路方程式を式(3)に示す。
Embodiment 2 A second embodiment of the present invention will be described with reference to FIG. One superconducting element wire 9 is selected from each superconducting element bundle 10 of the 3 × 3 stranded superconducting conductor 15, bundled and the electric resistance 5 is attached. 3x with such a configuration
Equation (3) shows a circuit equation when a sine wave voltage Ve -j ω is applied to the three-stranded superconducting conductor 15.

【0050】[0050]

【数3】 (Equation 3)

【0051】上式(3)の第2項のマトリックスの効果
により、同一超電導素線束10を構成する超電導素線9
間の電流分布の均一化が実現できる。1本ずつ電気抵抗
を接続する場合に比べて接続部7が少なくてすむために
製作が容易になる。
Due to the effect of the matrix of the second term of the above equation (3), the superconducting wires 9 constituting the same superconducting wire bundle 10
A uniform current distribution can be realized. As compared with the case where the electric resistances are connected one by one, the number of the connection portions 7 can be reduced, so that the manufacture becomes easy.

【0052】[0052]

【実施例3】本発明の第3の実施例について、図3を参
照して説明する。電気抵抗5がパワーリード16部分に
付けている様子を示している。12は超電導コイル、1
3は液体ヘリウム、14はクライオスタットである。前
記の構成にすることにより、ジュール発熱がガスヘリウ
ム中で発生するため、液体ヘリウム13の消費を低減で
きる。
Embodiment 3 A third embodiment of the present invention will be described with reference to FIG. The state where the electric resistance 5 is attached to the power lead 16 is shown. 12 is a superconducting coil, 1
3 is a liquid helium, 14 is a cryostat. With the above configuration, Joule heat is generated in gas helium, so that consumption of liquid helium 13 can be reduced.

【0053】[0053]

【実施例4】本発明の第4の実施例について、図4を参
照して説明する。3×3撚り超電導導体15の、各々の
超電導素線束10から1本の超電導素線9を選択し、そ
れらを束ねて巻回してコイル17を形成している。
Embodiment 4 A fourth embodiment of the present invention will be described with reference to FIG. A coil 17 is formed by selecting one superconducting wire 9 from each superconducting wire bundle 10 of the 3 × 3 stranded superconducting conductor 15 and bundling and winding them.

【0054】次式(4)は、3×3撚り超電導導体15
に正弦波電圧Ve-jωを印加した場合の回路方程式を示
す。
The following equation (4) shows that the 3 × 3 stranded superconductor 15
Shows a circuit equation when a sine wave voltage Ve -j ω is applied to the circuit.

【0055】[0055]

【数4】 (Equation 4)

【0056】上式(4)の第2項のマトリックスにおい
て1は超電導素線のコイル17における自己インダクタ
ンス、mはコイル17における超電導素線間の相互イン
ダクタンスである。式4において、別のコイルを構成す
る超電導素線同士は磁気的に結合しないと仮定し、相互
インダクタンスを零としている。第2項のマトリックス
の効果により、超電導素線束10を構成する各超電導素
線9においても電流分布の均一化が実現できる。
In the matrix of the second term of the above equation (4), 1 is the self-inductance of the superconducting wire in the coil 17, and m is the mutual inductance between the superconducting wires in the coil 17. In Equation 4, it is assumed that superconducting wires constituting another coil are not magnetically coupled to each other, and the mutual inductance is zero. Due to the effect of the matrix of the second term, uniformity of current distribution can be realized also in each superconducting wire 9 constituting superconducting wire bundle 10.

【0057】この方法では、超電導素線9の接続をしな
いためにジュール損失が低減できる。
According to this method, since the superconducting wires 9 are not connected, Joule loss can be reduced.

【0058】[0058]

【実施例5】本発明の第5の実施例について、図5を参
照して説明する。3×3撚り超電導導体15の、各々の
超電導素線束10から1本の超電導素線9を選択し、そ
れらを束ねて巻回してコイル17を形成している。さら
にコイル17が磁気回路4を備えている。この様な場
合、上式(4)の第2項の値が大きくなり、電流均一化
の効果が大きい。
Embodiment 5 A fifth embodiment of the present invention will be described with reference to FIG. A coil 17 is formed by selecting one superconducting wire 9 from each superconducting wire bundle 10 of the 3 × 3 stranded superconducting conductor 15 and bundling and winding them. Further, the coil 17 includes the magnetic circuit 4. In such a case, the value of the second term in the above equation (4) becomes large, and the effect of current uniformization is great.

【0059】[0059]

【実施例6】本発明の第6の実施例について、図6を参
照して説明する。3×3撚り超電導導体15の、各々の
超電導素線束10から1本の超電導素線9を選択し、そ
れらを束ねて磁性体パイプ18を取り付けている。磁性
体パイプ18内にある超電導素線9は自己インダクタン
スが大きくなり、且つ超電導素線9間の相互インダクタ
ンスも大きくなるため、上記実施例4あるいは実施例5
と同様の原理で、電流分布の均一化が実現できる。同時
に、磁性体パイプ18に超電導素線束10を通すだけで
よいので製作が容易である。
[Embodiment 6] A sixth embodiment of the present invention will be described with reference to FIG. One superconducting element wire 9 is selected from each superconducting element bundle 10 of the 3 × 3 stranded superconducting conductor 15, bundled and a magnetic pipe 18 is attached. The superconducting wire 9 in the magnetic pipe 18 has a large self-inductance and a large mutual inductance between the superconducting wires 9, so that the above-described fourth or fifth embodiment is used.
With the same principle as described above, the current distribution can be made uniform. At the same time, it is only necessary to pass the superconducting wire bundle 10 through the magnetic pipe 18, so that manufacture is easy.

【0060】[0060]

【実施例7】本発明の第7の実施例について、図7を参
照して説明する。3×3撚り超電導導体15の、各々の
超電導素線束10から1本の超電導素線9を選択し、そ
れらを束ねたものの周りに、磁性体シート19を備えて
いる。前記の構成にすることにより、超電導素線9の接
続が終了した後でも、容易に磁性体シート19を施工で
きる。
Seventh Embodiment A seventh embodiment of the present invention will be described with reference to FIG. One superconducting element wire 9 is selected from each superconducting element bundle 10 of the 3 × 3 stranded superconducting conductor 15, and a magnetic sheet 19 is provided around a bundle of these. With the above configuration, the magnetic sheet 19 can be easily applied even after the connection of the superconducting wires 9 is completed.

【0061】[0061]

【実施例8】本発明の第8の実施例について、図8を参
照して説明する。3×3撚り超電導導体15の、各々の
超電導素線束10から1本の超電導素線9を選択し、そ
れらを束ねて巻回してコイル17を形成している。ここ
で、コイル17はお互いに磁気的に結合しにくい方向に
なっている。コイル17間の距離を離して配置したり、
磁気シールドを取り付けても同様の効果が得られること
は言うまでもない。
Embodiment 8 An eighth embodiment of the present invention will be described with reference to FIG. A coil 17 is formed by selecting one superconducting wire 9 from each superconducting wire bundle 10 of the 3 × 3 stranded superconducting conductor 15 and bundling and winding them. Here, the coils 17 are in directions in which they are hardly magnetically coupled to each other. If the distance between the coils 17 is arranged,
It goes without saying that a similar effect can be obtained even if a magnetic shield is attached.

【0062】[0062]

【実施例9】本発明の第9の実施例について、図9を参
照して説明する。超電導撚り線導体8の、一部において
超電導素線9の1本ごとに、磁性体パイプ18を備えた
ことで、超電導素線9の自己インダクタンスが大きくな
る。この様な、磁性体パイプ18を備えた3×3撚り超
電導導体15に正弦波電圧Ve−jω を印加した場合
の回路方程式を式5に示す。磁性体パイプ18を備えた
効果により、この区間の超電導素線9の自己インダクタ
ンスが第2項のマトリックス中の1だけ大きくなってい
ることを示している。第2項の効果により電流分布の均
一化が実現できる。
Embodiment 9 A ninth embodiment of the present invention will be described with reference to FIG. By providing the magnetic pipe 18 for each superconducting strand 9 in a part of the superconducting stranded conductor 8, the self-inductance of the superconducting strand 9 increases. The sine wave voltage Ve-jω is applied to the 3 × 3 twisted superconducting conductor 15 having the magnetic pipe 18 as described above. Equation 5 shows a circuit equation in the case where is applied. This indicates that the effect of the provision of the magnetic pipe 18 increases the self-inductance of the superconducting wire 9 in this section by one in the matrix of the second term. The uniformity of the current distribution can be realized by the effect of the second term.

【0063】[0063]

【数5】 (Equation 5)

【0064】[0064]

【実施例10】本発明の第10の実施例について、図1
0を参照して説明する。本実施例においては、上記実施
例9の磁性体パイプ18の代わりに、磁性体シート19
を用いている。前記の構成にすることにより、上記実施
例9と同様の効果が得られると同時に、製作が容易にな
る。
Embodiment 10 FIG. 1 shows a tenth embodiment of the present invention.
0 will be described. In this embodiment, a magnetic sheet 19 is used instead of the magnetic pipe 18 of the ninth embodiment.
Is used. With the above configuration, the same effects as those of the ninth embodiment can be obtained, and at the same time, the manufacturing becomes easy.

【0065】[0065]

【実施例11】本発明の第11の実施例について、図1
1を参照して説明する。本実施例においては、上記実施
例9の磁性体パイプ18の代わりに、長手方向に開口部
を有する管状磁性体20を適用した例を示している。超
電導素線9を通す手間が省けるために、容易に製作可能
となる。磁性体栓21を設ければさらに超電導素線9の
自己インダクタンスが大きくなる。
Embodiment 11 FIG. 1 shows an eleventh embodiment of the present invention.
This will be described with reference to FIG. In the present embodiment, an example is shown in which a tubular magnetic body 20 having an opening in the longitudinal direction is applied instead of the magnetic pipe 18 of the ninth embodiment. Since the labor for passing the superconducting wires 9 can be omitted, it can be easily manufactured. If the magnetic plug 21 is provided, the self-inductance of the superconducting wire 9 is further increased.

【0066】また、上記実施例6において磁性体パイプ
18の代わりに、上記長手方向に開口部を有する管状磁
性体20を適用しても、同様の効果が得られることは言
うまでもない。
It is needless to say that the same effect can be obtained by applying the tubular magnetic body 20 having an opening in the longitudinal direction instead of the magnetic pipe 18 in the sixth embodiment.

【0067】[0067]

【実施例12】本発明の第12の実施例について、図1
2を参照して説明する。図において、22は、臨界電流
が超電導素線9の臨界電流よりも小さい臨界電流が既知
の超電導線である。超電導素線9に流れる電流が、臨界
電流既知超電導線22の臨界電流を越えた場合、臨界電
流既知超電導線22において常電導が発生する。この
時、並列に電気抵抗5に電流が分流するために、クエン
チによる常電導領域の拡大には至らず、ある大きさの電
気抵抗が発生する。これにより、電流のアンバランス発
生時には自動的に常電導抵抗が発生し、電流分布がバラ
ンスする。
Embodiment 12 FIG. 1 shows a twelfth embodiment of the present invention.
This will be described with reference to FIG. In the figure, reference numeral 22 denotes a superconducting wire whose critical current is smaller than the critical current of the superconducting element wire 9. When the current flowing through the superconducting wire 9 exceeds the critical current of the superconducting wire 22 with a known critical current, normal conduction occurs in the superconducting wire 22 with a known critical current. At this time, since the current is shunted to the electric resistance 5 in parallel, the normal conduction region is not expanded by the quench, and a certain amount of electric resistance is generated. As a result, when a current imbalance occurs, a normal conduction resistance is automatically generated, and the current distribution is balanced.

【0068】上記の構成にすることにより、従来技術と
して示したすべての超電導素線9に電気抵抗5を接続す
る方法と比較して、余分なジュール発熱が生じること無
く、電流分布のアンバランスを抑制できる。
By adopting the above configuration, compared with the method of connecting the electric resistance 5 to all the superconducting wires 9 shown in the prior art, the current distribution unbalance can be reduced without generating extra Joule heat. Can be suppressed.

【0069】[0069]

【実施例13】本発明の第13の実施例について、図1
3を参照して説明する。図において、22は、臨界電流
が既知の超電導線である。クエンチにより常電導領域が
広がらないように、ヒートシンク24がついている。実
施例12と同様に電流分布の均一化効果がある。同時に
ヒートシンク24が備えられているために、超電導撚り
線導体8にクエンチが広がることがない。
Embodiment 13 A thirteenth embodiment of the present invention will be described with reference to FIG.
3 will be described. In the figure, 22 is a superconducting wire whose critical current is known. A heat sink 24 is provided so that the quench does not widen the normal conduction region. Similar to the twelfth embodiment, there is an effect of making the current distribution uniform. At the same time, since the heat sink 24 is provided, the quench does not spread to the superconducting stranded wire conductor 8.

【0070】[0070]

【実施例14】本発明の第14の実施例について、図1
4を参照して説明する。図において、23は、臨界電流
既知の完全安定化超電導線である。上記実施例13と同
様の原理で電流分布の均一化効果がある。また、完全安
定化超電導線23においては、クエンチが起こらないた
めに超電導装置の設計が容易である。
Embodiment 14 FIG. 1 shows a fourteenth embodiment of the present invention.
This will be described with reference to FIG. In the figure, 23 is a fully stabilized superconducting wire whose critical current is known. According to the same principle as in the thirteenth embodiment, an effect of equalizing the current distribution can be obtained. Further, in the completely stabilized superconducting wire 23, the quench does not occur, so that the superconducting device can be easily designed.

【0071】[0071]

【実施例15】本発明の第15の実施例について、図1
5を参照して説明する。3×3超電導撚り線導体15に
おいて、超電導素線束10から、1本ずつ選択した3本
の超電導素線9を束ねたものに直列に、臨界電流既知完
全安定化超電導線23が取り付けられている例を示して
いる。1本の完全安定化超電導線23に接続された3本
の超電導素線9の電流値の和が完全安定化超電導線23
の臨界電流を越えると電気抵抗が発生するため、上記実
施例2と同様に、電流分布の均一化が実現できる。
Embodiment 15 A fifteenth embodiment of the present invention will be described with reference to FIG.
This will be described with reference to FIG. In the 3 × 3 superconducting twisted conductor 15, a critical current known fully stabilized superconducting wire 23 is attached in series to a bundle of three superconducting wires 9 selected one by one from the superconducting wire bundle 10. An example is shown. The sum of the current values of the three superconducting wires 9 connected to one completely stabilized superconducting wire 23 is
When the critical current exceeds the critical current, electric resistance is generated, so that the current distribution can be made uniform, as in the second embodiment.

【0072】[0072]

【実施例16】本発明の第16の実施例について、図1
6を参照して説明する。上記実施例1において、上式
(1)を用いて説明したように、超電導素線束10間の
オーバオールの電流分布は超電導素線9同士の電流分布
に比べて均一になりやすい。同様に超電導多重撚り線の
場合は、低次の撚りの超電導素線束内ほど超電導素線間
の電流のアンバランスが発生しやすい。
Embodiment 16 FIG. 1 shows a sixteenth embodiment of the present invention.
This will be described with reference to FIG. In the first embodiment, as described using the above equation (1), the overall current distribution between the superconducting wire bundles 10 tends to be more uniform than the current distribution between the superconducting wires 9. Similarly, in the case of a superconducting multiple stranded wire, the current imbalance between the superconducting wires is more likely to occur in a superconducting wire bundle of a lower twist.

【0073】本実施例では、3×3撚り超電導導体15
において、低次の撚りである1次撚り超電導素線束29
のみ、ある区間で電気的な絶縁被覆31を除去した箇所
25において電気的に接触している例を示している。
In this embodiment, the 3 × 3 stranded superconductor 15
, The primary twist superconducting element bundle 29 which is a low-order twist
Only an example is shown in which electrical contact is made at a location 25 where the electrical insulating coating 31 is removed in a certain section.

【0074】前記の構成にすることにより、電流分布は
均一になり、かつ、ある超電導素線において常電導が発
生した時も、電流の転流が容易である。また、低次の撚
りにおいてのみ超電導素線9間の接続を行うため、多重
撚り超電導導体においても、確実、かつ容易に超電導素
線9同士の電気的接触が可能になる。
With the above configuration, the current distribution becomes uniform, and the commutation of the current is easy even when normal conduction occurs in a certain superconducting element wire. Further, since the connection between the superconducting wires 9 is performed only in the low-order twist, the superconducting wires 9 can be reliably and easily electrically connected to each other even in a multi-stranded superconducting conductor.

【0075】また、表面に高電気抵抗被覆、たとえばク
ロムメッキを施した超電導素線で構成される多重撚り超
電導導体においても、低融点金属を用いて低次の撚りを
構成する超電導素線間を低電気抵抗で接触させること
で、同様の効果が得られることは言うまでもない。
Further, even in a multi-stranded superconducting conductor composed of superconducting wires whose surface is coated with a high electric resistance, for example, chromium plating, the superconducting wires forming a low-order twist using a low-melting-point metal can be used. Needless to say, the same effect can be obtained by contacting with low electric resistance.

【0076】[0076]

【実施例17】本発明の第17の実施例について、図1
7を参照して説明する。撚り線装置32を用いて撚り線
作業時にサンドブラスト26によって、絶縁被覆31を
取り除く例を示している。この様な製造方法により、超
電導素線9間の接触を容易に、かつ正確に実現できる。
Embodiment 17 A seventeenth embodiment of the present invention will be described with reference to FIG.
This will be described with reference to FIG. An example is shown in which the insulating coating 31 is removed by sandblasting at the time of a stranded wire operation using the stranded wire device 32. By such a manufacturing method, contact between superconducting wires 9 can be easily and accurately realized.

【0077】[0077]

【実施例18】本発明の第18の実施例について、図1
8を参照して説明する。超電導撚り線導体8を低融点金
属浴28にくぐらせている。この時、低融点金属27の
融点は、絶縁被覆31の耐熱温度以下にしてある。前記
製造方法により、容易に超電導素線9間の接続を製作で
きる。さらに、確実に電気的に結合するため、単に超電
導素線9間を接触させた場合に比べ導体設計が容易にな
る。また、低融点金属27で接続することにより超電導
素線9の動きが小さくなるために、クエンチが生じにく
くなる。
Embodiment 18 FIG. 1 shows an eighteenth embodiment of the present invention.
8 will be described. The superconducting stranded conductor 8 is passed through a low melting metal bath 28. At this time, the melting point of the low melting point metal 27 is lower than the heat resistant temperature of the insulating coating 31. The connection between the superconducting wires 9 can be easily manufactured by the above manufacturing method. Furthermore, since the electrical connection is ensured, the conductor design becomes easier as compared with a case where the superconducting wires 9 are simply brought into contact. In addition, since the movement of superconducting element wire 9 is reduced by connecting with low melting point metal 27, quenching is less likely to occur.

【0078】[0078]

【実施例19】本発明の第19の実施例について、図1
9を参照して説明する。例えば上記実施例1に記した、
超電導撚り線導体15同士を接続する場合を示してあ
る。図中、風は熱風、27は低融点金属である。超電導
素線9同士を接続した後で熱風でとばすことにより、余
分な接続箇所が生じないために、設計通りに電流の均一
化ができる。
Embodiment 19 FIG. 1 shows a nineteenth embodiment of the present invention.
This will be described with reference to FIG. For example, as described in Example 1 above,
The case where the superconducting stranded wire conductors 15 are connected to each other is shown. In the figure, the wind is hot air, and 27 is a low melting point metal. By blowing the hot air after connecting the superconducting wires 9 to each other, no extra connecting portion is generated, so that the current can be made uniform as designed.

【0079】むろん、超電導素線9に電気抵抗5を接続
する場合にも有効であることは言うまでもない。
Needless to say, this is also effective when the electric resistance 5 is connected to the superconducting element wire 9.

【0080】[0080]

【実施例20】本発明の第20の実施例について、図2
0を参照して説明する。図20は、本発明を超電導ケー
ブル30に適用した例を示している。超電導ケーブル3
0は、超電導コイルの場合と比較して、巻線されていな
いために自己磁場だけを考えればよいために、電流分布
均一化のための設計が容易である。また、空間的な自由
度が大きいために、接続部分に別途クライオスタット1
4を設けることは容易である。尚、請求項2以降の手段
を適用した場合も、所定の効果が得られることは言うま
でもない。
Embodiment 20 FIG. 2 shows a twentieth embodiment of the present invention.
0 will be described. FIG. 20 shows an example in which the present invention is applied to a superconducting cable 30. Superconducting cable 3
A value of 0 is easier to design for uniforming the current distribution because it is not wound and only the self-magnetic field needs to be considered, as compared to the case of a superconducting coil. In addition, because of the large degree of spatial freedom, a separate cryostat 1
It is easy to provide 4. Incidentally, it is needless to say that a predetermined effect can be obtained even when the means of claim 2 or later is applied.

【0081】[0081]

【発明の効果】以上説明したように、本発明によれば、
並列超電導線路、特に多重撚り超電導導体の電流分布を
均一化することができるという効果を奏する。
As described above, according to the present invention,
There is an effect that the current distribution of the parallel superconducting line, particularly the multi-stranded superconducting conductor, can be made uniform.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1に係る超電導装置を示す概観
図である。
FIG. 1 is a schematic view showing a superconducting device according to a first embodiment of the present invention.

【図2】本発明の実施例2に係る超電導装置を示す概観
図である。
FIG. 2 is a schematic view illustrating a superconducting device according to a second embodiment of the present invention.

【図3】本発明の実施例3に係る超電導装置を示す概観
図である。
FIG. 3 is a schematic view illustrating a superconducting device according to a third embodiment of the present invention.

【図4】本発明の実施例4に係る超電導装置を示す概観
図である。
FIG. 4 is a schematic view illustrating a superconducting device according to a fourth embodiment of the present invention.

【図5】本発明の実施例5に係る超電導装置を示す概観
図である。
FIG. 5 is a schematic view illustrating a superconducting device according to a fifth embodiment of the present invention.

【図6】本発明の実施例6に係る超電導装置を示す概観
図である。
FIG. 6 is a schematic view illustrating a superconducting device according to a sixth embodiment of the present invention.

【図7】本発明の実施例7に係る超電導装置を示す概観
図である。
FIG. 7 is a schematic view illustrating a superconducting device according to a seventh embodiment of the present invention.

【図8】本発明の実施例8に係る超電導装置を示す概観
図である。
FIG. 8 is a schematic view illustrating a superconducting device according to an eighth embodiment of the present invention.

【図9】本発明の実施例9に係る超電導装置を示す概観
図である。
FIG. 9 is a schematic view illustrating a superconducting device according to a ninth embodiment of the present invention.

【図10】本発明の実施例10に係る超電導装置を示す
概観図である。
FIG. 10 is a schematic diagram illustrating a superconducting device according to a tenth embodiment of the present invention.

【図11】本発明の実施例11に係る超電導装置を示す
概観図である。
FIG. 11 is a schematic view showing a superconducting device according to Embodiment 11 of the present invention.

【図12】本発明の実施例12に係る超電導装置を示す
概観図である。
FIG. 12 is a schematic view illustrating a superconducting device according to a twelfth embodiment of the present invention.

【図13】本発明の実施例13に係る超電導装置を示す
概観図である。
FIG. 13 is a schematic view showing a superconducting device according to Embodiment 13 of the present invention.

【図14】本発明の実施例14に係る超電導装置を示す
概観図である。
FIG. 14 is a schematic diagram showing a superconducting device according to Embodiment 14 of the present invention.

【図15】本発明の実施例15に係る超電導装置を示す
概観図である。
FIG. 15 is a schematic view showing a superconducting device according to Embodiment 15 of the present invention.

【図16】本発明の実施例16に係る超電導装置を示す
概観図である。
FIG. 16 is a schematic diagram showing a superconducting device according to Embodiment 16 of the present invention.

【図17】本発明の実施例17に係る超電導装置を示す
概観図である。
FIG. 17 is a schematic diagram showing a superconducting device according to Embodiment 17 of the present invention.

【図18】本発明の実施例18に係る超電導装置を示す
概観図である。
FIG. 18 is a schematic diagram showing a superconducting device according to Example 18 of the present invention.

【図19】本発明の実施例19に係る超電導装置を示す
概観図である。
FIG. 19 is a schematic diagram showing a superconducting device according to Embodiment 19 of the present invention.

【図20】本発明の実施例20に係る超電導装置を示す
概観図である。
FIG. 20 is a schematic diagram illustrating a superconducting device according to a twentieth embodiment of the present invention.

【図21】超電導並列回路図である。FIG. 21 is a superconducting parallel circuit diagram.

【図22】超電導並列回路の等価回路を示す回路図であ
る。
FIG. 22 is a circuit diagram showing an equivalent circuit of a superconducting parallel circuit.

【図23】本発明の従来例を示す回路図である。FIG. 23 is a circuit diagram showing a conventional example of the present invention.

【図24】本発明の従来例を示す概観図である。FIG. 24 is a schematic view showing a conventional example of the present invention.

【図25】撚り乱れのある3×3撚り超電導導体の電流
分布の計算結果の一例である。
FIG. 25 is an example of a calculation result of a current distribution of a 3 × 3 twisted superconducting conductor having twisting disorder.

【図26】本発明の実施例1の3×3撚り超電導導体の
電流分布の計算結果の一例である。
FIG. 26 is an example of a calculation result of a current distribution of the 3 × 3 stranded superconducting conductor according to the first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 並列超電導線路 2 超電導線路 3 電源 4 磁気回路 5 電気抵抗 6 電気的接触部 7 接続部 8 超電導撚り線導体 9 超電導素線 10 超電導素線束 11 並列電気抵抗 12 超電導コイル 13 液体ヘリウム 14 クライオスタット 15 3×3撚り超電導導体 16 パワーリード 17 超電導素線を束ねて巻回したコイル 18 磁性体パイプ 19 磁性体シート 20 長手方向に開口部を有する管状磁性体 21 磁性体栓 22 臨界電流が既知の超電導線 23 臨界電流が既知の完全安定化超電導線 24 ヒートシンク 25 絶縁被覆を除去した箇所 26 サンドブラスト 27 低融点金属 28 低融点金属浴 29 1次撚り超電導素線束 30 超電導ケーブル 31 絶縁被覆 32 撚線装置 風 熱風 i 電流 B 磁界 φ 磁束 L* 超電導線路の自己インダクタンス M** 超電導線路間の相互インダクタンス 1p1 1次撚りの撚りピッチ 1p2 2次撚りの撚りピッチDESCRIPTION OF SYMBOLS 1 Parallel superconducting line 2 Superconducting line 3 Power supply 4 Magnetic circuit 5 Electric resistance 6 Electric contact part 7 Connection part 8 Superconducting twisted conductor 9 Superconducting element wire 10 Superconducting element bundle 11 Parallel electric resistance 12 Superconducting coil 13 Liquid helium 14 Cryostat 15 3 × 3 twisted superconducting conductor 16 Power lead 17 Coil wound by bundling superconducting wires 18 Magnetic pipe 19 Magnetic sheet 20 Tubular magnetic body having an opening in the longitudinal direction 21 Magnetic plug 22 Superconducting wire whose critical current is known 23 Fully stabilized superconducting wire with a known critical current 24 Heat sink 25 Location where insulating coating is removed 26 Sand blast 27 Low melting point metal 28 Low melting point metal bath 29 Primary stranded superconducting element bundle 30 Superconducting cable 31 Insulating coating 32 Twisting wire Wind Hot air self inductor of the i current B magnetic field φ flux L * superconducting line Mutual inductance 1 p1 1 primary twist twisting pitch 1 p2 2 primary twist twisting pitch between chest M ** superconducting line

───────────────────────────────────────────────────── フロントページの続き (72)発明者 妹尾 和威 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 守田 正夫 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Kazutake Senoo 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsui Electric Co., Ltd. (72) Masao Morita 2- 2-3 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】多重撚りされた超電導導体の、各々の超電
導素線束から1又は複数本の超電導素線を選択し、別の
多重撚り超電導導体の一つの超電導素線束を構成する超
電導素線に連結させて転置を行ったことを特徴とする超
電導装置。
1. A superconducting wire constituting one superconducting wire bundle of another multi-twisted superconducting conductor by selecting one or a plurality of superconducting wires from each superconducting wire bundle of a multi-twisted superconducting conductor. A superconducting device characterized by being connected and transposed.
【請求項2】多重撚りされた超電導導体の、各々の超電
導素線束から1又は複数本の超電導素線を選択して束ね
てなるものに抵抗素子が直列に接続されていることを特
徴とする超電導装置。
2. A multi-twisted superconducting conductor, wherein one or more superconducting wires are selected and bundled from each superconducting wire bundle, and a resistance element is connected in series. Superconducting device.
【請求項3】多重撚りされた超電導導体の、各々の超電
導素線束から1又は複数本の超電導素線を選択して束ね
てなるものにインダクタンス素子が直列に接続されてい
ることを特徴とする超電導装置。
3. The multi-twisted superconducting conductor, wherein one or more superconducting wires are selected and bundled from each superconducting wire bundle, and an inductance element is connected in series. Superconducting device.
【請求項4】超電導撚り線導体の、一部において1又は
複数本の超電導素線ごとに、管状の磁性体を備え、該管
状磁性体を備えた範囲において該1本又は複数本の超電
導素線の自己インダクタンスが大とされていることを特
徴とする超電導装置。
4. A superconducting stranded wire conductor comprising a tubular magnetic body for every one or a plurality of superconducting element wires in a part, and the one or more superconducting elements in a range provided with the tubular magnetic substance. A superconducting device characterized in that the wire has a large self-inductance.
【請求項5】並列超電導線路に対して、所定の臨界電流
を有し、かつ前記並列超電導線路を構成する超電導線の
1又は複数本分の臨界電流よりも小さい、他の超電導線
が、1又は複数の該超電導素線にそれぞれ直列に備えら
れており、前記臨界電流が既知の超電導線に対して並列
に電気抵抗が備えられていることを特徴とする超電導装
置。
5. A superconducting wire having a predetermined critical current with respect to the parallel superconducting line and having a smaller critical current than one or more superconducting wires constituting the parallel superconducting line. Alternatively, the superconducting device is provided in series with a plurality of the superconducting wires, and an electric resistance is provided in parallel with the superconducting wire whose critical current is known.
【請求項6】並列超電導線路に対して、臨界電流が既知
で、かつ前記並列超電導線路を構成する超電導線の1又
は複数本分の臨界電流より小さい完全安定化超電導線
が、1又は複数本の該超電導線にそれぞれ直列に備えら
れていることを特徴とする超電導装置。
6. One or more fully-stabilized superconducting wires whose critical current is known and which is smaller than the critical current of one or more superconducting wires constituting the parallel superconducting lines are provided for the parallel superconducting lines. Wherein the superconducting wires are provided in series with each other.
【請求項7】多重撚りされた超電導導体の、各々の超電
導素線束から1又は複数本の超電導素線を選択し、束ね
たものに、臨界電流が既知の超電導線が直列に備えられ
ていることを特徴とする超電導装置。
7. One or more superconducting wires of a multi-twisted superconducting conductor are selected from each superconducting wire bundle, and the bundle is provided with a superconducting wire having a known critical current in series. A superconducting device, characterized in that:
【請求項8】超電導撚り線導体の、超電導素線の絶縁被
覆を一部取り除き、その部分が電気的に隣接超電導素線
と接触している超電導装置において、 絶縁被覆を取り除き電気的に一部接触させる箇所を、低
次撚り超電導素線束のみに設けたことを特徴とした超電
導装置。
8. A superconducting device in which a superconducting strand of a superconducting stranded wire conductor is partially removed and a portion of which is electrically in contact with an adjacent superconducting wire, wherein the insulating covering is removed and partially electrically connected. A superconducting device characterized in that the contacting portion is provided only in the low-order twisted superconducting element bundle.
【請求項9】超電導撚り線導体の、超電導素線の絶縁被
覆を一部取り除き、その部分が電気的に隣接超電導素線
と接触している超電導装置において、 撚り線製作工程において絶縁被覆を除去することを特徴
とする超電導装置の製造方法。
9. In a superconducting device in which a superconducting strand of a superconducting stranded wire is partially removed and the portion is electrically in contact with an adjacent superconducting strand, the insulating covering is removed in a stranded wire manufacturing process. A method of manufacturing a superconducting device.
【請求項10】超電導撚り線導体の、超電導素線の絶縁
被覆を一部取り除き、その部分が電気的に隣接超電導素
線と接触しており、絶縁被覆を取り除き電気的に一部接
触させる箇所を、低次撚り超電導素線束のみに設けた超
電導装置の製造方法において、 融点が絶縁被覆の耐熱温度以下の低融点金属浴に、前記
超電導線を通すことにより絶縁被覆を除去した部分が低
融点金属によって接合されていることを特徴とする超電
導装置の製造方法。
10. A portion of a superconducting twisted wire conductor in which a part of an insulating coating of a superconducting element wire is removed, and that part is electrically in contact with an adjacent superconducting element wire, and the insulating coating is removed to make a partial electric contact. The method of manufacturing a superconducting device provided only in a low-twisted superconducting element wire bundle, wherein the portion where the insulating coating is removed by passing the superconducting wire through a low melting metal bath whose melting point is lower than the heat resistant temperature of the insulating coating is low melting point. A method for manufacturing a superconducting device, wherein the superconducting device is joined by a metal.
【請求項11】超電導撚り線導体の、超電導素線の絶縁
被覆を一部取り除き、その部分が電気的に隣接超電導素
線と接触して、撚り線製作工程において絶縁被覆を除去
してなる超電導装置の製造方法において、 融点が絶縁被覆の耐熱温度以下の低融点金属浴に、前記
超電導線を通すことにより絶縁被覆を除去した部分が低
融点金属によって接合されていることを特徴とする超電
導装置の製造方法。
11. A superconducting superconducting stranded wire conductor, wherein a part of an insulating coating of a superconducting element wire is removed, and the part is electrically contacted with an adjacent superconducting element wire to remove the insulating coating in a stranded wire manufacturing process. A superconducting device, characterized in that a portion where the insulating coating is removed by passing the superconducting wire through a low-melting metal bath whose melting point is not higher than the heat-resistant temperature of the insulating coating is joined by the low-melting metal. Manufacturing method.
【請求項12】超電導撚り線導体を構成する超電導素線
又は超電導素線束同士を低融点金属にて接続する際に、
接続した後で余分な低融点金属を熱風でとばすことを特
徴とする超電導装置の製作方法。
12. When superconducting wires or superconducting wire bundles constituting a superconducting twisted wire conductor are connected to each other with a low melting point metal,
A method for manufacturing a superconducting device, wherein excess low melting point metal is blown off with hot air after connection.
JP28028896A 1996-10-01 1996-10-01 Superconducting device Expired - Fee Related JP3705309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28028896A JP3705309B2 (en) 1996-10-01 1996-10-01 Superconducting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28028896A JP3705309B2 (en) 1996-10-01 1996-10-01 Superconducting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005015998A Division JP2005129549A (en) 2005-01-24 2005-01-24 Superconducting device and manufacturing method the same

Publications (2)

Publication Number Publication Date
JPH10106364A true JPH10106364A (en) 1998-04-24
JP3705309B2 JP3705309B2 (en) 2005-10-12

Family

ID=17622907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28028896A Expired - Fee Related JP3705309B2 (en) 1996-10-01 1996-10-01 Superconducting device

Country Status (1)

Country Link
JP (1) JP3705309B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311792A (en) * 2006-05-19 2007-11-29 General Electric Co <Ge> Low ac loss single filament superconducting conductor for superconducting magnet, and method of manufacturing same
EP2634779A1 (en) * 2012-03-01 2013-09-04 Nexans System with a tri-phase superconducting electric transfer element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311792A (en) * 2006-05-19 2007-11-29 General Electric Co <Ge> Low ac loss single filament superconducting conductor for superconducting magnet, and method of manufacturing same
EP2634779A1 (en) * 2012-03-01 2013-09-04 Nexans System with a tri-phase superconducting electric transfer element

Also Published As

Publication number Publication date
JP3705309B2 (en) 2005-10-12

Similar Documents

Publication Publication Date Title
US9293240B2 (en) Low inductance electrical transmission cable
JP3705309B2 (en) Superconducting device
Verhaege et al. A new class of AC superconducting conductors
JP5008112B2 (en) Radial collective conductor
JPH08264039A (en) Superconducting cable
JP3805946B2 (en) Superconducting cable power transmission device and drift prevention method using the same
JP2005129549A (en) Superconducting device and manufacturing method the same
JP3754879B2 (en) Superconducting cable analysis method
JP3943171B2 (en) Superconducting device
JP3698623B2 (en) Superconducting cable
JP3349179B2 (en) Superconducting busbar conductor
JPH097819A (en) Superconductive device
JP2003007150A (en) Minimizing method of alternating current loss of high- temperature superconductive wire
JPH0963367A (en) Superconducting stranded wire conductor
JPS63198309A (en) High frequency transformer
JPH08153547A (en) Cable-in-conduit conductor
JP3628589B2 (en) Superconducting cable
JP3706909B2 (en) Superconductor leveling circuit
JPH10321058A (en) Superconducting conductor for alternating current
JPH08222428A (en) Persistent current switch
JP2001229750A (en) Superconducting cable
JP3145173B2 (en) Superconducting stranded wire and superconducting cable, and power equipment winding using them
JP2002133954A (en) Superconductor and assembly type superconductor
JPH11126520A (en) Superconductor and connection structure of superconductor
JP2561839B2 (en) Low AC resistance conductor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050719

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees