JPS62180910A - Superconductor - Google Patents

Superconductor

Info

Publication number
JPS62180910A
JPS62180910A JP61021940A JP2194086A JPS62180910A JP S62180910 A JPS62180910 A JP S62180910A JP 61021940 A JP61021940 A JP 61021940A JP 2194086 A JP2194086 A JP 2194086A JP S62180910 A JPS62180910 A JP S62180910A
Authority
JP
Japan
Prior art keywords
conductor
superconducting conductor
superconducting
handed
loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61021940A
Other languages
Japanese (ja)
Other versions
JPH0636329B2 (en
Inventor
黒田 邦茂
勝蔵 相原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61021940A priority Critical patent/JPH0636329B2/en
Publication of JPS62180910A publication Critical patent/JPS62180910A/en
Publication of JPH0636329B2 publication Critical patent/JPH0636329B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超電導導体に係り、荷に、パルス、又は交流用
に使用するに好適な大電流用の超電導導体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a superconducting conductor, and more particularly, to a large current superconducting conductor suitable for use in loads, pulses, or alternating current.

〔従来の技術〕[Conventional technology]

超電導導体間して、これまでに開発さ些た交流用の複合
多心超電導導体(以下、交流導体と呼ぶ)を例にとり、
従来I″f術を説明する。。
As an example of superconducting conductors, we take as an example a composite multicore superconducting conductor for AC (hereinafter referred to as AC conductor), which has been developed so far.
The conventional I″f technique will be explained.

、第5図に、従来の典型的な交流導体の断面構成を示す
。通常、交流導体1は、熱的にもdi遊気気的も、また
機械的にも安定叫を確C!ニーするために、熱的、dt
気気長良導体ある銅やフルミニウ、ムなどの常電4金4
と[j戊、ミ44体、そして交流撰文を低減するために
、これら超電導導体間に挿入された高抵抗金属とから概
略購成さ、れる。第5図(a)に示される交流導体1は
、第、5図(―)K示す極細雌化された頃電導フィラメ
ント(〜0.5μm直径、)4を多数本(〜14500
本)安定化材となる銅5の内に埋め八み、この外周にキ
ュプロニッケルのような高砥抗金46全1!!、覆した
超電導素線(以下素線とよぶ)2を外側【、そして、第
5図(c)に示す超電導電@2と同径の銅5にキュプロ
ニッケル6を被覆したダミー線3を内側て配置し、全体
をキュプロニッケル6、銅5、絶縁物7で3重に被覆し
て構成される(尚、このような構成の超電導導体は、特
開昭60−74307号公報に開示されている。)。こ
の交流導体1において、交流損失を低減するために、4
つの工夫がなされている。すなわち、(i)超電導フィ
ラメント4の1α径t 1−・t rn以下に極l細線
化し磁化(積層)損失を下げ、 (it)キュプロニッ
ケル6で交流導体1を微小領域に分割し。
, FIG. 5 shows a cross-sectional configuration of a typical conventional AC conductor. Normally, the AC conductor 1 ensures stability both thermally, diatically, and mechanically. to knee, thermal, dt
Regular electric current 4 metals such as copper, full miniu, and mu, which are good-natured conductors.
It is generally made up of 44 bodies, and a high-resistance metal inserted between these superconducting conductors to reduce AC interference. The AC conductor 1 shown in FIG. 5(a) has a large number of ultra-fine conductive filaments (~0.5 μm in diameter) 4 (~14,500 μm in diameter) as shown in FIG. 5(-)K.
Book) Embedded in copper 5, which serves as a stabilizing material, and surrounded by a highly abrasive metal 46 such as cupronickel, all in one! ! , the overturned superconducting strand (hereinafter referred to as strand) 2 is placed on the outside [and a dummy wire 3 made of copper 5 coated with cupronickel 6, which has the same diameter as the superconducting wire shown in Fig. 5(c) and cupronickel 6 is placed inside. The superconducting conductor having such a structure is disclosed in Japanese Patent Application Laid-open No. 74307/1983. ). In this AC conductor 1, in order to reduce AC loss, 4
Two improvements have been made. That is, (i) the superconducting filament 4 is made extremely thin to have a 1α diameter t 1−·t rn or less to reduce magnetization (lamination) loss, and (it) the AC conductor 1 is divided into minute regions using cupronickel 6.

交流d流(@界)の変化に伴なって誘起される渦電流の
発生を抑え、かつ、素線2どうし、ダミー線3どうし、
さらに素仲2とダミー線3間の電磁気的結合を阻止し、
01Dさらに交流導体1全体をツイストして、上記電磁
気的結合を更(C抑え、しかも、qφ素・礫2を外側に
、ダミー線3を内側に配置し、素線2を流れる又+!L
i流による交流磁界がダミー線3に印力目されないよう
に工夫されている。
It suppresses the generation of eddy currents induced by changes in the AC d current (@ field), and also between the strands 2 and between the dummy wires 3.
Furthermore, it prevents electromagnetic coupling between the wire 2 and the dummy wire 3,
01D Furthermore, the entire AC conductor 1 is twisted to further suppress the electromagnetic coupling (C), and the qφ element/gravel 2 is placed on the outside and the dummy wire 3 is placed on the inside, so that +!L flows through the element wire 2.
It is devised so that the alternating current magnetic field due to the i current is not applied to the dummy wire 3.

一方、安定ヰ全高めるために、銅がダミー線3として多
数包含されている。
On the other hand, in order to improve stability, a large number of copper wires are included as dummy wires 3.

この交流導体1の直径ば〜0.1)で、交流′電流容量
は磁界ITのもとで〜50Aであり、そして。
The diameter of this AC conductor 1 is ~0.1), the AC' current capacity is ~50 A under the magnetic field IT, and.

交流損失は50Hz、ITの交流磁界のもとて導体単位
体、漬(m3)当り〜105Wと計算されており、導体
単位長(m)当りに換算すると〜数mWの損失となる。
The AC loss is calculated to be ~105 W per conductor unit (m3) under an IT AC magnetic field at 50 Hz, and when converted to a conductor unit length (m), the loss is ~ several mW.

この交流導体1は、現状技術で最も良好な性能を有する
ものと考えられており。
This AC conductor 1 is considered to have the best performance in the current state of the art.

はマ技術限界にある。そして、st導フィラメント4を
筆紙線化する必要上、交流導体1の1M径と成流容凌を
必然的に小さくせざるを得ないという状況にある。
is at the limit of technology. Since it is necessary to convert the st conductor filament 4 into a brush wire, the 1M diameter and current flow capacity of the AC conductor 1 have to be reduced.

交流損失の少ない大成流の交流導体を開発するためには
、上記交流導体lを複数本束ねた、第6図に示すような
超6導撚線8′ (以下撚線とよぶ)が考えられる。撚
線構造の最大の欠点は、それを構成する交流導体1間に
電磁気的結合が生じ、これに伴なう結合損失が追加され
ることである。撚線8′で生ずる諸々の交流損失、例え
ば、超電導フィラメント4自体の磁化損失、銅5中の渦
電流損失、超電導フィラメント4間の結合損失、そして
問題の交流導体1間の結合損失などがあげられるが、そ
の中で交流導体1間の結合損失が最も大きい。
In order to develop a Taisei-style AC conductor with low AC loss, a super 6-conductor stranded wire 8' (hereinafter referred to as a stranded wire) as shown in Fig. 6, which is a bundle of multiple AC conductors l described above, can be considered. . The biggest drawback of the stranded wire structure is that electromagnetic coupling occurs between the alternating current conductors 1 constituting the stranded wire structure, resulting in additional coupling loss. Various AC losses occur in the stranded wire 8', such as magnetization loss of the superconducting filament 4 itself, eddy current loss in the copper 5, coupling loss between the superconducting filaments 4, and coupling loss between the AC conductors 1 in question. However, among them, the coupling loss between the AC conductors 1 is the largest.

なお、第6図中(a)は2重撚線、(b)は編組線、(
C)は成型撚線と呼ばれるものである。これら各撚線8
′において結合損失を低減する努力が続けられているが
、安定性と低交流損失をともに満足するものは見い出さ
れていない。
In addition, in Fig. 6, (a) is a double stranded wire, (b) is a braided wire, (
C) is what is called a shaped stranded wire. Each of these strands 8
Efforts have been made to reduce the coupling loss in ', but nothing has been found that satisfies both stability and low AC loss.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術において、超電導フィラメント4を填細線
化する必要性から、交流導体の電流容量を高めることが
困難な状況にある。また、大r[流父流導体を開発する
上で、結合損失を低減するための析しい□工夫が要求さ
れている。
In the prior art described above, it is difficult to increase the current capacity of the AC conductor due to the necessity of thinning the superconducting filament 4. In addition, in developing large r[flow conductors], analytical ideas are required to reduce coupling loss.

本錯明は上述の点に濫み成されたもので、その目的とす
るところは、交#、損失の低減をはかるとともに、実用
的な電流容量をもつ超電導導体を提供するKある。
The present invention has been developed based on the above-mentioned points, and its purpose is to provide a superconducting conductor having a practical current capacity as well as reducing cross current and loss.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明は常醒導体の外周に沿って複合多心超電導導体を
螺旋状に右巻きと左巻きの層が交互になるようをき付け
ることにより、所期の目的を達成するようになしたもの
である。
The present invention achieves the intended purpose by spirally applying a composite multicore superconducting conductor along the outer periphery of a normal conductor so that right-handed and left-handed layers are alternated. be.

〔作用〕[Effect]

即ち、撚りピッチを小さくすれば、撚線に印加される交
流磁界(gi東)の大部分は撚線と鎖交することなく素
通りし、結合損失は大幅に低減される。しかし、撚りピ
ッチを小さくすると、撚線自体が則長い単層ソレノイド
コイルを形成し、*!iIに電流を流したとき、磁束の
大部分は撚線内部に閉じ込められ、撚線の経“検する磁
界は高くなり。
That is, if the twisting pitch is made small, most of the alternating current magnetic field (gi east) applied to the twisted wires passes through without interlinking with the twisted wires, and the coupling loss is significantly reduced. However, when the twisting pitch is reduced, the twisted wires themselves form a regular long single-layer solenoid coil, *! When a current is passed through iI, most of the magnetic flux is confined within the stranded wire, and the magnetic field detected by the stranded wire becomes high.

撚1腺のインピーダンス(自己インダクタンス)、−i
著しく大きくなる。そこで、複合多心超電導導体を右巻
き、圧響きの、・侵が交互になるような撚線構造とする
ことにより、撚線内部の磁界を弱めることができ、撚線
のインピーダンスの低減と同時に就流容電の増加を図る
ことができる。
Impedance of twisted gland (self-inductance), -i
becomes significantly larger. Therefore, by creating a composite multi-core superconducting conductor with a stranded wire structure in which right-handed winding, resonant, and percussion alternate, the magnetic field inside the stranded wire can be weakened, and at the same time, the impedance of the stranded wire can be reduced. It is possible to increase the current capacitance.

〔実施例〕〔Example〕

以下1図面の実癩例に基づいて本発明の詳細な説明する
。尚、符号は従来と同一のものは同符号を使用する。
The present invention will be described in detail below based on a practical example shown in one drawing. Incidentally, the same reference numerals are used for the same parts as in the past.

第1図(a)、 (b)に本発明の超電導導体の一実施
例を示す。
FIGS. 1(a) and 1(b) show an embodiment of the superconducting conductor of the present invention.

本図は本発明の基本概念として、断面が円形をなす4会
の撚線方式の交流用超電導導体8(以下撚線導体とよぶ
)の構造を示したものである。該図の妬く、中心部に配
置された芯となる常電導体9は2第5図に示した交流導
体lの中心部構造と同様、ダミー腺3の集合体とするこ
とが良策であるが、ここではその詳細【ついては問題に
しないことにする。本実施例では、常電導体9の周囲に
This figure shows the structure of an AC superconducting conductor 8 (hereinafter referred to as a stranded conductor) of a four-way stranded wire type having a circular cross section, as the basic concept of the present invention. As shown in the figure, it is a good idea to make the core normal conductor 9 located in the center a collection of dummy glands 3, similar to the central structure of the AC conductor l shown in Figure 5. , I will not discuss the details here. In this embodiment, around the normal conductor 9.

第5図で示したような交流導体1を1本持ちで、巻線ピ
ッチが交流導体1の直径に等しくなるよう、すなわち密
て左伜きに一層巻きつけ、その外側にもう一本の交流導
体lで、同様に密に右巻きに一層まきつけ、最外周に絶
縁物7を被覆してrFfi電導導電導横木している。こ
の図では電流容量は単に2倍になっただけであるが、交
流損失、こと例結合直流による損失を最小にすることが
可能である。
Take one AC conductor 1 as shown in Figure 5, wrap it one layer tightly to the left so that the winding pitch is equal to the diameter of the AC conductor 1, and then wrap another AC conductor on the outside. The conductor 1 is similarly wrapped tightly in a right-handed manner, and the outermost periphery is coated with an insulator 7 to form an rFfi conductive conductive crosspiece. Although the current capacity is simply doubled in this figure, it is possible to minimize alternating current losses, such as losses due to coupled direct current.

いうまでもなく、層数は最低2以上でなくてはならない
Needless to say, the number of layers must be at least two or more.

第2図(a)、 (b)に本発明の42の実施例を示す
FIGS. 2(a) and 2(b) show 42 embodiments of the present invention.

第1図のように、各・傷を一本持ちで巻くと交流損失を
最小にすることは可能であるが、大電流化には層数を増
すしかない。一般に、1本持ちでm層巻けば、′電流容
量はnxm培大きくできることにナル。本実施例ではn
=5.m=4とし、fW、It容量を20倍に高めた乃
合を示す。例えば、第5図に示した交流導体1を用いれ
ば、ITで〜1000Aの撚線導体8を得ることができ
る。層数mは、撚線導体8の内部磁界を消す目的からす
れば、;^斂が望ましいが1層毎に4旋の直径が異なる
ことを考慮し、撚線導体8内部の磁界を最小にして、か
つ各層のインピーダンスを出来る限り揃えるような条件
から1替数、及び各層に巻かれる交流導体1の直径を決
定すればよい、かかる設計手法は当然とられるべきであ
り、交流損失を低減し、各層のインピーダンスを揃え、
かつ実用的な電流容量をもつ交流用層電導導体を得るた
めには必要不可欠な技術である。
As shown in Figure 1, it is possible to minimize AC loss by winding each wound with a single wire, but increasing the number of layers is the only way to increase the current. Generally speaking, if you have one wire and wind it in m layers, the current capacity can be increased by nxm times. In this example, n
=5. The case where m=4 and fW and It capacity are increased by 20 times is shown. For example, if the AC conductor 1 shown in FIG. 5 is used, a stranded conductor 8 of ~1000 A can be obtained in IT. For the purpose of eliminating the internal magnetic field of the stranded wire conductor 8, the number of layers (m) is desirably convergent; The change number and the diameter of the AC conductor 1 wound around each layer should be determined based on the conditions that the impedance of each layer is made as similar as possible.Such a design method should naturally be adopted, and will reduce AC loss. , align the impedance of each layer,
This technology is indispensable in order to obtain an AC layered conductor with a practical current capacity.

第3図(a>、 (b)に本発明の第3の実施例を示す
A third embodiment of the present invention is shown in FIGS. 3(a) and 3(b).

第1図、及び第2図に示したし1]では、撚線導体8を
多層構造で構成する必要があることを述べたが、多層に
すると層と層の間で11!磁気的結合が生ずる可能性が
あり、交流損失の低減という要点から対策を構すべきで
ある。そこで、本実施例では1層間に高抵抗層もしくは
電気的な18礫物層IOを挿入設i檎したものである。
In [1] shown in FIGS. 1 and 2, it was stated that the stranded wire conductor 8 needs to be constructed with a multilayer structure, but when it is multilayered, there are 11! Magnetic coupling may occur, and countermeasures should be taken from the point of view of reducing AC loss. Therefore, in this embodiment, a high resistance layer or 18 electric gravel layers IO are inserted between each layer.

この高抵抗層には、高抵抗金属、4直性金属酸化物、悸
眠性有機物などが考えられる。高抵抗層を用いる場合は
、多少の電磁気的結合はまぬがれないが、撚線導体8の
機械的強度と冷却の点で慶れ、逆に醒只的な1絶環′吻
を用いると電磁気的結合は完全に断ち切ることができる
が、機械的強度と冷却性で劣ること尾なる。
This high-resistance layer may be made of a high-resistance metal, a tetragonal metal oxide, a hypnotic organic substance, or the like. When using a high-resistance layer, some electromagnetic coupling is unavoidable, but it is advantageous in terms of mechanical strength and cooling of the stranded conductor 8; Although the bond can be completely broken, the mechanical strength and cooling performance are inferior.

各層のインピーダンスが揃っていたとしても、五気的絶
禄吻層10を挿入すると、層毎に流れる直流て不揃いが
生じる可能ヰがあって、高抵抗層全相いた方が良策であ
る。いずれにしても、眉間の電磁気的結合を弱めるべく
対策を講する必要がある。
Even if the impedance of each layer is the same, inserting the five-layer impedance layer 10 may cause unevenness in the direct current flowing in each layer, so it is better to have high-resistance layers in all phases. In any case, it is necessary to take measures to weaken the electromagnetic coupling between the eyebrows.

第4図(a)、 (b)に本発明の#c4の実施例を示
す。
Embodiment #c4 of the present invention is shown in FIGS. 4(a) and 4(b).

第1図〜第3図て示した:実施列においては、芯となる
常電導体9を用いた□が、撚線導体8全体で超電導安定
化のための銅IHi十分であれば、芯の部分の銅敬を減
らし、そこでの交流損失%に渦電流損失を低減すること
は賢明な方策といえる。そのために、本実施例では、′
常電導パイプ11を芯として、これまで述べたと同様な
方法で、交流導体1を常電導パイプ1□1−巻きつけ撚
線導体8を構成している、この常電導パイプ11の材料
は銅やアルミニウムでもよく、′また。ステンレス鋼で
もよい1、更に、常(導パイプ11の中空部は真空にし
てもよいし、液体へ1)、ラムを充せるようにしてもよ
く、さら【は超臨界圧ヘリウムを流してもよい。特に、
この芯となる常電導体9を常電導パイプ11で置き換え
ることで、撚線導体8の長手方向の機械的強度は著しく
向上する。
As shown in Figures 1 to 3: In the practical row, if the normal conductor 9 used as the core is □, if the copper IHi for stabilizing the superconductivity is sufficient in the entire stranded conductor 8, the core It is a wise measure to reduce the copper resistance of the parts and reduce the eddy current losses to AC losses there. For this purpose, in this example, ′
Using the normal conducting pipe 11 as a core, the AC conductor 1 is wound around the normal conducting pipe 1□1 to form the stranded conductor 8 in the same manner as described above.The material of the normal conducting pipe 11 is copper or Aluminum may also be used. Stainless steel may be used.1 Furthermore, the hollow part of the conduit pipe 11 may be vacuumed or filled with liquid (1), it may be filled with a ram, or it may be filled with supercritical helium. good. especially,
By replacing the core normal conductor 9 with the normal conductor pipe 11, the mechanical strength of the stranded conductor 8 in the longitudinal direction is significantly improved.

次に、第2図(a)、 (b)に示した撚線導体の交流
損失を計算し1本発明の有効性を確める。使用した交流
導体lは第5図のもの(超電導フィラメントは0.5I
im、14500本)をそのまま用い、その交流損失を
計算値通り、50Hz  t’rの交流磁界のもとで1
05W、/m’  とする。絶縁物7をとった交流導体
1を5本持ちで4層巻き、芯となる常電導体は、直径6
0μmのダミー線3(ギュブロニッケル厚さ3.5 n
 mを含む)を40本束ね(直径は0.4 rtm )
 、撚線導体8の仕上シ外径を1、4 ranとする。
Next, the effectiveness of the present invention is confirmed by calculating the AC loss of the stranded wire conductor shown in FIGS. 2(a) and 2(b). The AC conductor l used is the one shown in Figure 5 (the superconducting filament is 0.5I).
im, 14,500 pieces) as is, and its AC loss is calculated as 1 under an AC magnetic field of 50Hz t'r.
05W,/m'. Five AC conductors 1 with insulation 7 removed are wound in 4 layers, and the core normal conductor has a diameter of 6
0 μm dummy wire 3 (gubronickel thickness 3.5 n
40 pieces (including diameter 0.4 rtm)
, the finished outer diameter of the stranded conductor 8 is 1.4 ran.

この撚線導体に501−Iz−ITの交流磁界を印加す
る条件のもとて計算を行なったところ、超電導フィラメ
ント全体の磁化損失は1.3 X l O’ W/m3
.渦電流損失は各部に配置された銅の部分で5.6 X
 10’ W/m3.また各部に配置されたキュプロニ
ッケル中で2.3 XI O’W/m” 、そして結合
損失は、各層間で発生するものが2.6X103W/m
3.5本待ちした交流導体間で2−I X 10’ W
/m3.芯の常電導体部のダミー線3+mで3.2 X
 103 W/m” N交流導体内超電導フィラメント
間で5.0 X 103 w/mJという結果かえられ
た。従って、合計で1.4×10”vV/m3となる。
Calculations were performed under the condition that an alternating current magnetic field of 501-Iz-IT was applied to this stranded conductor, and the magnetization loss of the entire superconducting filament was 1.3 X l O' W/m3
.. The eddy current loss is 5.6X in the copper parts placed in each part.
10'W/m3. In addition, the cupronickel disposed in each part has a power of 2.3XI O'W/m", and the coupling loss occurring between each layer is 2.6X103W/m".
2-I x 10'W between 3.5 AC conductors
/m3. 3.2X with 3+m dummy wire of normal conductor part of core
The result was 5.0 x 103 w/mJ between the superconducting filaments in the 103 W/m" N AC conductor. Therefore, the total was 1.4 x 10" vV/m3.

、’1tffl容縫が20倍大きくなったてもかかわら
ず、交流損失は14暗しか大きくならなかった。
Even though the '1tffl capacity was 20 times larger, the AC loss was only 14 times larger.

いうまでもなく、上述の第1図〜第4図の各実施例を適
宜組み合せた撚線導体を構成することは容易であり、ま
た、撚線導体の断面形状、外周部の絶縁手法等各種の変
形が考えられるが、それらにこだわる8甥はない。
Needless to say, it is easy to construct a stranded wire conductor by appropriately combining each of the embodiments shown in FIGS. Variations of the above are possible, but none of the 8 nephews are particular about them.

〔発明の効果〕〔Effect of the invention〕

以上説明した本発明の超電導導体によれば、常′成導体
の外周に沿って複合多心璽電導導体を4旋状に右巻きと
左巻きの層が交互になるように巻き付けたものであるか
ら、従来のもつ単位電流容量当りの交流損失値を越える
ことなく、大容量の交流用超鑞導導体を構成することが
可能で、現存する各種交流機器へa電導比に大きく寄与
することができ、その工業的効果は愼めて大でちる、
According to the superconducting conductor of the present invention as described above, the composite multi-core conductor is wound around the outer periphery of the normal conductor in a four-circle shape so that right-handed and left-handed layers are alternately wound. , it is possible to construct a large-capacity AC superconductor without exceeding the conventional AC loss value per unit current capacity, and it can greatly contribute to the a conductivity ratio of various existing AC devices. , its industrial effects are enormous.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明の超[株]導導体の一実施例を示
す概略構成図、第1図(b)はその断面図、第2図。 第3図、及び第4図はそれぞれ本発明の他の実施例を示
し、それぞれ(a)は第1図(a)に(′b)は、K1
図(b)に相当する図、第5図(a)は従来の超電、享
導体を示す断面図、第5図(b)、及び(C) uそれ
を構成する超亨導素線、及びダミー線の断四図、第6囚
(a)、(b)。 及び(c)はそれぞれ従来技術による撚線導体の例を示
す斜視図である。 1・・・交流導体、2・・・ka電導素線、3・・・ダ
ミー線。 4・・・超電導フィラメント、5・、・・銅、f5・・
・高抵抗金属、7・・・絶a物、8・・・撚線導体、9
・・・常電導体、1.0・・・電気的絶縁物層、11・
・・1’に心導・くイブ、。
FIG. 1(a) is a schematic configuration diagram showing one embodiment of the superconductor of the present invention, FIG. 1(b) is a sectional view thereof, and FIG. 3 and 4 respectively show other embodiments of the present invention, in which (a) is shown in FIG. 1 (a) and ('b) is shown in FIG.
A diagram corresponding to Figure (b), Figure 5 (a) is a cross-sectional view showing a conventional superconductor, Figures 5 (b) and (C) u superconducting strands constituting it, and four cross-sectional views of the dummy line, prisoner 6 (a), (b). and (c) are perspective views showing examples of stranded wire conductors according to the prior art, respectively. 1... AC conductor, 2... ka conductive wire, 3... dummy wire. 4...Superconducting filament, 5...Copper, f5...
・High resistance metal, 7...Excellent item, 8...Twisted wire conductor, 9
...Normal conductor, 1.0...Electrical insulator layer, 11.
...Shindo Kuibu in 1'.

Claims (1)

【特許請求の範囲】 1、常電導体と、該常電導体の外周に沿つて、螺旋状に
右巻きと左巻きの層が交互になるよう巻きつけられた複
合多心超電導導体とからなることを特徴とする超電導導
体。 2、前記複合多心超電導導体は、該導体を一層当りn本
(n=1、2、・・・)待ちで巻回するとき、該複合多
心超電導導体の直径のn倍の寸法を螺旋のピッチに等し
くなるよう巻きつけたことを特徴とする特許請求の範囲
第1項記載の超電導導体。 3、右巻きと左巻きに交互に巻回された前記複合多心超
電導導体の層間に高抵抗層、もしくは電気的絶縁物層を
介在させたことを特徴とする特許請求の範囲第1項記載
の超電導導体。 4、前記常電導体を中空パイプで形成したことを特徴と
する特許請求の範囲第1項記載の超電導導体。
[Claims] 1. Consisting of a normal conductor and a composite multicore superconducting conductor in which right-handed and left-handed layers are wound spirally along the outer periphery of the normal conductor so that right-handed and left-handed layers are alternately wound. A superconducting conductor characterized by 2. When the composite multi-core superconducting conductor is wound with n pieces per layer (n=1, 2,...), the composite multi-core superconducting conductor has a dimension n times the diameter of the composite multi-core superconducting conductor. 2. The superconducting conductor according to claim 1, wherein the superconducting conductor is wound to have a pitch equal to that of the superconducting conductor. 3. A high-resistance layer or an electrical insulator layer is interposed between the layers of the composite multicore superconducting conductor wound alternately in right-handed and left-handed windings, according to claim 1. superconducting conductor. 4. The superconducting conductor according to claim 1, wherein the normal conductor is formed of a hollow pipe.
JP61021940A 1986-02-05 1986-02-05 Superconducting conductor Expired - Fee Related JPH0636329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61021940A JPH0636329B2 (en) 1986-02-05 1986-02-05 Superconducting conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61021940A JPH0636329B2 (en) 1986-02-05 1986-02-05 Superconducting conductor

Publications (2)

Publication Number Publication Date
JPS62180910A true JPS62180910A (en) 1987-08-08
JPH0636329B2 JPH0636329B2 (en) 1994-05-11

Family

ID=12069043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61021940A Expired - Fee Related JPH0636329B2 (en) 1986-02-05 1986-02-05 Superconducting conductor

Country Status (1)

Country Link
JP (1) JPH0636329B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227309A (en) * 1988-03-07 1989-09-11 Furukawa Electric Co Ltd:The Superconductive ac cable
WO2012074065A1 (en) * 2010-12-01 2012-06-07 学校法人中部大学 Superconductive cable and bus bar

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6074307A (en) * 1983-08-30 1985-04-26 アルストム−アトランテイツク Superconductive twisted wire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6074307A (en) * 1983-08-30 1985-04-26 アルストム−アトランテイツク Superconductive twisted wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227309A (en) * 1988-03-07 1989-09-11 Furukawa Electric Co Ltd:The Superconductive ac cable
WO2012074065A1 (en) * 2010-12-01 2012-06-07 学校法人中部大学 Superconductive cable and bus bar

Also Published As

Publication number Publication date
JPH0636329B2 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
RU2363999C2 (en) Superconducting cable and method of making said cable
US7598458B2 (en) Super-conductive cable
EP2487691A1 (en) Superconductor cable and ac power transmission cable
WO2000049626A1 (en) A cable, a method of constructing a cable, and use of a cable
JP4174824B2 (en) Superconducting cable
CN110246625A (en) A kind of high-temperature superconductor rutherford cable
JPH11506261A (en) AC cable with two concentric conductor arrangements of twisted individual conductors
JP5936130B2 (en) Superconducting cable and bus bar
Sumption et al. AC losses of coated conductors in perpendicular fields and concepts for twisting
JPS62180910A (en) Superconductor
CN213752114U (en) Common vertical plane transposition high-temperature superconducting cable
JPH08264039A (en) Superconducting cable
JP4423581B2 (en) Superconducting cable
Sumiyoshi et al. Numerical calculation method of inter-strand coupling current losses in superconducting conductors
JPS607324B2 (en) Twisted compound superconducting cable
WO2022244409A1 (en) Superconducting conductor and winding
JP3568745B2 (en) Oxide superconducting cable
JP3568744B2 (en) Oxide superconducting cable
JPH08167332A (en) Superconducting cable
JPH0377607B2 (en)
JP3628589B2 (en) Superconducting cable
JP3404518B2 (en) Superconducting conductor
JP2001325837A (en) Superconducting cable
JP2003007150A (en) Minimizing method of alternating current loss of high- temperature superconductive wire
Saga et al. AC loss of transposed HTS cable conductors

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees