JP4757985B2 - Superconducting coil, manufacturing method thereof and superconducting conductor used therefor - Google Patents

Superconducting coil, manufacturing method thereof and superconducting conductor used therefor Download PDF

Info

Publication number
JP4757985B2
JP4757985B2 JP2000264070A JP2000264070A JP4757985B2 JP 4757985 B2 JP4757985 B2 JP 4757985B2 JP 2000264070 A JP2000264070 A JP 2000264070A JP 2000264070 A JP2000264070 A JP 2000264070A JP 4757985 B2 JP4757985 B2 JP 4757985B2
Authority
JP
Japan
Prior art keywords
conductor
current
magnetic field
wound
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000264070A
Other languages
Japanese (ja)
Other versions
JP2002075727A (en
Inventor
文夫 住吉
秀美 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Original Assignee
Kyushu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc filed Critical Kyushu Electric Power Co Inc
Priority to JP2000264070A priority Critical patent/JP4757985B2/en
Publication of JP2002075727A publication Critical patent/JP2002075727A/en
Application granted granted Critical
Publication of JP4757985B2 publication Critical patent/JP4757985B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、電力貯蔵装置、変圧器、半導体単結晶引き上げ装置、限流器、MRIなどに用いられる超電導コイル及びその製造方法並びにそれに用いる超電導導体に関する。
【0002】
【従来の技術】
超電導を応用した電力機器は、高効率、機器の省スペース化などの特長を有しており、実用化に向けた研究開発が進められている。超電導体は、液体ヘリウム温度(4.2K)近傍のみで動作する金属系の低温超電導体に対し、アルカリ土類金属を主成分として焼成により得られる高温超電導体は液体ヘリウム温度のみならず、冷凍機による伝導冷却温度(約20K)、過冷却液体窒素温度(66K)、液体窒素温度(77K)あるいはそれ以上の温度領域でも使用できるため、冷却の経済性やハンドリングの容易さなどから電力機器への応用が期待されている。
【0003】
超電導導体の構造の例を図7に示す。図中(a)は素線21を撚ったものを扁平状に並べて成形したラザフォードケーブルと呼ばれる平角成形より線、(b)はCuなどの門型の補強材22内に平角成形より線23とAlなどの安定化材24を収納した複合導体、(c)はステンレスなどのコンジット25内に素線21を収納したケーブル・イン・コンジット導体、(d)は素線21を撚った一次より線26を小径の補強用線材27に巻いた二次より線28を大径の補強用線材29の回りに配した多重より線導体、(e)は複数のテープ状素線30を積層した並列導体、(f)はテープ状素線30を円形コンジット31の回りに同心円状に配した同心円形より線導体である。
【0004】
このような導体のうち、図7(c),(d),(f)の導体は外部から加わる横磁界の方向に対して特性上の方向性はないが、(a),(b),(e)の導体は、方向性を有する。また、(e)を除くすべての導体で、一部あるいは全体により線加工がなされており、(c),(d),(f)では導体軸のまわりに規則的な捻りが施されていると見ることもできる。
【0005】
ところで、高温超電導コイルの巻線に使われるBi2223テープ線材の幅広面に垂直に加わる横磁界(軸に平行な磁界は縦磁界と呼び、これと区別する)がコイルの最大通電電流いわゆる臨界電流を劣化させる現象(以下、「垂直磁界通電特性劣化現象」と呼ぶ)のために、コイルの性能(最大出力磁界及び最大貯蔵エネルギー)は低く押えられているのが現状である。
【0006】
また、Bi2223テープ線材に限らず、Y123テープ線材やTl 1223テープ線材、Nb3Snテープ線材など、種々のテープ形状の超電導線材、あるいは、外観がテープ形状に近い平角成形より線導体の場合についても、テープあるいは平角成形より線の幅広面に垂直な磁界下では、幅広面に平行な横磁界の場合に比べ、条件によっては1から5桁も大きなヒステリシス損失あるいは結合損失が発生し、問題となっている。
【0007】
高温超電導コイルの垂直磁界通電特性劣化現象の対策としては、線材内の超電導材料の量を増やすことや導体内の線材の数量を増やすことが最も有効である。これは超電導材料の総量を増やしコスト高の要因となる。これを少しでも解消するためには、金属系の低温超電導コイルで従来から採用されている「グレーディング技術」が比較的有効と考えられる。これは、必要な部分だけ、必要な量だけ、局所的に線材量を加減して、超電導材料の量の最小化を図るというものである。
【0008】
しかしながら、図1に示す有限長ソレノイドの例のように、垂直磁界は一般に、コイル10の端部において大きくなるため、グレーィング技術によってその部分だけを補強することになるなど、コイル構造を複雑化させ製作技術上の困難を伴う。また、特殊な応用、例えば超電導トランスでは、比較的低磁界で使われコイル中心部分に鉄心を入れるので、垂直磁界通電特性劣化現象は起きない。
【0009】
ところが、一般の応用では、高い発生磁界のために、鉄心内の磁束密度が飽和するので鉄心を入れることができない。たとえ鉄心を入れることができても、付加的に鉄心内で発生するヒステリシス損失や渦電流損失が大きくなり問題になる。また磁界印加方向によらず特性が均一な高温超電導の丸断面線材の開発も進められているが、テープ線材以上の性能は本質的に得られない。
【0010】
代表的な平角成形より線導体であるラザフォードケーブルは超電導高エネルギー加速器用に開発されたもので加速器の主たる構成物であるダイポールマグネットなどの巻線として用いられる。ダイポールマグネットを例にとると、数mの長いマグネットの両端部では、電子などの粒子が走るマグネット中心長軸上における磁界の均一度が最優先される。そのためラザフォードケーブルは3次元的に加工されたスペーサに沿って巻線加工がなされる。その際、ラザフォードケーブルはその軸のまわりにわずかな捻りが結果的に加わることになる。
【0011】
しかしながら、その捻りは巻線加工時に結果的に生じるものであり、その作用については予測することができない。
【0012】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、超電導コイルの端部に発生するコイル軸に垂直な方向の磁界や他のコイルから加わる磁界に起因する、高温超電導コイルの垂直磁界通電特性劣化現象、高温及び低温超伝導コイルの損失増大、という2つの問題に対し、コイル、線材、導体それぞれの構造を複雑化せず、しかも超電導線材や導体の量を減らす方向で解決する超電導コイル及びその製造方法並びにそれに用いる超電導導体を提供することにある。
【0013】
【課題を解決するための手段】
前記課題を解決するため、本発明の超電導コイルは、通電特性または損失特性が外部から加わる横磁界に対して方向性を有している導体であり、かつ、超電導線材の一本または複数本を含む通電部およびその通電部を収納したコンジットを有している導体を巻装した超電導コイルであって、捻りながら巻線加工ができる円形もしくは多角形の断面外形の前記コンジットと一緒に前記通電部が捻られ、または捻りを与えない巻線加工ができる断面外形の前記コンジットに対して前記通電部が捻られることで、各巻装位置において、前記横磁界の方向に対して前記通電特性または損失特性が最良となる方向に前記導体の方向が略一致するように前記通電部が捻りを与えられて前記導体が巻かれていることを特徴とする。
【0014】
ここで「通電部」とは、超電導線材の一本または複数本のほかに、安定化材や構造材の一部も含んだものを言う。
【0015】
この超電導コイルの製造方法には、次の2つの方法がある。
【0016】
(1)超電導コイルの巻枠に前記導体を巻く際に、各巻装位置において、前記横磁界の方向に対して前記通電特性または損失特性が最良となる方向に略一致するように導体供給部前記導体の中心軸を中心として捻りを与えながら前記導体を巻く。
【0017】
この場合、前記コンジットの中心軸に対するそのコンジットの捻りを制御しながら巻線加工が容易にできるよう前記コンジットの断面の外形は捻りながら巻線加工ができるあるいは多角形とし、そのコンジットの外周表面に加えられた捻りの応力が確実に内部の超電導線材に伝わるように、超電導線材の周囲に置かれたコンジットとそれより内部の超電導線材とは機械的に一体化する。
【0018】
(2)超電導コイルの巻枠に前記導体を巻く前に、巻いた後の状態で、各巻装位置において、前記横磁界の方向に対して前記通電特性または損失特性が最良となる方向に略一致することになるように、前記通電部に予めその通電部の中心軸を中心として前記コンジットに対する捻りを与えておき、当該導体を前記巻枠に巻く。
【0019】
この場合、巻き線作業工程を出来る限り単純化し、またコイル巻き線部分の巻き線同士の密着性を良くするために、前記コンジットを、捻りを与えない巻線加工ができる断面外形、例えば円形や長方形等の多角形を有するものとし、超電導線材とその周囲に配するコンジットとを一体化する前に、予め計算された磁界の印加方向を考慮して超電導線材にコンジットに対する捻りを施したものを用いる。その場合は、巻き線時に捻りを与えない通常の巻き線方法が採用できる。
【0020】
さらに、本発明の超電導コイルに用いる超電導導体は、通電特性または損失特性が外部から加わる横磁界に対して方向性を有している導体であり、かつ、超電導線材の一本または複数本を含む通電部およびその通電部を収納したコンジットを有している導体であって、当該導体の前記通電部のみまたは、前記コンジットを含む導体全体が、その導体の中心軸に対して捻りを与えられており、その捻りが、超電導コイルの巻枠に前記導体を巻いた後の状態で、前記通電部が各巻装位置において前記横磁界の方向に対して前記通電特性または損失特性が最良となる方向に略一致することになるように、前記導体の長手方向に変化することを特徴とする。
【0021】
【発明の実施の形態】
以下、図面に基づいて本発明の一実施形態をBi2223テープ線材を積層した超電導導体を例にとって説明する。
【0022】
図2は、導体11の一例である。これは、Bi2223テープ線材1を28本積層して円形のコンジット3内に収納したものであり、テープ線材1同士は絶縁物あるいは高抵抗金属からなる介在テープ2によって電気的に分離されている。このテープ線材1間の通電電流を均一化するために転位されている。ここでは、個々のテープ幅を3.5mm、テープ厚みを0.25mmとすると、1本当たりの転位におおよそ50mmを要するので、全体の転位には、約1.4mを要す。また、導体11の外形は円形とし、外径は約10mmである。この導体11を使って巻線する、平均直径820mm、コイル長760mm、コイル巻線部厚み180mmの図3のようなソレノイド状コイルを考える。全体の転位長1.4mはコイル0.5ターン程度に相当する。コイル10の中心部分の導体は、磁界の方向がコイル軸に平行であるため(図1参照)、(a)に示すように横磁界の方向に対してテープ線材1の幅広面が平行になるように巻き、コイル10の端部では、図1に示すように磁界の方向がコイル軸に対して傾くため、図3(b),(c)に示すように、横磁界の方向に対してテープ線材1の幅広面が平行になるように捻って斜めに巻く。その中間においては、磁界の方向は徐々に変化するため、導体11も徐々に傾くように巻く。
【0023】
コイルの巻線を捻りながらコイル巻き枠に巻く方法の一例を図6に示す。同図において、12はコイル巻き枠、13はコイル巻き芯、14は導体巻き取り枠である。コイル巻き枠12に導体11を巻く際に、導体11のコイル上の位置に応じて導体11が所定の角度捻られるように、導体巻き取り枠14の軸を±90度の範囲で傾けながらコイル巻き枠12に巻くと、図3に示すコイル10を得ることができる。
【0024】
この形状のコイルを20Kで用いると、コイルの最大通電電流が2.5kAのとき、巻線部分におけるコイル軸方向の最大磁界は4T、コイル半径方向の最大磁界は2.5Tである。Bi2223テープ線材1本の臨界電流の磁界依存性を図4に示す。テープ幅広面に垂直に2.5Tの横磁界が加わるとテープ1本当たり90A流れるのに対し、テープ幅広面に平行に4Tの横磁界が加わると、56%増の140A流れる。テープ28本では、前者は2.5kA、後者は56%増の3.9kAとなる。したがって、図3の例示のように、コイル巻線部分の磁界方向と導体断面の特定の方向(ここでは内部のテープ幅広面に平行方向)とを略一致させることにより、コイルの最大通電電流2.5kAを変えないとすると、使用するテープ線材の本数を36%削減できる。
【0025】
次に、本コイルを66Kで使用することを考える。図5に示すように、テープ幅広面に垂直な場合と平行な場合との臨界電流特性の差は20Kに比べ顕著になる。コイル最大通電電流は0.45kA、テープ幅広面に平行に加わる最大横磁界は0.7T、幅広面に垂直に加わる最大磁界は0.4Tである。このとき図5より、テープ1本の臨界電流値は、平行な横磁界0.7Tが印加されるとき42A、垂直な横磁界0.4Tが印加されるとき16Aである。テープ28本では、後者は0.45kA、前者は2.6倍の1.2kAとなる。したがって、図3の例示のように、コイル巻線部分の磁界方向と導体断面の特定の方向(ここでは内部のテープ幅広面に平行方向)とを略一致させることにより、コイルの最大通電電流0.45kAを変えないとすると、使用するテープ線材の本数は62%削減できることになる。
【0026】
さらに損失についても、20K、66Kいずれの場合も、コイル巻き線のコイル内の位置にもよるが、局所的に最大1桁以上小さくできる。したがって、コイル全体で損失を数分の1に小さくできる。
【0027】
Y123やTl 1223のテープ線材の場合は、臨界電流値の改善も期待できるが、特に損失の低減効果が著しい。これは、Y123のテープ線材では超電導材料のY123が1〜10ミクロン厚の膜状に形成されており、線材断面における超電導材料部分のアスペクト比が約3桁であることによる。したがって、横磁界の方向がテープ面に平行な場合、垂直な場合に比べ損失が約3桁小さい。
【0028】
平角成形より線1本ないし複数本からなる超電導導体、あるいはそれらを一部とする超電導導体で巻線されたコイルを考える。コイルの形状は図3に示す形態と同じとする。図8に一例を示すように、超電導導体内に複数の平角成形より線23がある場合、それらの幅広面同士が合わさるように積層されており、結果として、導体断面において内部の平角成形より線23の幅広面に平行な方向が導体の「特定の方向」となる。この導体の特定の方向と、コイル巻線部分における発生磁界の方向とを略一致させる。その結果、内部の平角成形より線にはその幅広面に平行な方向の横磁界が印加されることになり、幅広面に垂直な方向に印加された場合に発生する大きな素線間結合損失を極めて小さくすることができる。従来の研究によると、結合損失を簡単に1桁小さくできる。あるいは導体の構造によってはさらに1桁から3桁小さくできる。なお図8において24は安定化材、32は構造材であるが、この例では、安定化材24や構造材32で発生する渦電流損失も幅広面に平行な横磁界が印加されるために小さくできている。
【0029】
【発明の効果】
本発明によると、超電導線材または超電導導体断面の特定の方向に磁界が加わると通電特性あるいは損失特性などに優れた性能が期待できる超電導線材または超電導導体でコイルを巻線する場合、巻線時あるいは巻線前に導体軸のまわりに適当な捻りを加えることによって、線材または導体に加わる外部横磁界の方向と、導体断面の特定の方向とを略一致させることができ、コイルの性能が飛躍的に高まる。
【図面の簡単な説明】
【図1】 超電導コイルによる磁力線の方向及び強さを示す説明図である。
【図2】 導体の一例を示す斜視図である。
【図3】 コイル巻線の一例を示す斜視図である。
【図4】 20KにおけるBi2223テープ線材の臨界電流特性グラフである。
【図5】 66KにおけるBi2223テープ線材の臨界電流特性グラフである。
【図6】 コイル巻線時に導体を捻りながら巻く方法の例を示す斜視図である。
【図7】 一般的な導体の構造の例を示す断面図である。
【図8】 導体の別の例を示す断面図である。
【符号の説明】
1 テープ線材、2 介在テープ、3 コンジット、10 コイル、11 導体、12 コイル巻き枠、13 コイル巻き芯、14 導体巻き取り枠、21 素線、22 門型の補強材、23 平角成形より線、24 安定化材、25 コンジット、26 一次より線、27 小径の補強用線材、28 二次より線、29大径の補強用線材、30 テープ状素線、31 円形コンジット、32 構造材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a superconducting coil used for a power storage device, a transformer, a semiconductor single crystal pulling device, a current limiter, an MRI and the like, a manufacturing method thereof, and a superconducting conductor used therefor.
[0002]
[Prior art]
Power equipment using superconductivity has features such as high efficiency and space saving, and research and development for practical use is being promoted. Superconductors are not only liquid helium temperatures (4.2K), but metal-based low-temperature superconductors that operate only in the vicinity of the liquid helium temperature (4.2K). Because it can be used in the temperature range of conduction cooling by the machine (about 20K), supercooled liquid nitrogen temperature (66K), liquid nitrogen temperature (77K) or higher, it can be used for power equipment due to its economic efficiency and ease of handling. The application of is expected.
[0003]
An example of the structure of the superconducting conductor is shown in FIG. In the figure, (a) is a rectangular forming strand called a Rutherford cable formed by twisting strands 21 and formed into a flat shape, and (b) is a rectangular forming strand 23 in a portal reinforcement 22 such as Cu. And (c) is a cable-in-conduit conductor in which a strand 21 is accommodated in a conduit 25 such as stainless steel, and (d) is a primary in which the strand 21 is twisted. A multi-strand wire conductor in which a stranded wire 28 is wound around a small-diameter reinforcing wire 27 and a secondary stranded wire 28 is arranged around a large-diameter reinforcing wire 29, and (e) is a laminate of a plurality of tape-like wires 30. The parallel conductor (f) is a concentric circular wire conductor in which the tape-shaped wires 30 are concentrically arranged around the circular conduit 31.
[0004]
Among such conductors, the conductors of FIGS. 7C, 7D, and 7F have no characteristic directivity with respect to the direction of the transverse magnetic field applied from the outside, but (a), (b), The conductor (e) has directionality. In addition, all conductors except (e) are partially or wholly processed, and (c), (d), and (f) are regularly twisted around the conductor axis. Can also be seen.
[0005]
By the way, the transverse magnetic field applied perpendicularly to the wide surface of the Bi2223 tape wire used for the winding of the high-temperature superconducting coil (the magnetic field parallel to the axis is called the longitudinal magnetic field, and is distinguished from this) is the maximum conduction current of the coil, the so-called critical current. The current performance is that the coil performance (maximum output magnetic field and maximum storage energy) is kept low due to the phenomenon of deterioration (hereinafter referred to as “perpendicular magnetic field conduction characteristic deterioration phenomenon”).
[0006]
Also, not only Bi2223 tape wire, but also Y123 tape wire, Tl 1223 tape wire, Nb 3 Sn tape wire, etc. Under a magnetic field perpendicular to the wide surface of the tape or flat-shaped wire, depending on the conditions, a hysteresis loss or coupling loss that is 1 to 5 orders of magnitude greater is generated than in the case of a transverse magnetic field parallel to the wide surface. ing.
[0007]
As countermeasures against the deterioration phenomenon of the vertical magnetic field energization characteristics of the high temperature superconducting coil, it is most effective to increase the amount of the superconducting material in the wire or increase the number of the wire in the conductor. This increases the total amount of superconducting material and increases costs. In order to eliminate this as much as possible, it is considered that the “grading technology” that has been conventionally used for metal-based low-temperature superconducting coils is relatively effective. This is intended to minimize the amount of superconducting material by locally adjusting the amount of wire only by a necessary amount or by a necessary amount.
[0008]
However, as in the example of finite length solenoid shown in FIG. 1, the vertical magnetic field generally, to become larger at end portions of the coil 10, etc. will be reinforced by that part by the gray de Ingu technique, complex coil structure With difficulty in manufacturing technology. Also, in special applications, such as superconducting transformers, a relatively low magnetic field is used, and an iron core is placed in the center of the coil, so that the vertical magnetic field conduction characteristic deterioration phenomenon does not occur.
[0009]
However, in general applications, because of the high generated magnetic field, the magnetic flux density in the iron core is saturated, so that the iron core cannot be inserted. Even if an iron core can be inserted, the hysteresis loss and eddy current loss additionally generated in the iron core become large and become a problem. Development of a high-temperature superconducting round cross-section wire with uniform characteristics regardless of the direction of magnetic field is also under development, but performance beyond that of a tape wire cannot be obtained.
[0010]
Rutherford cable, which is a typical rectangular wire conductor, was developed for superconducting high-energy accelerators and is used as a winding for dipole magnets that are the main components of accelerators. Taking a dipole magnet as an example, the uniformity of the magnetic field on the long axis of the center of the magnet on which particles such as electrons run is given the highest priority at both ends of a magnet having a length of several meters. Therefore, the Rutherford cable is wound along a three-dimensionally processed spacer. The Rutherford cable will then have a slight twist about its axis.
[0011]
However, the twist is a result of the winding process, and the effect cannot be predicted.
[0012]
[Problems to be solved by the invention]
The problem to be solved by the present invention is that the vertical magnetic field conduction characteristic deterioration phenomenon of the high-temperature superconducting coil due to the magnetic field perpendicular to the coil axis generated at the end of the superconducting coil and the magnetic field applied from other coils, high temperature and The superconducting coil, its manufacturing method, and the solution to the problem of increasing the loss of the low-temperature superconducting coil without complicating the structure of the coil, wire and conductor and reducing the amount of superconducting wire and conductor It is to provide a superconducting conductor to be used.
[0013]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the superconducting coil of the present invention is a conductor having a directivity with respect to a transverse magnetic field to which an energization characteristic or loss characteristic is applied from the outside , and one or more superconducting wires are used. A superconducting coil in which a conductor having a current- carrying part and a conductor containing the current-carrying part are wound, and the current-carrying part together with the conduit having a circular or polygonal cross-sectional shape that can be wound while being twisted The current-carrying characteristic or the loss characteristic with respect to the direction of the transverse magnetic field at each winding position is obtained by twisting the current-carrying portion with respect to the conduit having a cross-sectional outer shape that can be wound without twisting or twisting. There are the conducting portion is given a twist so that the direction of the conductor in a direction in which the best substantially coincides, characterized in that the conductor is wound.
[0014]
Here, the “current-carrying part” refers to a part including one or a plurality of superconducting wires and a part of a stabilizing material or a structural material.
[0015]
There are the following two methods for manufacturing the superconducting coil.
[0016]
(1) When the conductor is wound around the winding frame of the superconducting coil , the conductor supply section is arranged so that the current-carrying characteristics or the loss characteristics substantially coincide with the direction of the transverse magnetic field at each winding position. The conductor is wound while twisting about the central axis of the conductor.
[0017]
In this case, as can be easily winding process while controlling the twisting of the conduit against the central axis of the conduit, the outer shape of the cross section of the conduit is a circular shape or polygonal may winding process while twisting, as stress twisting applied to the outer peripheral surface of the conduit is transmitted securely to the inside of the superconducting wire mechanically integrated and a conduit placed around the superconducting wire it from the inside of the superconducting wire.
[0018]
(2) Before winding the conductor on the winding frame of the superconducting coil, in a state after being wound, it is substantially coincided with the direction in which the current-carrying characteristics or loss characteristics are best with respect to the direction of the transverse magnetic field at each winding position as will be let you provide twist to said conduit about the central axis of advance its conductive portion to the conductive portion, winding the conductor on the spool.
[0019]
In this case, in order to simplify the winding work process as much as possible and to improve the adhesion between the windings of the coil winding portion, the conduit has a cross-sectional outer shape that can be wound without applying twist, such as a circular shape. It is assumed that it has a polygon such as a rectangle, and the superconducting wire is twisted with respect to the conduit in consideration of the pre-calculated magnetic field application direction before integrating the superconducting wire and the surrounding conduit. Use. In that case, a normal winding method that does not give twist during winding can be employed.
[0020]
Furthermore, the superconducting conductor used in the superconducting coil of the present invention is a conductor having a direction characteristic with respect to a transverse magnetic field applied with an energization characteristic or loss characteristic from the outside, and includes one or more superconducting wires. A conductor having a current-carrying part and a conduit containing the current-carrying part, wherein only the current-carrying part of the conductor or the entire conductor including the conduit is twisted with respect to the central axis of the conductor. In the state where the conductor is wound around the winding frame of the superconducting coil, the current-carrying part is in the direction in which the current-carrying characteristic or loss characteristic is the best with respect to the direction of the transverse magnetic field at each winding position. It changes in the longitudinal direction of the said conductor so that it may substantially correspond .
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings, taking as an example a superconducting conductor in which Bi2223 tape wires are laminated.
[0022]
FIG. 2 is an example of the conductor 11. In this example, 28 Bi2223 tape wires 1 are stacked and accommodated in a circular conduit 3, and the tape wires 1 are electrically separated from each other by an intervening tape 2 made of an insulator or a high-resistance metal. The dislocation is performed in order to make the energization current between the tape wires 1 uniform. Here, assuming that the individual tape width is 3.5 mm and the tape thickness is 0.25 mm, approximately 50 mm is required for the dislocation per one piece, so that the total dislocation requires approximately 1.4 m. The outer shape of the conductor 11 is circular, and the outer diameter is about 10 mm. Consider a solenoid coil as shown in FIG. 3 that is wound using this conductor 11 and has an average diameter of 820 mm, a coil length of 760 mm, and a coil winding portion thickness of 180 mm. The total dislocation length of 1.4 m corresponds to about 0.5 turns of coil. The conductor of the central portion of the coil 10 has a magnetic field direction parallel to the coil axis (see FIG. 1), so that the wide surface of the tape wire 1 is parallel to the transverse magnetic field direction as shown in FIG. At the end of the coil 10, the direction of the magnetic field is inclined with respect to the coil axis as shown in FIG. 1, so that the direction of the transverse magnetic field is as shown in FIGS. 3 (b) and 3 (c). The tape wire 1 is twisted and wound obliquely so that the wide surfaces are parallel. Since the direction of the magnetic field gradually changes in the middle, the conductor 11 is also wound so as to be gradually inclined.
[0023]
FIG. 6 shows an example of a method of winding the coil winding around the coil winding frame. In the figure, 12 is a coil winding frame, 13 is a coil winding core, and 14 is a conductor winding frame. When winding the conductor 11 around the coil winding frame 12, the coil 11 is tilted within a range of ± 90 degrees so that the conductor 11 is twisted by a predetermined angle according to the position of the conductor 11 on the coil. When wound on the winding frame 12, the coil 10 shown in FIG. 3 can be obtained.
[0024]
When a coil having this shape is used at 20K, when the maximum energization current of the coil is 2.5 kA, the maximum magnetic field in the coil axis direction at the winding portion is 4T, and the maximum magnetic field in the coil radial direction is 2.5T. The magnetic field dependence of the critical current of one Bi2223 tape wire is shown in FIG. When a 2.5 T transverse magnetic field is applied perpendicularly to the wide tape surface, 90 A flows per tape, whereas when a 4 T transverse magnetic field is applied in parallel to the wide tape surface, it increases by 56% to 140 A. With 28 tapes, the former is 2.5 kA and the latter is 3.9 kA, an increase of 56%. Therefore, as illustrated in FIG. 3, the maximum energization current 2 of the coil is obtained by making the magnetic field direction of the coil winding portion substantially coincide with a specific direction of the conductor cross section (here, parallel to the internal tape wide surface). If the change of 0.5 kA is not changed, the number of tape wires used can be reduced by 36%.
[0025]
Next, consider using this coil at 66K. As shown in FIG. 5, the difference in critical current characteristics between the case perpendicular to the tape wide surface and the case parallel to the tape wide surface becomes more remarkable than 20K. The maximum coil current is 0.45 kA, the maximum transverse magnetic field applied in parallel to the wide tape surface is 0.7 T, and the maximum magnetic field applied perpendicular to the wide surface is 0.4 T. At this time, from FIG. 5, the critical current value of one tape is 42A when a parallel transverse magnetic field 0.7T is applied, and 16A when a perpendicular transverse magnetic field 0.4T is applied. With 28 tapes, the latter is 0.45 kA, and the former is 2.6 times 1.2 kA. Therefore, as illustrated in FIG. 3, by making the magnetic field direction of the coil winding portion substantially coincide with a specific direction of the conductor cross section (here, parallel to the tape wide surface inside), the maximum energization current 0 of the coil is reduced. If the change of .45 kA is not changed, the number of tape wires used can be reduced by 62%.
[0026]
Further, the loss can be locally reduced by one digit or more depending on the position of the coil winding in the coil in both cases of 20K and 66K. Therefore, the loss can be reduced to a fraction of the entire coil.
[0027]
In the case of Y123 or Tl 1223 tape wire, an improvement in the critical current value can be expected, but the loss reduction effect is particularly remarkable. This is because in the Y123 tape wire, the superconducting material Y123 is formed into a film having a thickness of 1 to 10 microns, and the aspect ratio of the superconducting material portion in the wire cross section is about three digits. Therefore, when the direction of the transverse magnetic field is parallel to the tape surface, the loss is about three orders of magnitude smaller than when it is perpendicular.
[0028]
Consider a superconducting conductor composed of one or more stranded wires, or a coil wound with a superconducting conductor including a part thereof. The shape of the coil is the same as that shown in FIG. As shown in FIG. 8, when there are a plurality of rectangular formed strands 23 in the superconducting conductor, they are laminated so that their wide surfaces are aligned with each other. A direction parallel to the wide surface 23 is a “specific direction” of the conductor. The specific direction of the conductor and the direction of the generated magnetic field in the coil winding portion are substantially matched. As a result, a transverse magnetic field in a direction parallel to the wide surface is applied to the internal rectangular forming strand, and a large inter-element coupling loss generated when applied in a direction perpendicular to the wide surface is generated. It can be made extremely small. According to conventional research, the coupling loss can be easily reduced by an order of magnitude. Or, depending on the structure of the conductor, it can be further reduced by one to three digits. In FIG. 8, 24 is a stabilizing material, and 32 is a structural material. In this example, eddy current loss generated in the stabilizing material 24 or the structural material 32 is also applied because a transverse magnetic field parallel to the wide surface is applied. It is made small.
[0029]
【The invention's effect】
According to the present invention, when a coil is wound with a superconducting wire or a superconducting conductor that can be expected to have excellent performance in current-carrying characteristics or loss characteristics when a magnetic field is applied in a specific direction of the cross section of the superconducting wire or superconducting conductor, By applying an appropriate twist around the conductor axis before winding, the direction of the external transverse magnetic field applied to the wire or conductor can be made to substantially match the specific direction of the conductor cross-section, and the performance of the coil is dramatically improved. To increase.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing the direction and strength of lines of magnetic force generated by a superconducting coil.
FIG. 2 is a perspective view showing an example of a conductor.
FIG. 3 is a perspective view showing an example of a coil winding.
FIG. 4 is a critical current characteristic graph of Bi2223 tape wire at 20K.
FIG. 5 is a critical current characteristic graph of Bi2223 tape wire at 66K.
FIG. 6 is a perspective view showing an example of a method of winding a conductor while twisting a coil.
FIG. 7 is a cross-sectional view showing an example of a general conductor structure.
FIG. 8 is a cross-sectional view showing another example of a conductor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Tape wire material, 2 Intervening tape, 3 Conduit, 10 Coil, 11 Conductor, 12 Coil winding frame, 13 Coil winding core, 14 Conductor winding frame, 21 Strand, 22 Gate-shaped reinforcement, 23 Flat wire, 24 Stabilizing material, 25 Conduit, 26 Primary strand, 27 Small diameter reinforcing wire, 28 Secondary strand, 29 Large diameter reinforcing wire, 30 Tape strand, 31 Circular conduit, 32 Structural material

Claims (4)

通電特性または損失特性が外部から加わる横磁界に対して方向性を有している導体であり、かつ、超電導線材の一本または複数本を含む通電部およびその通電部を収納したコンジットを有している導体を巻装した超電導コイルであって、
捻りながら巻線加工ができる円形もしくは多角形の断面外形の前記コンジットと一緒に前記通電部が捻られ、または捻りを与えない巻線加工ができる断面外形の前記コンジットに対して前記通電部が捻られることで、各巻装位置において、前記横磁界の方向に対して前記通電特性または損失特性が最良となる方向に前記導体の方向が略一致するように前記通電部が捻りを与えられて、前記導体が巻かれていることを特徴とする超電導コイル。
Conductor or loss characteristic is a conductor having a directivity with respect to a transverse magnetic field applied from the outside, and has a current-carrying part including one or more superconducting wires and a conduit containing the current-carrying part. A superconducting coil wound with a conductor,
The current-carrying part is twisted together with the conduit having a circular or polygonal cross-sectional shape that can be wound while being twisted, or the current-carrying part is twisted with respect to the conduit having a cross-sectional shape that can be wound without applying twist. In each winding position, the energization part is twisted so that the direction of the conductor substantially matches the direction in which the energization characteristic or loss characteristic is the best with respect to the direction of the transverse magnetic field, A superconducting coil in which a conductor is wound.
通電特性または損失特性が外部から加わる横磁界に対して方向性を有している導体であり、かつ、超電導線材の一本または複数本を含む通電部およびその通電部を収納したコンジットを有している導体を巻装する超電導コイルの製造方法であって、
前記コンジットを、捻りながら巻線加工ができる円形または多角形の断面外形を有するものとし、
当該超電導コイルの巻枠に前記導体を巻く際に、各巻装位置において、前記横磁界の方向に対して前記通電特性または損失特性が最良となる方向に前記通電部が略一致するように、導体供給部に前記導体の中心軸を中心として捻りを与えながら前記導体を巻くことを特徴とする超電導コイルの製造方法。
Conductor or loss characteristic is a conductor having a directivity with respect to a transverse magnetic field applied from the outside, and has a current-carrying part including one or more superconducting wires and a conduit containing the current-carrying part. A method of manufacturing a superconducting coil in which a conductor is wound,
The conduit has a circular or polygonal cross-sectional outline that can be wound while being twisted,
When winding the conductor around the winding frame of the superconducting coil, at each winding position, the conductor is substantially aligned with the direction in which the current-carrying characteristic or loss characteristic is best with respect to the direction of the transverse magnetic field. A method of manufacturing a superconducting coil, wherein the conductor is wound while twisting the supply portion about the central axis of the conductor.
通電特性または損失特性が、外部から加わる横磁界に対して方向性を有している導体であり、かつ、超電導線材の一本または複数本を含む通電部およびその通電部を収納したコンジットを有している導体を巻装する超電導コイルの製造方法であって、
前記コンジットを、捻りを与えない巻線加工ができる断面外形を有するものとし、
当該超電導コイルの巻枠に前記導体を巻く前に、巻いた後の状態で前記通電部が、各巻装位置において、前記横磁界の方向に対して前記通電特性または損失特性が最良となる方向に略一致することになるように、前記通電部に予めその通電部の中心軸を中心として前記コンジットに対する捻りを与えておき、当該導体を前記巻枠に巻くことを特徴とする超電導コイルの製造方法。
Conductor or loss characteristic is a conductor that has directivity with respect to a lateral magnetic field applied from the outside, and has a current-carrying part including one or more superconducting wires and a conduit that houses the current-carrying part. A method of manufacturing a superconducting coil in which a conductor is wound,
The conduit has a cross-sectional outer shape that can be wound without giving twist,
Before winding the conductor around the winding frame of the superconducting coil, the energized portion in a state after being wound is in a direction in which the energization characteristic or loss characteristic is the best with respect to the direction of the transverse magnetic field at each winding position. A superconducting coil manufacturing method, characterized in that the current-carrying part is previously twisted with respect to the conduit about the central axis of the current-carrying part, and the conductor is wound around the winding frame so as to substantially match .
通電特性または損失特性が外部から加わる横磁界に対して方向性を有している導体であり、かつ、超電導線材の一本または複数本を含む通電部およびその通電部を収納したコンジットを有している導体であって、
当該導体の前記通電部のみまたは、前記コンジットを含む導体全体が、その導体の中心軸を中心として捻りを与えられており、その捻りが、超電導コイルの巻枠に前記導体を巻いた後の状態で、前記通電部が各巻装位置において前記横磁界の方向に対して前記通電特性または損失特性が最良となる方向に略一致することになるように、前記導体の長手方向に変化することを特徴とする超電導コイルに用いる超電導導体。
Conductor or loss characteristic is a conductor having a directivity with respect to a transverse magnetic field applied from the outside, and has a current-carrying part including one or more superconducting wires and a conduit containing the current-carrying part. A conductor,
Only the current-carrying portion of the conductor or the entire conductor including the conduit is twisted about the central axis of the conductor, and the twist is a state after the conductor is wound around the winding frame of the superconducting coil Then, the current-carrying portion changes in the longitudinal direction of the conductor so that the current-carrying characteristic or loss characteristic substantially coincides with the direction of the transverse magnetic field at each winding position. A superconducting conductor used for a superconducting coil.
JP2000264070A 2000-08-31 2000-08-31 Superconducting coil, manufacturing method thereof and superconducting conductor used therefor Expired - Fee Related JP4757985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000264070A JP4757985B2 (en) 2000-08-31 2000-08-31 Superconducting coil, manufacturing method thereof and superconducting conductor used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000264070A JP4757985B2 (en) 2000-08-31 2000-08-31 Superconducting coil, manufacturing method thereof and superconducting conductor used therefor

Publications (2)

Publication Number Publication Date
JP2002075727A JP2002075727A (en) 2002-03-15
JP4757985B2 true JP4757985B2 (en) 2011-08-24

Family

ID=18751536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000264070A Expired - Fee Related JP4757985B2 (en) 2000-08-31 2000-08-31 Superconducting coil, manufacturing method thereof and superconducting conductor used therefor

Country Status (1)

Country Link
JP (1) JP4757985B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4552178B2 (en) * 2004-03-30 2010-09-29 有限会社中島工業 Coil winding method and apparatus for superconducting power storage device (SMES)
JP2010263122A (en) * 2009-05-08 2010-11-18 Sumitomo Electric Ind Ltd Superconducting coil, superconducting apparatus, rotor, and stator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5866311A (en) * 1981-10-16 1983-04-20 Hitachi Ltd Superconductive magnet
JPH01246801A (en) * 1988-03-19 1989-10-02 Internatl Business Mach Corp <Ibm> Superconducting magnet
JPH04343404A (en) * 1991-05-21 1992-11-30 Furukawa Electric Co Ltd:The Solenoid superconducting coil
JP3340152B2 (en) * 1992-06-22 2002-11-05 株式会社東芝 Superconducting magnet
JPH07142245A (en) * 1993-11-17 1995-06-02 Mitsubishi Electric Corp High-temperature superconducting magnet, its designing method, its operating method, and manufacture of high-temperature superconducting tape material
JPH08148327A (en) * 1994-11-18 1996-06-07 Hitachi Ltd Superconducting magnet and particle accelerator with the superconducting magnet

Also Published As

Publication number Publication date
JP2002075727A (en) 2002-03-15

Similar Documents

Publication Publication Date Title
Takayasu et al. Conductor characterization of YBCO twisted stacked-tape cables
KR101775444B1 (en) Superconductor cable and ac power transmission cable
US9105396B2 (en) Superconducting flat tape cable magnet
US5038127A (en) Process for reducing eddy currents in a superconductor strip, and a superconductor arrangement
US5604473A (en) Shaped superconducting magnetic coil
EP3847678A1 (en) Bent toroidal field coils
Choi et al. Magnetization loss measurement of twisted stacked tape cable and comparison with CORC
US20210012929A1 (en) Superconductor Cable or superconductor cable-in-conduit-conductor with clocking feature
CN213988466U (en) High-temperature superconducting magnet coil for toroidal field of fusion reactor
JP4757985B2 (en) Superconducting coil, manufacturing method thereof and superconducting conductor used therefor
JP2001093721A (en) High-temperature superconducting magnet
JPH10214713A (en) Superconducting coil
US4093817A (en) Superconductor
Sugimoto et al. Performance of Polyvinyl Formal Insulated Cu–Nb/Nb 3 Sn Wires for React-and-Wind Process
JPH08148327A (en) Superconducting magnet and particle accelerator with the superconducting magnet
JPS5847687Y2 (en) superconducting hybrid coil
JP3805946B2 (en) Superconducting cable power transmission device and drift prevention method using the same
US20210225561A1 (en) Superconductor Cable or superconductor cable-in-conduit-conductor with clocking feature
Ambrosio et al. Development and test of a Nb 3 Sn racetrack magnet using the react and wind technology
Koyanagi et al. Design of a 30 T superconducting magnet using a coated conductor insert
JPH07235227A (en) Superconductive cable and superconductive coil
JPH06260335A (en) High temperature superconducting magnet
Onodera et al. Development of a Compact HTS-FAIR Conductor for Magnet Application
JP2003007150A (en) Minimizing method of alternating current loss of high- temperature superconductive wire
JPH0146963B2 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070316

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070316

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070323

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110602

R150 Certificate of patent or registration of utility model

Ref document number: 4757985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees