JP2561839B2 - Low AC resistance conductor - Google Patents

Low AC resistance conductor

Info

Publication number
JP2561839B2
JP2561839B2 JP62157791A JP15779187A JP2561839B2 JP 2561839 B2 JP2561839 B2 JP 2561839B2 JP 62157791 A JP62157791 A JP 62157791A JP 15779187 A JP15779187 A JP 15779187A JP 2561839 B2 JP2561839 B2 JP 2561839B2
Authority
JP
Japan
Prior art keywords
fan
strand
wire
conductor
shaped segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62157791A
Other languages
Japanese (ja)
Other versions
JPS643905A (en
Inventor
調 秋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP62157791A priority Critical patent/JP2561839B2/en
Publication of JPS643905A publication Critical patent/JPS643905A/en
Application granted granted Critical
Publication of JP2561839B2 publication Critical patent/JP2561839B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は低交流抵抗導体に関するものである。The present invention relates to a low AC resistance conductor.

(従来技術とその問題点) 交流電流を流す導体においては、導体の断面積が大き
くなると表皮効果により中心から導体の表面に行くに伴
い電流密度が大、即ち電流が導体表面に近接して流れる
ようになり、実効的な通電抵抗である交流抵抗が大きく
なる。このため通電電流が大きく導体の断面積を大とせ
ざるを得ない送電用電力ケーブル等においては必然的に
送電損失が大となる。
(Prior art and its problems) In a conductor that carries an alternating current, when the cross-sectional area of the conductor increases, the current density increases as the surface effect of the conductor increases from the center to the surface of the conductor, that is, the current flows near the conductor surface. As a result, the AC resistance, which is the effective energization resistance, increases. For this reason, the power transmission loss is inevitably large in a power cable for power transmission or the like in which the current to be passed is large and the cross-sectional area of the conductor must be large.

そこでこの欠点を除去するため電力ケーブルにおいて
は第1図(a)に示すように、導体を複数本の素線1を
円形に束ねたり、第1図(b)のように素線1を束ねた
ものを扇形に整形したのち、これを更に円形に組合わせ
て形成すると同時に、素線1として絶縁したものを用い
て各素線の分担電流を均一化しようとする手段が多く採
用されている。
Therefore, in order to eliminate this defect, in a power cable, as shown in FIG. 1 (a), a plurality of conductors 1 are bundled in a circle, or as shown in FIG. 1 (b), the strands 1 are bundled. There is often adopted a means of shaping a fan into a fan shape and then further combining them into a circular shape to form the wires 1 at the same time, and using an insulated wire as the wire 1 to make the shared current of each wire uniform. .

しかし、素線に絶縁を施しても通電時に生ずる素線個
々の自己および相互インダクタンスは隣接する他の素線
に基づく近接効果によって異なり、各素線の電流分担を
決定するインピーダンスが導体の表面に近い素線ほど小
となる。このため電流分担を均一化することができない
もので、その影響は各素線の電流分担を決定するインピ
ーダンスのうちの抵抗分を小さくする超電導線程大き
く、交流抵抗は素線が絶縁されない導体のそれと大差が
ない。従ってこのままでは超電導技術の恩恵を充分に受
けることができない。
However, even if the strands are insulated, the self and mutual inductances of individual strands generated when energized differ depending on the proximity effect due to other neighboring strands, and the impedance that determines the current sharing of each strand is The closer the strand is, the smaller it is. For this reason, the current sharing cannot be made uniform, and the effect is greater for superconducting wires that reduce the resistance component of the impedance that determines the current sharing for each strand, and the AC resistance is that of a conductor whose strands are not insulated. There is not much difference. Therefore, as it is, the benefits of superconducting technology cannot be fully obtained.

(発明の目的) 本発明は第1図(b)を参照して説明した導体、即ち
複数本の絶縁された素線を扇形に束ねて整形したのち、
これら複数筒を円形に組合わせて形成した導体構造を有
効に利用して、各素線の分担電流を均一化した低交流抵
抗導体を提供し、これにより従来より損失の少ない常電
導や超電導電力ケーブルの実現を図りうるようにしたも
のである。
(Object of the Invention) The present invention, after the conductor described with reference to FIG. 1 (b), that is, a plurality of insulated wires are bundled into a fan shape and shaped,
By effectively utilizing the conductor structure formed by combining these multiple cylinders in a circular shape, we provide a low AC resistance conductor with a uniform current sharing of each element wire. This is a cable that can be realized.

(問題点を解決するための本発明の手段) 第1図(b)によって前記した所謂セグメント導体
は、第2図(a)のように直線状の1本の中心素線1aの
周囲に、所要層数だけ素線層1b,1c……を順次螺旋状に
撚り合わせたものを、第2図(b)のように扇形に整形
したのち、その上に絶縁紙2を巻いて扇形セグメント3
を形成する。次にこれを第1図(b)のように円形に組
合わせたのち、その上に絶縁紙その他を巻くことによ
り、束ねて構成される。即ち、本発明では、扇形セグメ
ント3は、絶縁した複数の素線をその中心素線を中心に
して螺旋状に所要層数に撚り合わせて扇形に整形して形
成されており、取扱いを簡便にするために絶縁紙2が巻
かれている例が示されている。
(Means for Solving the Problems of the Present Invention) The so-called segment conductor described above with reference to FIG. 1 (b) has a straight central wire 1a as shown in FIG. 2 (a). The strand layers 1b, 1c, etc. are twisted in a spiral shape in the required number of layers and shaped into a fan shape as shown in Fig. 2 (b).
To form. Next, this is assembled into a circular shape as shown in FIG. 1 (b), and then insulating paper or the like is wound on it to form a bundle. That is, in the present invention, the fan-shaped segment 3 is formed by spirally twisting a plurality of insulated wires around the central wire in a required number of layers and shaping them into a fan shape, which facilitates handling. An example in which the insulating paper 2 is wound in order to do so is shown.

この従来例の扇形セグメントの素線の層構成は、中心
素線1aが扇形セグメント3の中心、即ち第2図(b)に
示すように、中心素線1aを通る円周線から表面までの間
に位置する素線層数N1と、円周線から内面までの間に位
置する素線層数N2を同数にすると共に、扇形セグメント
の内面の位置を0%とし、表面の位置を200%とした場
合、中心素線1aを100%の点に位置するように整形する
のが一般である。
In this layered structure of the fan-shaped segment wires of the conventional example, the center wire 1a is at the center of the fan-shaped segment 3, that is, from the circumference line passing through the center wire 1a to the surface as shown in FIG. 2 (b). The number of strand layers N 1 located in between is the same as the number of strand layers N 2 located between the circumferential line and the inner surface, and the position of the inner surface of the fan-shaped segment is 0%, and the surface position is When it is set to 200%, it is common to shape the central wire 1a so that it is located at the 100% point.

しかしながら、本発明者は研究の結果、この従来例の
扇形セグメントの層構成でも、各素線の分担電流に不均
一が生じる原因があることを明らかにしたものである。
即ち、第3図のように流通電流Iにもとづく発生磁界B
により扇形セグメント断面に生ずる起電力の分布は、下
に凸な線Eのように示され、その超電力の平均値は点M
に位置することを解明した。
However, as a result of research, the present inventor has clarified that even in the layered structure of the fan-shaped segment of this conventional example, there is a cause of non-uniformity in the shared current of each strand.
That is, the generated magnetic field B based on the circulating current I as shown in FIG.
The distribution of the electromotive force generated in the cross section of the fan-shaped segment is indicated by a downward convex line E, and the average value of its superpower is point M.
It was clarified that it is located in.

これは起電力の分布が螺旋状に撚り合わせた導体の表
面側で大きく内面側で小さく、かつ下に凸な分布形状で
あるため、導体全体の起電力の平均値は、中心素線1aの
位置よりも表面側に存在することになる。即ち、各素線
に流れる電流の大きさは、長さ方向で平均した起電力に
比例するため、各扇形セグメントの中心素線1aを中心と
してその外側の素線層ほど大きな電流が流れ、分担電流
の不均一を生ずるのである。従って、前述の如く第2図
(b)に示すように中心素線1aを100%の点に位置する
ように整形した場合は、各素線の分担電流間で不均一を
生じ、実効的な通電抵抗である交流抵抗が大きくなると
いう問題がある。
This is because the distribution of electromotive force is large on the surface side of the spirally twisted conductor, small on the inner surface side, and has a convex shape downward, so the average value of the electromotive force of the entire conductor is It will be on the front side of the position. That is, since the magnitude of the current flowing in each strand is proportional to the electromotive force averaged in the length direction, a larger current flows around the central strand 1a of each fan-shaped segment, and a larger current flows to the strand layers. This causes non-uniform current flow. Therefore, as described above, when the central wire 1a is shaped so as to be located at the point of 100% as shown in FIG. 2 (b), non-uniformity occurs between the shared currents of the respective wires, resulting in an effective There is a problem that the AC resistance, which is the energization resistance, increases.

本発明は、各扇形セグメントの中心素線1aの位置を、
中心素線1aの内面側と表面側との素線層数を同数としな
から、扇形セグメントの中心位置より表面側に存在する
起電力分布の平均値点Mの近傍に位置させるようにした
ものである。これにより、各絶縁された素線の長さ方向
で平均した起電力を均一化し、各素線に流れる電流の大
きさの平均化が可能になったものである。
The present invention, the position of the center strand 1a of each fan-shaped segment,
Since the number of strand layers on the inner surface side and the front surface side of the central strand 1a is not the same, it is arranged near the mean value point M of the electromotive force distribution existing on the surface side from the center position of the fan-shaped segment. Is. As a result, the electromotive force averaged in the length direction of each insulated wire is made uniform, and the magnitude of the current flowing through each wire can be averaged.

即ち、各扇形セグメントの起電力の分布状態が下に凸
な分布であるため、その起電力の平均値は、100%の位
置よりも表面側の点にある。従って、この平均値の点に
層状構造の扇形セグメントの中心素線1aを位置させれ
ば、内面から表面までの各層に属する絶縁された各素線
の長さ方向で平均した起電力は、中心素線1aの起電力に
近くなり、異なる層に属する素線の長さ方向平均起電力
の差は小さくなる。各素線に流れる電流の大きさは、長
さ方向平均起電力に比例するので、各層に属する素線に
流れる電流の大きさの差は小さくなり、各素線の分担電
流の均一化が達成できる。
That is, since the distribution of the electromotive force of each fan-shaped segment is a downwardly convex distribution, the average value of the electromotive force is at a point closer to the surface than the position of 100%. Therefore, if the central strand 1a of the fan-shaped segment of the layered structure is located at the point of this average value, the electromotive force averaged in the length direction of each insulated strand belonging to each layer from the inner surface to the surface is the center. It becomes close to the electromotive force of the strand 1a, and the difference in the average longitudinal electromotive force of the strands belonging to different layers becomes small. Since the magnitude of the current flowing in each strand is proportional to the average electromotive force in the length direction, the difference in the magnitude of the current flowing in the strands belonging to each layer becomes small, and the sharing of the shared current of each strand is achieved. it can.

次に本発明の実施例について説明する。 Next, examples of the present invention will be described.

(実施例) 第5図は、各扇形セグメントを、絶縁された直径が0.
8mmφの素線を16層撚り合わせて構成したもので、その
全体構成は外径90mmφ,内径40mmφ,導体断面積4000mm
2の8セグメント分割導体として構成されている。この
各扇形セグメントの素線1の層構成は、上側セグメント
に代表例として示した一部断面図ように、扇型セグメン
トの中央部分の素線層の素線1は断面図で表し、その周
囲から扇形セグメントの外周部までの素線層は、扇形枠
の略図で表し複数層あることを示してある。そして、こ
の各素線層は扇形枠で示しているように、中心素線1aの
周囲に順次螺旋状にかつ層状に撚り合わせる際、中心素
線1aより表面側は各素線層間を密とし、、中心素線1aよ
り内面側は各素線層間を粗とし構成したものである。こ
のように各扇形セグメントの素線層を構成することによ
り、第5図に示した例では中心素線1aの位置を130%の
点に位置させた導体構造としている。
(Example) FIG. 5 shows that each fan-shaped segment has an insulated diameter of 0.
It is composed by twisting 16 layers of 8mmφ strands, and the overall structure is 90mmφ in outer diameter, 40mmφ in inner diameter, and conductor cross section area 4000mm.
It is configured as a 2- segment 8-segment conductor. The layer structure of the wire 1 of each fan-shaped segment is shown in a cross-sectional view of the wire 1 of the wire layer in the central portion of the fan-shaped segment, as shown in the partial cross-sectional view shown in the upper segment as a representative example. The strand layers from to the outer peripheral portion of the fan-shaped segment are shown in a schematic diagram of a fan-shaped frame and are shown to have a plurality of layers. Then, as shown by the fan-shaped frame, each strand layer is twisted in a spiral and layered manner around the central strand 1a sequentially, and the strands between the strands are denser on the surface side than the central strand 1a. The inner surface side of the central strand 1a is configured by roughening the strand layers. By constructing the strand layer of each fan-shaped segment in this way, the conductor structure in which the position of the central strand 1a is located at a point of 130% in the example shown in FIG.

この層構造を構成する手段としては、中心素線1aより
内面側の素線層間に油含浸紙,プラスチック等の絶縁物
質を介在させて層間間隔を形成させ、中心素線1aより表
面側は撚り合わせる際に外側より圧力を加えて素線層間
が密着するように形成させるものである。
As a means for constructing this layer structure, an insulating material such as oil-impregnated paper or plastic is interposed between the strands on the inner surface side of the central strand 1a to form an interlayer gap, and the surface side of the central strand 1a is twisted. At the time of joining, pressure is applied from the outside so that the wire-wire layers are adhered to each other.

第4図は、第5図に示したように中心素線1aの位置を
122.5%(a)から135%(f)まで変化させ、各層を流
れる電流の大きさを計算により求めた結果を示した電流
密度の特性図で、内側の16が中心素線1aの電流密度を示
し、中心素線1aに近い素線層(内層)から遠い素線層
(外側)向けて数字が小さくなり、一番外側の素線層が
1の電流密度を示している。このように、中心素線の位
置が100%(第4図(a)参照)に近い程、外側の素線
層の素線の電流密度は大となり、132.5%(第4図
(e)参照)において各層の素線の電流密度がほぼ均一
化される。このことから、本発明による分担電流の均一
化効果の高いことが判る。
FIG. 4 shows the position of the center wire 1a as shown in FIG.
It is a characteristic diagram of the current density showing the result of calculating the magnitude of the current flowing through each layer by changing it from 122.5% (a) to 135% (f). The inner 16 indicates the current density of the central wire 1a. In the figure, the numbers are smaller from the wire layer (inner layer) closer to the central wire 1a toward the wire layer (outer side) farther away, and the outermost wire layer shows a current density of 1. Thus, the closer the position of the central wire is to 100% (see FIG. 4 (a)), the higher the current density of the wire in the outer wire layer becomes, and the current density of the wire is 132.5% (see FIG. 4 (e)). ), The current densities of the wires of each layer are almost equalized. From this, it is understood that the effect of equalizing the shared current according to the present invention is high.

また本発明を適用することにより、通常の銅或いはア
ルミニウムを液体窒素で−196℃程度に冷却した場合に
得られる高導電率を利用して、大電流を流す導体断面積
4000mm2程度の素線絶縁セグメント分割導体の場合に
は、交流抵抗を従来の場合と比較して1/3程度に低減で
きる。また超電導線を束ねて導体を構成した場合にはそ
れ以上の効果が期待できる。
Further, by applying the present invention, by utilizing the high conductivity obtained when ordinary copper or aluminum is cooled to about -196 ° C. with liquid nitrogen, a conductor cross-sectional area through which a large current flows
In the case of a wire-insulated segmented conductor of about 4000 mm 2 , the AC resistance can be reduced to about 1/3 that of the conventional case. Further, when a conductor is formed by bundling superconducting wires, further effects can be expected.

(発明の効果) 絶縁された素線を扇形に整形したセグメントを円形に
組合わせたセグメント導体において、その中心素線の位
置を扇形セグメントの中心位置より表面側に配置するこ
とにより、各素線を流れる電流の大きさを均一化して交
流通電抵抗を、単に絶縁素線を束ねただけの場合に比較
して遥かに小さくできる。従って本発明によれば損失の
少ない常電導や超電導電力ケーブル等の大電流用導体を
実現できる。
(Effect of the Invention) In a segment conductor in which segments formed by shaping an insulated wire into a fan shape are combined in a circle, by arranging the position of the center wire on the surface side from the center position of the fan-shaped segment, each wire It is possible to make the magnitude of the current flowing through the electrodes uniform and to make the alternating current resistance much smaller than in the case of simply bundling the insulating wires. Therefore, according to the present invention, it is possible to realize a high-current conductor such as a normal conductor or a superconducting power cable with less loss.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は従来の導体断面図およびその形成方
法の説明図、第3図は起電力分布の説明図、第4図は本
発明における中心素線の位置による各素線層の素線の電
流密度の特性図、第5図は本発明の一実施例による導体
の一部断面図である。 1……素線、1a……中心素線、1b,1c……素線層、2…
…絶縁紙、3……扇形セグメント。
1 and 2 are cross-sectional views of a conventional conductor and an explanatory view of a method for forming the same, FIG. 3 is an explanatory view of an electromotive force distribution, and FIG. 4 is a view of each strand layer depending on a position of a central strand in the present invention. FIG. 5 is a partial cross-sectional view of a conductor according to an embodiment of the present invention. 1 ... strand, 1a ... central strand, 1b, 1c ... strand layer, 2 ...
… Insulating paper, 3… Fan-shaped segment.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】絶縁した複数の素線をその中心素線を中心
にして螺旋状に所要層数に撚り合わせて扇形に整形して
扇形セグメントを形成し、該扇形セグメントを複数合体
して円形に組合わせてセグメント導体を構成し、前記各
扇形セグメントの中心素線位置を、該中心素線の表面側
と内面側の素線層数を同数としながら、表面側の素線層
の層間を密にし、内面側の素線層の層間を粗にして、扇
形セグメントの中心位置より表面側の起電力分布の平均
値点付近に位置するように構成した低交流抵抗導体。
1. A fan-shaped segment is formed by spirally twisting a plurality of insulated wires around the central wire in a required number of layers to form a fan-shaped segment, and a plurality of the fan-shaped segments are united to form a circular shape. To form a segment conductor, the center strand position of each fan-shaped segment, while the number of strand layers on the surface side and the inner face side of the center strand is the same, between the layers of the strand layer on the surface side. A low AC resistance conductor configured so as to be dense and to roughen the interlayer of the wire layer on the inner surface side so as to be located near the mean value point of the electromotive force distribution on the surface side from the center position of the fan-shaped segment.
JP62157791A 1987-06-26 1987-06-26 Low AC resistance conductor Expired - Lifetime JP2561839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62157791A JP2561839B2 (en) 1987-06-26 1987-06-26 Low AC resistance conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62157791A JP2561839B2 (en) 1987-06-26 1987-06-26 Low AC resistance conductor

Publications (2)

Publication Number Publication Date
JPS643905A JPS643905A (en) 1989-01-09
JP2561839B2 true JP2561839B2 (en) 1996-12-11

Family

ID=15657368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62157791A Expired - Lifetime JP2561839B2 (en) 1987-06-26 1987-06-26 Low AC resistance conductor

Country Status (1)

Country Link
JP (1) JP2561839B2 (en)

Also Published As

Publication number Publication date
JPS643905A (en) 1989-01-09

Similar Documents

Publication Publication Date Title
MXPA01008327A (en) A cable, a method of constructing a cable, and use of a cable.
KR20010006028A (en) Multi-wire sz and helical stranded conductor and method of forming same
JPH08335414A (en) Oxide superconducting wire and manufacture thereof
JP2960481B2 (en) Method for reducing eddy current in superconductor tape and superconductor device
JPH0822720A (en) Litz wire
JP2561839B2 (en) Low AC resistance conductor
US2187213A (en) Electric power cable
JPH08264039A (en) Superconducting cable
CN211125148U (en) Power cable insulated wire core with five-division conductor without central unit
JP2006331984A (en) Radial collective conductor
JPS596573Y2 (en) coaxial power cable
JP2001076537A (en) Composite conductor of dissimilar material for power cable
CN212084677U (en) Seven-core aluminum transposition electromagnetic wire
JP2001325837A (en) Superconducting cable
JPH0620523A (en) Conductor for power cable
JPH09102226A (en) Superconducting cable
JP3568744B2 (en) Oxide superconducting cable
JP3628589B2 (en) Superconducting cable
JP2997006B2 (en) Molded stranded wire
JP3705309B2 (en) Superconducting device
JPH0636329B2 (en) Superconducting conductor
JP3568767B2 (en) Superconducting cable and manufacturing method thereof
JPH06187849A (en) High-temperature superconducting cable
KR101620894B1 (en) Multi-segmental Conductor And Electric Power Cable Having The Same
JPH054265Y2 (en)