JP5117166B2 - NbTi superconducting multi-core wire for pulse and NbTi superconducting molded stranded wire for pulse - Google Patents

NbTi superconducting multi-core wire for pulse and NbTi superconducting molded stranded wire for pulse Download PDF

Info

Publication number
JP5117166B2
JP5117166B2 JP2007295639A JP2007295639A JP5117166B2 JP 5117166 B2 JP5117166 B2 JP 5117166B2 JP 2007295639 A JP2007295639 A JP 2007295639A JP 2007295639 A JP2007295639 A JP 2007295639A JP 5117166 B2 JP5117166 B2 JP 5117166B2
Authority
JP
Japan
Prior art keywords
nbti
wire
filament
pulse
nbti superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007295639A
Other languages
Japanese (ja)
Other versions
JP2008147175A (en
Inventor
昌弘 杉本
仁司 清水
宏和 坪内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2007295639A priority Critical patent/JP5117166B2/en
Publication of JP2008147175A publication Critical patent/JP2008147175A/en
Application granted granted Critical
Publication of JP5117166B2 publication Critical patent/JP5117166B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

本発明は、パルス用NbTi超電導多芯線およびパルス用NbTi超電導成形撚線に関するものである。   The present invention relates to a pulse NbTi superconducting multi-core wire and a pulse NbTi superconducting shaped twisted wire.

一般に、NbTi超電導線材は、複数のNbTiフィラメントと、それを被覆する安定化銅とから構成されており、通電電流大容量化、電流密度向上、機械的安定性、巻線作業性向上のために成形撚線構造となる。この成形撚線をパルス変動磁界下で使用すると交流損失を発生し、冷却効率の低下を引き起こす。このときの交流損失として、超電導素線内のNbTiフィラメント部分で発生する履歴損失と常電導金属である安定化銅部分で発生する結合損失(渦電流損失を含む)に加え、超電導素線間に流れる電流による素線間結合損失が存在する。 In general, the NbTi superconducting wire is composed of a plurality of NbTi filaments and a stabilized copper covering the NbTi filaments, for increasing the current carrying capacity, improving the current density, mechanical stability, and winding workability. It becomes a molded stranded wire structure. When this formed stranded wire is used under a pulse-varying magnetic field, an AC loss is generated, resulting in a decrease in cooling efficiency. As AC loss at this time, in addition to hysteresis loss occurring in the NbTi filament part in the superconducting element wire and coupling loss (including eddy current loss) occurring in the stabilized copper part which is a normal conducting metal, between the superconducting element wires There is a coupling loss between strands due to the flowing current.

通常、NbTiフィラメント部分での履歴損失は、フィラメント径を小さくすることにより低減することができるが、フィラメント径を小さくするほど製造コストが高くなるため、機器としての要求特性を満足できるレベルの範囲内において、少しでも大きい値に設計することが慣用である。一方、安定化銅部分での結合損失は、CuNi合金等の銅合金を個々のフィラメントの外周、フィラメント間、あるいは素線外周部に配置することにより低減することができる。特に、フィラメントの外周、フィラメント間、および素線外周部全てにCuNi合金を配置することにより、結合損失をさらに低減することができる。 Normally, the hysteresis loss in the NbTi filament portion can be reduced by reducing the filament diameter, but the manufacturing cost increases as the filament diameter decreases, so that it is within a range that satisfies the required characteristics as a device. Therefore, it is customary to design as large a value as possible. On the other hand, the coupling loss at the stabilized copper portion can be reduced by arranging a copper alloy such as a CuNi alloy at the outer periphery of each filament, between the filaments, or at the outer periphery of the strand. In particular, the coupling loss can be further reduced by arranging the CuNi alloy on the outer periphery of the filament, between the filaments, and on the entire outer periphery of the strand.

この考え方に基づき、一般的に経験磁界1〜2T以下で使用される交流用線材としては、安定化銅部分を一切なくし、マトリクス部分をすべてCuNi合金とした構成のNbTi超電導線が用いられている。このような構成の交流用線材では、低磁界において臨界電流密度Jcは極めて高く、磁界変化による損失が大きくなるので、安定性に欠ける。このため、交流用線材では、線径を極力細くして熱捌けを良好にしたり、線材の中央部にCuNi合金バリア層で細かく仕切られた安定化銅を内蔵させたりして低磁界における安定性を向上させている。 Based on this concept, an NbTi superconducting wire having a structure in which the stabilizing copper portion is completely eliminated and the matrix portion is entirely a CuNi alloy is used as an AC wire generally used in an empirical magnetic field of 1 to 2 T or less. . In the AC wire having such a configuration, the critical current density Jc is extremely high in a low magnetic field, and the loss due to the change in the magnetic field becomes large, so that it lacks stability. For this reason, in AC wires, the wire diameter is made as thin as possible to improve heat dissipation, or stabilized copper finely partitioned by a CuNi alloy barrier layer is incorporated in the center of the wire, so that stability in a low magnetic field is achieved. Has improved.

しかしながら、このような交流用線材においては、履歴損失を低減し、安定性を向上させるためにNbTiフィラメント径を0.1〜0.5μmまで細くしているので、磁界中でのJcが小さく、素線1本当たりの臨界電流容量が小さい。このため、大電流線材に使用する場合には、これらの素線を多重に撚線化しなければならない。 However, in such an AC wire rod, the NbTi filament diameter is reduced to 0.1 to 0.5 μm in order to reduce hysteresis loss and improve stability, so Jc in a magnetic field is small, The critical current capacity per strand is small. For this reason, when using for a large current wire, these strands must be twisted in multiple.

一方、2T以上の高磁界側で使用されるパルス用NbTi線材は、例えば発電機用コイル、SMES、素粒子加速器や核融合実験炉等で使用される理化学研究用マグネット等の機器に使用され、5T近傍の高磁界領域において数kAから10kAを超える大電流容量が必要とされるので、撚線構造となるが、パルス用線材は機械的剛性を高めるために、撚線本数は少ない方が望ましい。 On the other hand, NbTi wires for pulses used on the high magnetic field side of 2T or more are used in equipment such as magnets for physics and chemistry research used in, for example, generator coils, SMES, elementary particle accelerators, nuclear fusion experimental reactors, etc. Since a large current capacity exceeding several kA to 10 kA is required in a high magnetic field region near 5T, a stranded wire structure is used. However, in order to increase mechanical rigidity, a pulse wire preferably has a small number of stranded wires. .

従って、素線1本当たりの臨界電流容量を高くする必要があり、素線外径も当然大きくなる。素線外径が大きくなると、熱捌けが悪くなる。このような理由により、パルス用線材に、マトリクス部分を全てCuNi合金とするような交流用線材の構成を採用することはできない。すなわち、パルス用線材を大型機器に使用する場合、素線がクエンチを起こすと大事故につながるので、安定化のためにNbTiフィラメントを被覆する材料中の銅量を増やさなければならない。 Therefore, it is necessary to increase the critical current capacity per one strand, and the outside diameter of the strand naturally increases. When the outer diameter of the strand increases, the heat loss becomes worse. For these reasons, it is not possible to employ an AC wire configuration in which the matrix portion is entirely made of a CuNi alloy for the pulse wire. That is, when the pulse wire is used for a large-sized device, if the strand is quenched, it will lead to a major accident, so the amount of copper in the material covering the NbTi filament must be increased for stabilization.

また、パルス用線材は、交流用線材よりも経験する磁界変化率が小さいが、冷却効率低下の抑制や交流損失による熱の発生に起因する不安定性を改善するために、交流損失の低減は不可欠である。 Pulse wire has a lower magnetic field change rate experienced than AC wire, but reduction of AC loss is indispensable in order to suppress the decrease in cooling efficiency and to improve instability caused by heat generation due to AC loss. It is.

従来のパルス用超電導線材としては、安定性の確保と交流損失の低減を目的として、NbTiフィラメントを銅とCuNi合金からなる安定化材で被覆し、これを銅マトリクスに埋設してなる3層構造の線材が用いられている。 Conventional pulse superconducting wire has a three-layer structure in which an NbTi filament is coated with a stabilizing material made of copper and CuNi alloy and is embedded in a copper matrix for the purpose of ensuring stability and reducing AC loss. The wire is used.

しかしながら、この3層構造の線材には、NbTiフィラメントの間に銅が介在する場合、銅の変形抵抗はNbTiやCuNiに比べて小さいので、熱間押し出し加工や伸線加工の際にNbTiまたはCuNiと銅との間で変形能が異なり、フィラメント形状の変形や極端な場合はフィラメント断線を引き起こす。 However, in this three-layer structure wire, when copper is interposed between NbTi filaments, the deformation resistance of copper is smaller than that of NbTi or CuNi, so NbTi or CuNi during hot extrusion or wire drawing The deformability differs between copper and copper, causing deformation of the filament shape and, in extreme cases, filament breakage.

また、NbTiフィラメントの外側の銅の厚さは一般的に薄いので、線材製造工程における熱処理により、CuNiから銅にニッケル原子が拡散する。そのために、銅の電気抵抗が上昇し、逆に熱伝導率が低下して安定化材としての機能が小さくなる。 In addition, since the copper outside the NbTi filament is generally thin, nickel atoms diffuse from CuNi into copper by heat treatment in the wire manufacturing process. For this reason, the electrical resistance of copper increases, and conversely, the thermal conductivity decreases and the function as a stabilizing material is reduced.

特許文献1には、この問題を解決する手段として、銅合金からなる第1のマトリクス中に少なくとも3本のNbTiフィラメントを埋設してなるフィラメント集合体と、前記フィラメント集合体の複数本が埋設された銅からなる第2のマトリクスとを備えたパルス用NbTi超電導線材が開示されている。
特開平6−295626号公報
In Patent Document 1, as means for solving this problem, a filament assembly in which at least three NbTi filaments are embedded in a first matrix made of a copper alloy, and a plurality of filament assemblies are embedded. A pulse NbTi superconducting wire comprising a second matrix made of copper is disclosed.
JP-A-6-295626

しかしながら、銅合金からなる第1のマトリクス中に少なくとも3本のNbTiフィラメントを埋設してなるフィラメント集合体と、前記フィラメント集合体の複数本が埋設された銅からなる第2のマトリクスとを備えたNbTi超電導線材においては、本質的安定化基準を満たしていたが、機器としての要求特性を十分に満足する効果が得られなかった上に、製造コスト上の問題からも実用化されることはなかった。 However, a filament aggregate formed by embedding at least three NbTi filaments in a first matrix made of a copper alloy, and a second matrix made of copper in which a plurality of filament aggregates are embedded. In NbTi superconducting wire, the essential stabilization criteria were satisfied, but the effect of sufficiently satisfying the required characteristics as a device was not obtained, and it was never put into practical use due to the problem of manufacturing cost. It was.

本発明は、かかる点に鑑みてなされたものであり、通電安定性、低交流損失、高臨界電流密度を実現した製造コストが低いパルス用NbTi超電導多芯線およびこれを用いたパルス用NbTi超電導成形撚線を提供することにある。   The present invention has been made in view of the above points, and has an NbTi superconducting multi-core wire for pulse and a NbTi superconducting molding for pulse using the same, which has low current cost and realizes energization stability, low AC loss, and high critical current density. It is to provide a stranded wire.

第1の発明であるパルス用NbTi超電導多芯線の第1の態様は、安定化材からなる断面
略円形の芯部と、Ni、MnおよびSiのうち1種類以上を含んだ銅合金に埋設されたN
bTiフィラメントからなる1次素線のみで構成され、かつ、複数の前記1次素線が前記
芯部の外周に配置されたフィラメント集合体と、前記フィラメント集合体の外周に形成さ
れた前記芯部と同じ安定化材からなる安定化層とを有し、前記NbTiフィラメントが埋
設されている銅合金の体積が前記NbTiフィラメントに対して0.3〜0.6倍である
ことを特徴とする。
ここで、前記NbTiフィラメントが埋設されている銅合金の体積が前記NbTiフィラ
メントに対して0.3倍未満の場合、前記NbTiフィラメントの周囲に存在する銅合金
の厚みが小さすぎるため、パルス用NbTi超電導多芯線の1次素線製造時に前記銅合金
が損傷して前記NbTiフィラメントが露出してしまう。したがって、多芯線への加工が
できず、製造歩留まりが低下するという問題が生じてしまう。
また、前記NbTiフィラメントが埋設されている銅合金の体積が前記NbTiフィラメ
ントに対して0.6倍より大きくなると、前記1次素線を用いてパルス用NbTi超電導
多芯線を製造する際に、前記NbTiフィラメントが異常変形を起こしやすくなる。この
ことにより、実用上高い方が良いとされるn値(電流−電圧特性をV∝Inとした時の指
数n)が低下し、更に、前記NbTiフィラメントの埋設部(フィラメント集合体)にお
いて、電流密度そのものが小さくなるという問題が生じる。
The first aspect of the NbTi superconducting multifilamentary wire for pulse according to the first invention is embedded in a substantially circular core section made of a stabilizing material and a copper alloy containing at least one of Ni, Mn and Si. N
bTi consists only of filaments Tona Ru 1 Tsugimotosen, and a plurality of the one and the filament assembly Tsugimotosen is disposed on the outer periphery of the core, the core formed on the outer periphery of the filament assemblies And a stabilizing layer made of the same stabilizing material as the portion, wherein the volume of the copper alloy in which the NbTi filament is embedded is 0.3 to 0.6 times that of the NbTi filament. .
Here, when the volume of the copper alloy in which the NbTi filament is embedded is less than 0.3 times that of the NbTi filament, the thickness of the copper alloy existing around the NbTi filament is too small. The copper alloy is damaged during the production of the primary strand of the superconducting multicore wire, and the NbTi filament is exposed. Therefore, the process to a multi-core wire cannot be performed, and the problem that a manufacturing yield falls will arise.
Further, when the volume of the copper alloy in which the NbTi filament is embedded is larger than 0.6 times the NbTi filament, when manufacturing the pulse NbTi superconducting multi-core wire using the primary strand, NbTi filaments are likely to be deformed abnormally. Thus, practical higher is better and is the n value - decrease (current index n when the voltage characteristic was VarufaI n) is further embedded portion of the NbTi filaments in (filament aggregate) The problem arises that the current density itself becomes small.

第1の発明であるパルス用NbTi超電導多芯線の第2の態様は、前記芯部および前記安定化層を形成する安定化材の総体積が前記NbTiフィラメントの総体積に対して1.5〜4.5倍であることを特徴とする。前記安定化材の総体積が1.5倍未満の場合には、パルス用NbTi超電導多芯線のシース部分(安定化層)に配置する安定化材の体積比が小さくなり、パルス用NbTi超電導多芯線製造時にNbTiフィラメントが露出してしまい、多芯線としての製造が困難となる。更に、該NbTi超電導多芯線を撚線にした場合には該NbTi超電導多芯線中のフィラメントの変形が大きくなり、Icが劣化する問題がある。また、4.5倍より大きい場合はNbTiフィラメントの超電導体部分が少なくなってしまい、結果的にJeが低下してしまうという問題がある。 The second aspect of the NbTi superconducting multifilamentary wire for pulse according to the first aspect of the present invention is that the total volume of the stabilizing material forming the core and the stabilizing layer is 1.5 to the total volume of the NbTi filament. It is characterized by 4.5 times. When the total volume of the stabilizing material is less than 1.5 times, the volume ratio of the stabilizing material disposed in the sheath portion (stabilizing layer) of the pulse NbTi superconducting multicore wire is reduced, and the pulse NbTi superconducting multi The NbTi filament is exposed during the manufacture of the core wire, making it difficult to manufacture a multi-core wire. Furthermore, when the NbTi superconducting multi-core wire is a stranded wire, there is a problem that deformation of the filament in the NbTi superconducting multi-core wire becomes large and Ic deteriorates. On the other hand, if it is larger than 4.5 times, the superconductor portion of the NbTi filament is reduced, resulting in a problem that Je is lowered.

第1の発明であるパルス用NbTi超電導多芯線の第3の態様は、前記安定化材が残留抵抗比50以上かつ350以下である銅または銅合金であることを特徴とする。なお、安定化材の残留抵抗比が50未満の場合には、通電時の安定性が低下してしまう問題が生じ、350より大きい場合には、交流損失(結合損失)が大きくなるだけでなく、原料段階で残留抵抗比400以上といったような、より高純度な無酸素銅を選定する必要があることから、原料受け入れの歩留まりが低下するという問題が生じてしまう。 A third aspect of the NbTi superconducting multifilamentary wire for pulse according to the first invention is characterized in that the stabilizing material is copper or a copper alloy having a residual resistance ratio of 50 or more and 350 or less. In addition, when the residual resistance ratio of the stabilizing material is less than 50, there is a problem that the stability during energization is deteriorated, and when it is larger than 350, not only the AC loss (coupling loss) increases. In addition, since it is necessary to select oxygen-free copper having a higher purity such as a residual resistance ratio of 400 or more in the raw material stage, there arises a problem that the yield of raw material reception is reduced.

第2の発明であるパルス用NbTi超電導成形撚線の第1の態様は前記パルス用NbTi超電導多芯線表面に金属メッキ層、樹脂絶縁層および酸化膜のうちの少なくとも1つを形成した後、6本以上かつ40本以下の前記パルス用NbTi超電導多芯線を撚り合わせて矩形断面に成形したことを特徴とする。このときパルス用NbTi超電導多芯線の撚り合わせ数を5本以下とした場合にはコイル形状への巻線性が劣化する問題があり、40本を超えるとパルス用NbTi超電導成形撚線の平坦性を確保することが難しくなってしまうという問題がある。   The first aspect of the pulse NbTi superconducting molded stranded wire according to the second aspect of the invention is that after forming at least one of a metal plating layer, a resin insulating layer and an oxide film on the surface of the pulse NbTi superconducting multi-core wire, More than 40 and not more than 40 NbTi superconducting multi-core wires for pulses are twisted and formed into a rectangular cross section. At this time, if the number of twisted NbTi superconducting multi-core wires for pulses is 5 or less, there is a problem that the winding property to the coil shape deteriorates, and if it exceeds 40, the flatness of the NbTi superconducting molded twisted wires for pulses There is a problem that it is difficult to secure.

本発明によれば、通電安定性、低交流損失、高臨界電流密度を実現した従来よりも製造コストが低いパルス用NbTi超電導多芯線およびパルス用NbTi超電導成形撚線を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the NbTi superconducting multi-core wire for pulses and the NbTi superconducting shaping | molding twisted wire for pulses which are low in manufacturing cost compared with the former which implement | achieved energization stability, low alternating current loss, and high critical current density can be provided.

図面を参照して本発明の好ましい実施の形態におけるパルス用NbTi超電導多芯線およびパルス用NbTi超電導成形撚線について詳細に説明する。なお、同一機能を有する各構成部については、図示及び説明簡略化のため、同一符号を付して示す。   A pulse NbTi superconducting multi-core wire and a pulse NbTi superconducting stranded wire in a preferred embodiment of the present invention will be described in detail with reference to the drawings. In addition, about each structural part which has the same function, the same code | symbol is attached | subjected and shown for simplification of illustration and description.

図1は本発明の一実施形態に係るパルス用NbTi超電導多芯線の断面構成図を示すものである。このパルス用NbTi超電導多芯線10は、銅または銅合金の安定化材からなる断面略円形の芯部16の外周に、NbTiフィラメント13とNbTiフィラメント13の外周に形成された銅合金層12からなる断面略六角形の1次素線14がマトリクス状に複数配置されて形成されたフィラメント集合体15が設けられ、更にフィラメント集合体15の外周に芯部16と同じ材料の安定化材からなる安定化層17が形成されている。 FIG. 1 shows a cross-sectional configuration diagram of a pulse NbTi superconducting multicore wire according to an embodiment of the present invention. This pulse NbTi superconducting multi-core wire 10 is composed of an NbTi filament 13 and a copper alloy layer 12 formed on the outer periphery of the NbTi filament 13 on the outer periphery of a core portion 16 having a substantially circular cross section made of a stabilizing material of copper or copper alloy. A filament assembly 15 is provided in which a plurality of primary strands 14 having a substantially hexagonal cross section are arranged in a matrix, and the filament assembly 15 is made of a stabilizer made of the same material as the core 16 on the outer periphery. An insulating layer 17 is formed.

芯部16および安定化層17を形成する安定化材は、残留抵抗比(温度27Kと超電導臨界温度直上での電気抵抗の比)が50以上かつ300以下であることが好ましく、銅または銅合金であることが好ましい。また、芯部16および安定化層17を形成する安定化材は、フィラメント集合体15におけるNbTiフィラメント13の総体積に対して、1.5以上かつ4.5以下の体積を有すると、NbTiフィラメントの加工性が更によい。また、安定化層17の断面積は芯部16の断面積に対して1〜4倍であれば更に好ましい。 The stabilizing material for forming the core portion 16 and the stabilizing layer 17 preferably has a residual resistance ratio (ratio of electrical resistance just above the temperature 27K and the superconducting critical temperature) of 50 or more and 300 or less. It is preferable that Further, when the stabilizing material forming the core portion 16 and the stabilizing layer 17 has a volume of 1.5 or more and 4.5 or less with respect to the total volume of the NbTi filament 13 in the filament assembly 15, the NbTi filament The processability is even better. The cross-sectional area of the stabilization layer 17 is more preferably 1 to 4 times the cross-sectional area of the core portion 16.

このとき、フィラメント集合体15の厚みtbは、断熱的安定化基準もしくは動的安定化基準により決定される。フィラメント集合体15の厚みtbは、断熱的安定化基準によると、フィラメント集合体15の平均的な比熱とNbTiフィラメント13に対する銅合金層12の体積比とNbTiフィラメント13の臨界電流密度Jcによって決まり、動的安定化基準によると、安定化材からなる芯部16および安定化層17の体積比を考慮して外的擾乱や交流損失によって生じた熱の拡散と磁束の拡散の両者の兼ね合いによって決定する。このとき、断熱的安定化基準または動的安定化基準によって決定したtbはどちらも同程度の値となる。 At this time, the thickness tb of the filament aggregate 15 is determined by the adiabatic stabilization criterion or the dynamic stabilization criterion. The thickness tb of the filament assembly 15 is determined by the average specific heat of the filament assembly 15, the volume ratio of the copper alloy layer 12 to the NbTi filament 13, and the critical current density Jc of the NbTi filament 13 according to the adiabatic stabilization standard, According to the dynamic stabilization standard, the volume ratio between the core 16 made of the stabilizing material and the stabilization layer 17 is taken into consideration, and is determined by the balance between diffusion of heat and magnetic flux caused by external disturbance and AC loss. To do. At this time, both tb determined by the adiabatic stabilization criterion or the dynamic stabilization criterion have similar values.

また、芯部16および安定化層17を形成する銅または銅合金をCuNi合金等からなるバリア層で分割しても良いが、実用上許容される交流損失以下である場合はコスト的観点から、バリア層は配置しない方が望ましい。 Further, the copper or copper alloy that forms the core 16 and the stabilization layer 17 may be divided by a barrier layer made of a CuNi alloy or the like. It is desirable not to arrange the barrier layer.

図2は本発明の一実施形態に係るパルス用NbTi超電導成形撚線の断面構成図を示すものである。このパルス用NbTi超電導成形撚線11はパルス用NbTi超電導多芯線10の表面に被覆層18を形成した後、パルス用NbTi超電導多芯線10を6本以上かつ40本以下の撚り合わせ矩形断面に成形されている。 FIG. 2 is a cross-sectional configuration diagram of a pulse NbTi superconducting molded stranded wire according to an embodiment of the present invention. After forming the coating layer 18 on the surface of the NbTi superconducting multi-core wire 10 for pulses, the NbTi superconducting multi-stranded wire 11 for pulses is formed into 6 or more and 40 or less twisted rectangular cross sections of the NbTi superconducting multi-core wire 10 for pulses. Has been.

前記被覆層18として、金属メッキ層、樹脂絶縁層または酸化膜を用いることができる。例えば、金属メッキ層としてはCr、Ni、Snやそれらの合金など、樹脂絶縁層にはポリビニルホルマールやポリビニルアセタールを用いることができる。また、安定化層17が銅または銅合金の場合には、酸化膜は酸化銅を用いることができる。このうち、コスト的観点からは、好ましくは金属メッキ層を用い、更に好ましくはCrメッキを用いるとよい。 As the coating layer 18, a metal plating layer, a resin insulating layer, or an oxide film can be used. For example, Cr, Ni, Sn, or an alloy thereof can be used as the metal plating layer, and polyvinyl formal or polyvinyl acetal can be used as the resin insulating layer. When the stabilization layer 17 is copper or a copper alloy, copper oxide can be used for the oxide film. Among these, from the viewpoint of cost, a metal plating layer is preferably used, and Cr plating is more preferably used.

以下に、パルス用NbTi超電導多芯線10の作製方法について説明する。まず、1次素線14の作製方法を説明する。銅合金管の中にNbTiロッドを挿入し、1次複合ビレットを作製する。前記複合ビレットに対して熱間押出加工と冷間加工を施すことによって棒状体の1次素線14(NbTi/銅合金複合六角)を作製する。 Below, the manufacturing method of the NbTi superconducting multi-core wire 10 for pulses is demonstrated. First, the manufacturing method of the primary strand 14 is demonstrated. A NbTi rod is inserted into the copper alloy tube to produce a primary composite billet. By subjecting the composite billet to hot extrusion and cold processing, a rod-shaped primary strand 14 (NbTi / copper alloy composite hexagon) is produced.

次に、1次素線14を用いてパルス用NbTi超電導多芯線10を作製する方法を説明する。芯部16を形成するため、安定化材からなる安定化棒状体(安定化材六角)を作製する。また、前記安定化材からなり、安定化層17となる銅管または銅合金管を作製し、1次素線14と前記安定化棒状体を所定サイズの前記管に挿入して、2次複合ビレットを作製する。その後、前記2次複合ビレットに対して熱間押出加工を行った後、熱処理と冷間加工を繰り返す。更に、ツイスト加工と最終伸線加工を行い、所定サイズのパルス用NbTi超電導多芯線10を作製する。 Next, a method for producing the pulse NbTi superconducting multi-core wire 10 using the primary strand 14 will be described. In order to form the core part 16, the stabilization rod-shaped body (stabilization material hexagon) which consists of a stabilization material is produced. Further, a copper tube or a copper alloy tube made of the stabilizing material and serving as the stabilizing layer 17 is manufactured, and the primary strand 14 and the stabilizing rod-like body are inserted into the tube of a predetermined size to obtain a secondary composite. Make a billet. Thereafter, hot extrusion processing is performed on the secondary composite billet, and then heat treatment and cold processing are repeated. Further, twisting and final wire drawing are performed to produce a pulse NbTi superconducting multi-core wire 10 having a predetermined size.

パルス用NbTi超電導多芯線10を用いたパルス用NbTi超電導成形撚線11の作製方法について説明する。パルス用NbTi超電導多芯線10の表面に金属メッキ加工、樹脂絶縁加工もしくは酸化膜形成を施した後、6本以上かつ40本以下を撚り合わせて2軸ロール圧延などの成形加工を施し、パルス用NbTi超電導成形撚線11を作製する。 A method for producing the pulse NbTi superconducting shaped stranded wire 11 using the pulse NbTi superconducting multifilamentary wire 10 will be described. After the surface of the NbTi superconducting multi-core wire 10 for pulse is subjected to metal plating, resin insulation or oxide film formation, it is twisted 6 or more and 40 or less and subjected to forming processing such as biaxial roll rolling. The NbTi superconducting molded stranded wire 11 is produced.

以上の作製方法において、安定化材の材料によっては加工硬化により残留抵抗比が低下するので、必要に応じて中間工程や最終工程に焼鈍工程を入れても良い。 In the above manufacturing method, depending on the material of the stabilizing material, the residual resistance ratio decreases due to work hardening. Therefore, an annealing step may be included in the intermediate step or the final step as necessary.

本発明の実施例に係るパルス用NbTi超電導多芯線10の作製方法について図1を参照して説明する。まず、1次素線14の作製のため、Cu−10重量%Ni管の中にNb―47重量%Tiロッドを挿入し、複合ビレットを作製した。前記複合ビレットに熱間押出加工と冷間加工を施すことによってNbTiフィラメント13とNbTiフィラメント13の外周に形成されたCuNi比0.5であるCuNiの銅合金層12からなり、断面略六角形における対辺寸法が1.8mmの六角棒状の1次素線14(NbTi/CuNi複合六角)を作製した。 A method for producing a pulse NbTi superconducting multi-core wire 10 according to an embodiment of the present invention will be described with reference to FIG. First, in order to produce the primary strand 14, a Nb-47 wt% Ti rod was inserted into a Cu-10 wt% Ni tube to produce a composite billet. The composite billet is composed of a CuNi copper alloy layer 12 having a CuNi ratio of 0.5 formed on the outer periphery of the NbTi filament 13 and the NbTi filament 13 by subjecting the composite billet to hot extrusion and cold processing. A hexagonal rod-shaped primary strand 14 (NbTi / CuNi composite hexagon) having an opposite side dimension of 1.8 mm was produced.

さらに、無酸素銅インゴットを熱間押出加工と冷間加工により芯部16となる対辺寸法1.8mmの六角形棒状の安定化棒状体(Cu六角)16aを製作した。また、安定化層17となる内径150mm/外径200mmのCu管を作製し、1次素線14(約4,000本)と安定化棒状体(Cu六角)16a(約3,600本)を前記銅管に挿入して2次複合ビレットを得た。その2次複合ビレットに対し、熱間押出加工の後、熱処理と冷間加工を繰り返して行い、更に、ツイスト加工と最終伸線加工を経て、直径1.0mmφのパルス用NbTi超電導多芯線10とした。このとき、図1中に示したパルス用NbTi超電導多芯線10のA部分の拡大図のように、複数の安定化棒状体(Cu六角)16aは複合一体化されて芯部16を形成し、同様に複数の1次素線14は複合一体化されてフィラメント集合体15を形成している。なお、安定化棒状体(Cu六角)16aと安定化層17の残留抵抗比を250とした。 Further, a hexagonal rod-shaped stabilizing rod-shaped body (Cu hexagon) 16a having an opposite side dimension of 1.8 mm to be the core portion 16 was manufactured by hot extrusion and cold processing of an oxygen-free copper ingot. Further, a Cu tube having an inner diameter of 150 mm / an outer diameter of 200 mm to be the stabilization layer 17 is manufactured, and the primary strand 14 (about 4,000 pieces) and the stabilizing rod-like body (Cu hexagonal) 16a (about 3,600 pieces). Was inserted into the copper tube to obtain a secondary composite billet. The secondary composite billet is subjected to repeated heat treatment and cold working after hot extrusion, and after twisting and final wire drawing, a pulse NbTi superconducting multi-core wire 10 having a diameter of 1.0 mmφ did. At this time, as shown in the enlarged view of part A of the NbTi superconducting multicore wire 10 for pulse shown in FIG. 1, a plurality of stabilizing rods (Cu hexagonal) 16a are combined and integrated to form the core portion 16, Similarly, a plurality of primary strands 14 are combined and integrated to form a filament assembly 15. The residual resistance ratio between the stabilizing rod-shaped body (Cu hexagon) 16a and the stabilizing layer 17 was 250.

次に本発明の実施例に係るパルス用NbTi超電導成形撚線11の作製方法について図2を参照して説明する。パルス用NbTi超電導多芯線10の表面にCrメッキ加工を施した後、12本撚リ合わせて成形加工を施し、パルス用NbTi超電導成形撚線11を得た。 Next, a method for producing the NbTi superconducting molded stranded wire 11 for pulses according to an embodiment of the present invention will be described with reference to FIG. After the surface of the pulse NbTi superconducting multi-core wire 10 was subjected to Cr plating, twelve strands were twisted and formed to obtain a pulse NbTi superconducting formed twisted wire 11.

比較例Comparative example

図3は比較の実施形態に係るパルス用NbTi超電導多芯線の断面構成図である。比較例に係るNbTi超電導多芯線20の作製方法について図3を参照して説明する。このNbTi超電導多芯線20は次のようにして作製した。まず、銅合金層22となるCu−10重量%Ni管の内側に内部安定化層29となるCu管を挿入し、さらにその内側にNbTiフィラメント23となるNb―47重量%Tiロッドを挿入して1次複合ビレットを得た。この1次複合ビレットに熱間押出加工と冷間加工を施すことによって対辺寸法1.6mmの1次素線24(NbTi/Cu/CuNi3層構造六角)を製作した。次に、無酸素銅インゴットを熱間押出加工と冷間加工により芯部26および安定化層27となる対辺寸法1.6mmの第1六角棒状体(Cu六角)26aを製作した。さらに、Cu−10重量%Niインゴットを熱間押出加工と冷間加工により銅合金被覆層28−1、銅合金被覆層28−2となる対辺寸法1.6mmの第2六角棒状体(CuNi六角)28−1aを製作した。そして、内径180mm/外径200mmのCuNi管を作製し、前記1次素線24と第1六角棒状体(Cu六角)26aと第2六角棒状体(CuNi六角)28−1aを最外銅合金被覆層30となるCuNi管に挿入して2次複合ビレットを得た。この2次複合ビレットに対して熱間押出加工を行った後、熱処理と冷間加工を繰り返し、ツイスト加工と最終伸線加工を経て、第1六角棒状体(Cu六角)26aから形成された銅の安定化材からなる断面略円形の芯部26の外周に、第2六角棒状体(CuNi六角)28−1aから形成された銅合金被覆層28−1が形成され、更に銅合金被覆層28−1の外周にはNbTiフィラメント23とNbTiフィラメント23の外周に形成された内部安定化層29と内部安定化層29の外周に更に形成された銅合金層22からなる断面略六角形の1次素線24が複数マトリクス状に配置されて形成されたフィラメント集合体25が設けられ、更にフィラメント集合体25の外周に第2六角棒状体(CuNi六角)28−1aから形成された銅合金被覆層28−2が形成され、更にその外周には第1六角棒状体(Cu六角)26aからなる安定化層27が形成され、最外層には前記CuNi管からなる最外銅合金被覆層30が形成された直径1.0mmφのNbTi超電導多芯線20を得た。このとき、図3中に示したNbTi超電導多芯線20のB部分の拡大図のように、複数の第1棒状体(Cu六角)26aは複合一体化されて芯部26を形成し、その外周には、複数の第2六角棒状体(CuNi六角)28−1aが複合一体化されて銅合金被覆層28−1を形成し、更にその外周には同様に複数の1次素線24は複合一体化されてフィラメント集合体25を形成している。比較例における残留抵抗比は実施例と同様に250とした。   FIG. 3 is a cross-sectional configuration diagram of a pulse NbTi superconducting multicore wire according to a comparative embodiment. A method for producing the NbTi superconducting multicore wire 20 according to the comparative example will be described with reference to FIG. The NbTi superconducting multi-core wire 20 was produced as follows. First, a Cu tube serving as an internal stabilization layer 29 is inserted inside a Cu-10 wt% Ni tube serving as a copper alloy layer 22, and an Nb-47 wt% Ti rod serving as an NbTi filament 23 is further inserted inside the Cu tube. A primary composite billet was obtained. A primary strand 24 (NbTi / Cu / CuNi three-layer hexagon) having an opposite side dimension of 1.6 mm was manufactured by subjecting this primary composite billet to hot extrusion and cold processing. Next, a first hexagonal rod-shaped body (Cu hexagon) 26a having an opposite side dimension of 1.6 mm, which becomes the core portion 26 and the stabilization layer 27, was manufactured by subjecting the oxygen-free copper ingot to hot extrusion processing and cold processing. Further, a Cu-10 wt% Ni ingot is subjected to hot extrusion and cold working to form a copper alloy coating layer 28-1 and a copper alloy coating layer 28-2. ) 28-1a was produced. Then, a CuNi tube having an inner diameter of 180 mm / an outer diameter of 200 mm is manufactured, and the primary strand 24, the first hexagonal rod (Cu hexagon) 26a, and the second hexagonal rod (CuNi hexagon) 28-1a are connected to the outermost copper alloy. It inserted in the CuNi pipe | tube used as the coating layer 30, and obtained the secondary composite billet. After hot extrusion processing is performed on the secondary composite billet, heat treatment and cold processing are repeated, and after twisting processing and final wire drawing processing, copper formed from the first hexagonal rod-shaped body (Cu hexagonal) 26a A copper alloy coating layer 28-1 formed of a second hexagonal rod-shaped body (CuNi hexagonal) 28-1a is formed on the outer periphery of the core portion 26 having a substantially circular cross section made of the above stabilizing material, and the copper alloy coating layer 28 is further formed. -1 on the outer periphery of NbTi filament 23, inner stabilization layer 29 formed on the outer periphery of NbTi filament 23, and copper alloy layer 22 further formed on the outer periphery of inner stabilization layer 29. A filament assembly 25 formed by arranging a plurality of strands 24 in a matrix is provided, and a copper alloy formed of a second hexagonal rod (CuNi hexagon) 28-1a on the outer periphery of the filament assembly 25. A coating layer 28-2 is formed, and a stabilizing layer 27 made of a first hexagonal rod (Cu hexagon) 26a is formed on the outer periphery of the coating layer 28-2. An outermost copper alloy coating layer 30 made of the CuNi tube is formed on the outermost layer. An NbTi superconducting multicore wire 20 having a diameter of 1.0 mmφ was obtained. At this time, as shown in the enlarged view of the portion B of the NbTi superconducting multicore wire 20 shown in FIG. 3, the plurality of first rod-shaped bodies (Cu hexagonal) 26a are combined and integrated to form the core portion 26, and the outer periphery thereof. A plurality of second hexagonal rod-shaped bodies (CuNi hexagonal) 28-1a are combined and integrated to form a copper alloy coating layer 28-1, and a plurality of primary strands 24 are similarly combined on the outer periphery thereof. The filament aggregate 25 is formed by being integrated. The residual resistance ratio in the comparative example was 250 as in the example.

図4は比較の実施形態に係るNbTi超電導成形撚線の断面図である。比較例に係るNbTi超電導成形撚線21の作製方法について図4を参照して説明する。NbTi超電導多芯線20を16本撚リ合わせて成形加工を施し比較例とするNbTi超電導成形撚線21を得た。 FIG. 4 is a cross-sectional view of a NbTi superconducting molded stranded wire according to a comparative embodiment. A method for producing the NbTi superconducting molded stranded wire 21 according to the comparative example will be described with reference to FIG. Sixteen NbTi superconducting multi-core wires 20 were twisted together and molded to obtain an NbTi superconducting shaped twisted wire 21 as a comparative example.

(超電導成形撚線の評価)
実施例および比較例の超電導成形撚線の特性評価として、Ic(臨界電流、4.2KでのNbTi面積当たり10−14Ωmの比抵抗で定義される)、Je(工学的臨界電流密度、Ic/NbTi超電導多芯線断面積)、n値(V=K(I/Ic)、10μV/m〜100μV/mで定義される、Vは発生電圧、Iは通電電流、Kは定数である)、履歴損失、結合時定数(結合電流の時定数であり、結合損失は結合時定数に比例する)、通電安定性、加工性および製造コストに関して調べた。表1に、実施例および比較例の諸元および前述した各種特性評価結果に関して記す。NbTi/CuNi/Cuは、超電導成形撚線における体積比を示す。
(Evaluation of superconducting stranded wire)
As characteristics of the superconducting molded stranded wires of Examples and Comparative Examples, Ic (critical current, defined as a specific resistance of 10 −14 Ωm per NbTi area at 4.2 K), Je (engineering critical current density, Ic / NbTi superconducting multifilamentary wire cross-sectional area), n value (V = K (I / Ic) n , defined as 10 μV / m to 100 μV / m, V is a generated voltage, I is a conduction current, and K is a constant) , Hysteresis loss, coupling time constant (coupling current time constant, coupling loss is proportional to coupling time constant), current-carrying stability, workability and manufacturing cost. Table 1 describes the specifications of the examples and comparative examples and the above-described various characteristic evaluation results. NbTi / CuNi / Cu indicates a volume ratio in a superconducting formed stranded wire.

Ic、Jeは5Tの磁界下において測定を行った。n値は電流−電圧特性から求めた。履歴損失は磁界振幅±3T、0.04T/sでの三角波形の変動磁界を素線長手方向に垂直方向に印加し、磁化を測定した後、それぞれの磁化−印加磁界曲線からその面積を積分することにより算出した。一方、結合時定数(素線内結合時定数と素線間結合時定数の和)は、パルス用NbTi超電導成形撚線11およびNbTi超電導成形撚線21の幅広面に対し垂直方向に磁界振幅±0.01T、1〜25Hzのサイン波形の変動磁界を印加し、それぞれの磁化を測定した後、それぞれの磁化−印加磁界曲線からその面積を積分することにより、交流損失を算出し、その周波数依存性から求めた。 Ic and Je were measured under a magnetic field of 5T. The n value was obtained from current-voltage characteristics. For hysteresis loss, a triangular magnetic field with a magnetic field amplitude of ± 3T and 0.04T / s is applied in the direction perpendicular to the longitudinal direction of the wire, the magnetization is measured, and the area is integrated from each magnetization-applied magnetic field curve. It was calculated by doing. On the other hand, the coupling time constant (the sum of the coupling time constant within the strands and the coupling time constant between the strands) has a magnetic field amplitude ± in the direction perpendicular to the wide surface of the NbTi superconducting molded stranded wire 11 and the NbTi superconducting stranded strand 21. After applying a varying magnetic field with a sine waveform of 0.01 T and 1 to 25 Hz and measuring each magnetization, the AC loss is calculated by integrating the area from each magnetization-applied magnetic field curve, and its frequency dependence Sought from sex.

Figure 0005117166
Figure 0005117166

また、安定性は5Tの静磁界中でパルス用NbTi超電導成形撚線11およびNbTi超電導成形撚線21にその線材のIcの95%まで通電した状態で、ヒータ加熱法によりパルス用NbTi超電導成形撚線11およびNbTi超電導成形撚線21に局所的に熱を与え、パルス用NbTi超電導成形撚線11およびNbTi超電導成形撚線21がクエンチするまでの投入熱量で通電安定性を確認した。このとき、実施例と比較例では同等の安定性が得られた。加工性に関しては、20kmあたりの断線頻度で確認を行った。比較例では、1回断線が生じたが、実施例では断線が生じなかった。そして、原料費および加工費に関しては、実施例によると従来例よりも10%程度のコスト削減を実現することができた。 In addition, the stability of the NbTi superconducting stranded wire for pulse 11 and the NbTi superconducting stranded wire 21 for energization is up to 95% of the Ic of the wire in a 5 T static magnetic field. Heat was locally applied to the wire 11 and the NbTi superconducting shaped twisted wire 21, and the energization stability was confirmed with the amount of heat input until the pulse NbTi superconducting shaped twisted wire 11 and the NbTi superconducting shaped twisted wire 21 were quenched. At this time, equivalent stability was obtained in the example and the comparative example. Regarding the workability, confirmation was performed at a disconnection frequency per 20 km. In the comparative example, disconnection occurred once, but in the example, disconnection did not occur. Regarding the raw material cost and processing cost, according to the example, it was possible to realize a cost reduction of about 10% compared to the conventional example.

以上より、本発明のパルス用NbTi超電導成形撚線11の主要な超電導性能は、比較例に対して、Jeおよびn値が高く、交流損失はやや大きいものの、通電安定性および加工性は同等であった。更に、製造コストの低減も実現することができた。   From the above, the main superconducting performance of the NbTi superconducting molded stranded wire for pulse 11 of the present invention is higher in Je and n values and slightly larger in AC loss than the comparative example, but the current carrying stability and workability are the same. there were. In addition, the manufacturing cost can be reduced.

これは、パルス用NbTi超電導多芯線10におけるCuNi比を低く抑え、素線1本当たりの臨界電流が大きくなり、素線撚り本数を比較例よりも低く抑えられ原料コストが低くなったこと、安定化材のCuに対する(NbTi+CuNi)の割合が小さく変形抵抗が小さくなったため、加工が容易になり製造コストが低くなったためである。 This is because the CuNi ratio in the NbTi superconducting multi-core wire 10 for pulses is kept low, the critical current per strand is increased, the number of strands is kept lower than that of the comparative example, and the raw material cost is reduced. This is because the ratio of (NbTi + CuNi) to Cu in the chemical material is small and the deformation resistance is small, so that the processing becomes easy and the manufacturing cost is reduced.

(銅合金層のNbTiフィラメントに対する体積比)
上記実施例において、1次素線14のCuNiからなる銅合金層12のNbTiフィラメント13に対する体積比(以下、CuNi体積比とする)を0.2〜0.7に変化させた場合の、1次素線14(NbTi単芯線)製造時のNbTiフィラメント13の露出の有無と、作製した1次素線14をパルス用NbTi超電導多芯線10に形成するときのNbTiフィラメント13の変形状態を調べた。また、表1と同様の条件でn値についても測定を行った。このときの結果を表2に示す。
(Volume ratio of copper alloy layer to NbTi filament)
In the above embodiment, when the volume ratio of the copper alloy layer 12 made of CuNi of the primary wire 14 to the NbTi filament 13 (hereinafter referred to as CuNi volume ratio) is changed from 0.2 to 0.7, 1 The presence or absence of exposure of the NbTi filament 13 at the time of manufacturing the secondary strand 14 (NbTi single-core wire) and the deformation state of the NbTi filament 13 when the produced primary strand 14 was formed on the NbTi superconducting multicore wire 10 for pulse were examined. . Further, the n value was also measured under the same conditions as in Table 1. The results at this time are shown in Table 2.

Figure 0005117166
Figure 0005117166

表2のように、CuNi体積比が0.2の場合には、1次素線14の形成時に、NbTiフィラメント13の周囲に存在する銅合金12の厚みが小さすぎるため、NbTiフィラメント13が露出してしまい、その後パルス用NbTi超電導多芯線10とするための多芯加工を行うことができなかった。また、CuNi体積比が0.7の場合には、1次素線14の形成時にはNbTiフィラメント13の露出はなかったが、多芯加工時に、1次素線14のNbTiフィラメント13の異常変形が多く、n値に関してはCuNi体積比が0.3〜0.6のときに比べて低くなってしまった。以上のように、本発明においては、CuNi体積比は0.3〜0.6が好ましい。   As shown in Table 2, when the CuNi volume ratio is 0.2, the thickness of the copper alloy 12 existing around the NbTi filament 13 is too small when the primary strand 14 is formed, so that the NbTi filament 13 is exposed. After that, the multi-core processing for forming the NbTi superconducting multi-core wire 10 for pulses could not be performed. When the CuNi volume ratio is 0.7, the NbTi filament 13 was not exposed when the primary strand 14 was formed, but abnormal deformation of the NbTi filament 13 of the primary strand 14 occurred during multi-core processing. In many cases, the n value was lower than when the CuNi volume ratio was 0.3 to 0.6. As described above, in the present invention, the CuNi volume ratio is preferably 0.3 to 0.6.

(安定化材のNbTiフィラメントに対する体積比)
次に、芯部16となる対辺寸法1.8mmの六角形棒状の安定化棒状体(Cu六角)16aの本数と安定化層17となるCu管の内径を調整し、安定化棒状体16aと前記Cu管の総体積が1次素線14のNbTiフィラメント13の総体積に対して1〜5倍となるように変化させた場合のパルス用NbTi超電導多芯線10を作成した。それぞれのパルス用NbTi超電導多芯線10に対して素線内結合損失時定数、臨界電流密度JeおよびNbTiフィラメント13の露出有無を調べた。以下、安定化棒状体16aと前記Cu管のNbTiフィラメント13の総体積に対する体積比を銅体積比という。なお、表1の実施例において、CuNi比を0.5、素線径を1.0mm、ツイストピッチを10mm、とし、上述のように条件を変化している。また、素線内結合損失時定数は、表1とは異なり、磁界振幅±0.5Tにおいて評価を行った。臨界電流密度Jeに関しては表1と同条件にて測定を行った。このときの結果を表3に示す。
(Volume ratio of stabilizer to NbTi filament)
Next, the number of hexagonal bar-shaped stabilizing rod-shaped bodies (Cu hexagonal) 16a having an opposite side dimension of 1.8 mm serving as the core portion 16 and the inner diameter of the Cu tube serving as the stabilizing layer 17 are adjusted, and the stabilizing rod-shaped body 16a The NbTi superconducting multifilamentary wire 10 for pulse when the total volume of the Cu tube was changed to be 1 to 5 times the total volume of the NbTi filament 13 of the primary strand 14 was produced. The NbTi superconducting multi-core wire 10 for each pulse was examined for intra-element coupling loss time constant, critical current density Je, and whether the NbTi filament 13 was exposed. Hereinafter, the volume ratio of the stabilizing rod-shaped body 16a to the total volume of the NbTi filament 13 of the Cu tube is referred to as a copper volume ratio. In the examples of Table 1, the CuNi ratio is 0.5, the strand diameter is 1.0 mm, and the twist pitch is 10 mm, and the conditions are changed as described above. Also, the coupling loss time constant in the wire was evaluated at a magnetic field amplitude of ± 0.5 T, unlike Table 1. The critical current density Je was measured under the same conditions as in Table 1. The results at this time are shown in Table 3.

Figure 0005117166
Figure 0005117166

表3のように、銅体積比が1のときには、NbTiフィラメント13が露出してしまい、パルス用NbTi超電導多芯線10を製造することが困難になり、製造歩留まりが低下する問題がある。一方、銅体積比が5の場合にはNbTiフィラメントの超電導体部分が少なくなってしまい、結果的にJeが低下してしまうだけでなく、結合時定数が大きくなるという問題が生じる。
以上より、本発明においては、銅体積比は1.5〜4.5であることが望ましい。Jeおよび結合時定数の数値から、より好ましい銅体積比は1.5〜3である。
As shown in Table 3, when the copper volume ratio is 1, the NbTi filament 13 is exposed, and it becomes difficult to manufacture the NbTi superconducting multicore wire 10 for pulses, and there is a problem that the manufacturing yield is lowered. On the other hand, when the copper volume ratio is 5, the superconductor portion of the NbTi filament is reduced, resulting in a problem that not only Je is lowered but also the coupling time constant is increased.
From the above, in the present invention, the copper volume ratio is desirably 1.5 to 4.5. From the numerical values of Je and the binding time constant, a more preferable copper volume ratio is 1.5-3.

(安定化材の残留抵抗比)
更に、安定化棒状体(Cu六角)16aと安定化層17の残留抵抗比を30〜350となるように、加工中の焼鈍条件を変化させたパルス用NbTi超電導多芯線10を作成した。それぞれのパルス用NbTi超電導多芯線10に対して素線内結合損失時定数および通電安定性を調べた。なお、表1の実施例において、CuNi比を0.5、銅体積比(NbTi/Cu)を2.0、素線径を1.0mm、ツイストピッチを10mmとした上で、上述のように条件を変化している。また、素線内結合損失時定数に関しては表2と同条件にて測定を行い、通電安定性の評価に関しては、パルス用NbTi超電導成多芯線10に対して臨界電流(Ic)まで通電を行い、Icまで通電可能かどうかを確認した。このときの結果を表4に示す。
(Residual resistance ratio of stabilizing material)
Furthermore, the NbTi superconducting multi-core wire 10 for pulse which changed the annealing conditions in process so that the residual resistance ratio of the stabilization rod-shaped body (Cu hexagon) 16a and the stabilization layer 17 might be 30-350 was created. For each pulse NbTi superconducting multi-core wire 10, the intra-element coupling loss time constant and the conduction stability were examined. In the examples in Table 1, the CuNi ratio is 0.5, the copper volume ratio (NbTi / Cu) is 2.0, the strand diameter is 1.0 mm, and the twist pitch is 10 mm. The conditions are changing. In addition, the coupling loss time constant in the strand is measured under the same conditions as in Table 2. For the evaluation of energization stability, the NbTi superconducting multi-core wire for pulse 10 is energized to the critical current (Ic). , Ic was confirmed whether energization was possible. The results at this time are shown in Table 4.

Figure 0005117166
Figure 0005117166

表4のように、残留抵抗比が30の場合には、臨界電流値(Ic)まで通電することができず、十分な通電安定性が得られなかった。また、残留抵抗比が400の場合には、結合時定数が大きくなるために、交流損失が大きくなる上に、高純度な無酸素銅を選定する必要があることから、性能上の原料受け入れの歩留まり低下という問題が生じてしまう。以上より、本発明において残留抵抗比は50〜350であることが望ましく、結合時定数と通電安定性の観点から100〜300が好ましい。   As shown in Table 4, when the residual resistance ratio was 30, it was not possible to energize up to the critical current value (Ic), and sufficient energization stability could not be obtained. In addition, when the residual resistance ratio is 400, the coupling time constant increases, so that the AC loss increases and it is necessary to select high-purity oxygen-free copper. The problem of a decrease in yield occurs. From the above, in the present invention, the residual resistance ratio is desirably 50 to 350, and 100 to 300 is preferable from the viewpoint of the coupling time constant and the conduction stability.

以上のように、安定化材からなる芯部と最外層に形成された安定化層の間にNbTiフィラメントとNi、MnおよびSiのうち1種類以上を含む銅合金層から形成される1次素線のみが埋設されているため、フィラメント集合体内にはNbTiと変形抵抗差が大きい安定化材は存在しない。すなわち、フィラメント集合体内のNi、MnおよびSiのうち1種類以上を含む銅合金層とNbTiは変形抵抗差が小さいため、熱間押出加工や伸線加工の際にフィラメント変形やフィラメント断線を引き起こすことを防止することができる。また、前記銅合金層が、Ni、MnおよびSiのうち1種類以上を含む銅合金であり、前記NbTiフィラメントに対する体積比が0.3〜0.6であることにより、フィラメント集合体の芯部の外周付近およびフィラメント集合体の外周に形成された安定化層の内周付近に配置された、パルス通電時に不安定になりやすいフィラメント領域のクエンチを抑制し、高い安定性を維持することができることから、特にパルス用途に適している。   As described above, a primary element formed from a NbTi filament and a copper alloy layer containing one or more of Ni, Mn, and Si between the core made of the stabilizing material and the stabilizing layer formed in the outermost layer. Since only the wires are embedded, there is no stabilizing material having a large deformation resistance difference from NbTi in the filament aggregate. That is, the copper alloy layer containing one or more of Ni, Mn and Si in the filament assembly and NbTi have a small deformation resistance difference, and thus cause filament deformation and filament breakage during hot extrusion and wire drawing. Can be prevented. Further, the copper alloy layer is a copper alloy containing one or more of Ni, Mn and Si, and the volume ratio with respect to the NbTi filament is 0.3 to 0.6. It is possible to suppress quenching of the filament region that tends to become unstable during pulse energization and to maintain high stability near the outer periphery of the filament and the inner periphery of the stabilization layer formed on the outer periphery of the filament assembly. Therefore, it is particularly suitable for pulse applications.

また、安定化材の総体積がフィラメント集合体におけるNbTiフィラメントの総体積に対して1.5〜4.5の銅または銅合金であることから、動的安定化基準を満たすことができ、本質的安定化基準を満足することができる。同様に、安定化材の総体積がフィラメント集合体におけるNbTiフィラメントの総体積に対して1.5〜4.5の銅または銅合金とすることで、伸線加工において断線の抑制や表面品質を確保することができる。更に、NbTi超電導多芯線中のCuNi比(NbTiに対するCuNiの体積比)を低く抑えられるので、NbTi超電導多芯線1本当たりの臨界電流値を向上させることができ、原料費と多芯ビレットの組立て部材数減や、複合変形抵抗が小さくなり押し出し比や伸線貫割が大きく取れることによる全体の製造工数低減と製造リードタイム短縮により加工費を安くすることができる。 In addition, since the total volume of the stabilizing material is 1.5 to 4.5 copper or a copper alloy with respect to the total volume of the NbTi filament in the filament assembly, the dynamic stabilization standard can be satisfied. The standard stabilization standard. Similarly, by making the total volume of the stabilizing material 1.5 to 4.5 with respect to the total volume of the NbTi filament in the filament assembly, it is possible to suppress disconnection and surface quality in wire drawing. Can be secured. Furthermore, since the CuNi ratio (volume ratio of CuNi to NbTi) in the NbTi superconducting multicore wire can be kept low, the critical current value per NbTi superconducting multicore wire can be improved, and the raw material cost and assembly of the multicore billet can be improved. Machining costs can be reduced by reducing the total number of manufacturing steps and shortening the manufacturing lead time by reducing the number of members, reducing the combined deformation resistance, and increasing the extrusion ratio and the drawing splitting.

本発明におけるパルス用NbTi超電導多芯線表面に金属メッキ層、樹脂絶縁層または酸化膜を形成した後、前記パルス用NbTi超電導多芯線を6本以上かつ40本以下で撚り合わせた矩形断面に成形することにより、パルス用NbTi超電導多芯線間の接触抵抗のばらつきを抑えるとともにパルス用NbTi超電導多芯線表面に金属メッキ層、樹脂絶縁層または酸化膜が無い場合よりもパルス用NbTi超電導多芯線間の接触抵抗が高くなるので、素線間結合損失を低減することができる。ここで、金属メッキ層はCu以外の高抵抗のCrやNi等を用いることでパルス用NbTi超電導多芯線間の接触抵抗を高くすることができ、また、Cuに比べて硬い金属を用いることで、パルス用NbTi超電導多芯線同士の接触面積をCuを用いたときよりも小さくすることができる。なお、パルス用NbTi超電導多芯線表面が銅合金層であっても同様の効果が得られる。 After forming a metal plating layer, a resin insulating layer or an oxide film on the surface of the pulse NbTi superconducting multi-core wire in the present invention, the pulse NbTi superconducting multi-core wire is formed into a rectangular cross section twisted by 6 or more and 40 or less. This suppresses the variation in contact resistance between the NbTi superconducting multicore wires for pulses and the contact between the NbTi superconducting multicore wires for pulses as compared with the case where there is no metal plating layer, resin insulating layer or oxide film on the surface of the NbTi superconducting multicore wires for pulses. Since resistance becomes high, the coupling loss between strands can be reduced. Here, the metal plating layer can increase the contact resistance between NbTi superconducting multicore wires for pulses by using high resistance Cr or Ni other than Cu, and by using a metal harder than Cu. The contact area between the NbTi superconducting multi-core wires for pulses can be made smaller than when Cu is used. The same effect can be obtained even if the NbTi superconducting multicore wire surface for pulses is a copper alloy layer.

本発明の一実施形態に係るパルス用NbTi超電導多芯線の断面構成図である。It is a section lineblock diagram of the NbTi superconducting multi-core wire for pulses concerning one embodiment of the present invention. 本発明の一実施形態に係るパルス用NbTi超電導成形撚線の断面構成図である。It is a section lineblock diagram of the NbTi superconductivity fabrication twisted wire for pulses concerning one embodiment of the present invention. 比較の実施形態に係るNbTi超電導多芯線の断面構成図である。It is a cross-sectional block diagram of the NbTi superconducting multi-core wire which concerns on comparative embodiment. 比較の実施形態に係るNbTi超電導成形撚線の断面構成図である。It is a cross-sectional block diagram of the NbTi superconductivity shaping | molding twisted wire which concerns on comparative embodiment.

符号の説明Explanation of symbols

10 パルス用NbTi超電導多芯線
11 パルス用NbTi超電導成形撚線
12 銅合金層
13 NbTiフィラメント
14 1次素線
15 フィラメント集合体
16 芯部
17 安定化層
18 被覆層
20 NbTi超電導多芯線
21 NbTi超電導成形撚線
22 銅合金層
23 NbTiフィラメント
24 1次素線
25 フィラメント集合体
26 芯部
27 安定化層
28−1 銅合金被覆層
28−2 銅合金被覆層
29 内部安定化層
30 最外銅合金被覆層
10 NbTi superconducting multi-core wire for pulse 11 NbTi superconducting stranded wire for pulse 12 Copper alloy layer 13 NbTi filament 14 Primary strand 15 Filament assembly 16 Core portion 17 Stabilizing layer 18 Covering layer 20 NbTi superconducting multi-core wire 21 NbTi superconducting wire Stranded wire 22 Copper alloy layer 23 NbTi filament 24 Primary strand 25 Filament assembly 26 Core 27 Stabilization layer 28-1 Copper alloy coating layer 28-2 Copper alloy coating layer 29 Internal stabilization layer 30 Outermost copper alloy coating layer

Claims (4)

安定化材からなる断面略円形の芯部と、
Ni、MnおよびSiのうち1種類以上を含んだ銅合金に埋設されたNbTiフィラメン
からなる1次素線のみで構成され、かつ、複数の前記1次素線が前記芯部の外周に配置
されたフィラメント集合体と、
前記フィラメント集合体の外周に形成された前記芯部と同じ安定化材からなる安定化層と
を有し、
前記NbTiフィラメントが埋設されている銅合金の体積が前記NbTiフィラメントに
対して0.3〜0.6倍であることを特徴とするパルス用NbTi超電導多芯線。
A substantially circular core section made of a stabilizing material,
Ni, consists only of NbTi filaments Tona Ru 1 Tsugimotosen embedded in a copper alloy containing one or more of Mn and Si, and, arranged a plurality of said 1 Tsugimotosen is on the outer periphery of the core portion Filament assembly,
A stabilizing layer made of the same stabilizing material as the core portion formed on the outer periphery of the filament assembly,
The NbTi superconducting multifilamentary wire for pulses, wherein the volume of the copper alloy in which the NbTi filament is embedded is 0.3 to 0.6 times that of the NbTi filament.
前記芯部および前記安定化層を形成する安定化材の総体積が前記NbTiフィラメントの総体積に対して1.5〜4.5倍であることを特徴とする請求項1に記載のパルス用NbTi超電導多芯線。 2. The pulse according to claim 1, wherein the total volume of the stabilizing material forming the core and the stabilization layer is 1.5 to 4.5 times the total volume of the NbTi filament. NbTi superconducting multicore wire. 前記安定化材が残留抵抗比50以上かつ350以下である銅または銅合金であることを特徴とする請求項1または2に記載のパルス用NbTi超電導多芯線。 The pulse NbTi superconducting multi-core wire according to claim 1 or 2, wherein the stabilizing material is copper or a copper alloy having a residual resistance ratio of 50 or more and 350 or less. 請求項1乃至3のいずれか1項に記載の前記パルス用NbTi超電導多芯線表面に金属メッキ層、樹脂絶縁層および酸化膜のうちの少なくとも1つを形成した後、6本以上かつ40本以下の前記NbTi超電導多芯線を撚り合わせて矩形断面に成形したことを特徴とするパルス用NbTi超電導成形撚線。   After forming at least one of a metal plating layer, a resin insulating layer, and an oxide film on the surface of the NbTi superconducting multi-core wire for pulse according to any one of claims 1 to 3, 6 or more and 40 or less The NbTi superconducting stranded wire for pulses, wherein the NbTi superconducting multi-core wire is twisted and formed into a rectangular cross section.
JP2007295639A 2006-11-14 2007-11-14 NbTi superconducting multi-core wire for pulse and NbTi superconducting molded stranded wire for pulse Active JP5117166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007295639A JP5117166B2 (en) 2006-11-14 2007-11-14 NbTi superconducting multi-core wire for pulse and NbTi superconducting molded stranded wire for pulse

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006307738 2006-11-14
JP2006307738 2006-11-14
JP2007295639A JP5117166B2 (en) 2006-11-14 2007-11-14 NbTi superconducting multi-core wire for pulse and NbTi superconducting molded stranded wire for pulse

Publications (2)

Publication Number Publication Date
JP2008147175A JP2008147175A (en) 2008-06-26
JP5117166B2 true JP5117166B2 (en) 2013-01-09

Family

ID=39607075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007295639A Active JP5117166B2 (en) 2006-11-14 2007-11-14 NbTi superconducting multi-core wire for pulse and NbTi superconducting molded stranded wire for pulse

Country Status (1)

Country Link
JP (1) JP5117166B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012190595A (en) * 2011-03-09 2012-10-04 Furukawa Electric Co Ltd:The Elemental wire for superconducting twisted cable, and superconducting twisted cable
FI20145755A (en) * 2014-09-01 2016-03-02 Luvata Espoo Oy Metal set comprising a superconductor
CN114156065A (en) * 2021-12-10 2022-03-08 阳光电源股份有限公司 Electronic component and high-frequency winding thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160608A (en) * 1986-01-09 1987-07-16 株式会社東芝 Compound superconductor
JP2854596B2 (en) * 1989-03-31 1999-02-03 株式会社東芝 Compound superconducting conductor and method for producing the same
JPH0589726A (en) * 1991-05-13 1993-04-09 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Nbyi superconductive wire
JPH07111112A (en) * 1993-10-13 1995-04-25 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Slow-response nbti superconductor
JPH07114837A (en) * 1993-10-18 1995-05-02 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Super quick response type nbti superconductor
JPH07192547A (en) * 1993-12-27 1995-07-28 Furukawa Electric Co Ltd:The Composite multiconductor superconductive wire
JPH10505703A (en) * 1994-06-23 1998-06-02 アイジーシー アドバンスド スーパーコンダクターズ,インコーポレイテッド Superconductor with high volume of copper
JP3670888B2 (en) * 1999-06-04 2005-07-13 財団法人電力中央研究所 Superconducting wire for alternating current and its manufacturing method
JP4258397B2 (en) * 2004-02-16 2009-04-30 日立電線株式会社 Nb-Ti superconducting wire

Also Published As

Publication number Publication date
JP2008147175A (en) 2008-06-26

Similar Documents

Publication Publication Date Title
JP6155253B2 (en) Compound superconducting wire and manufacturing method thereof
JP5000252B2 (en) NbTi superconducting wire
JP2013062239A (en) Nb3Sn SUPERCONDUCTING WIRE AND METHOD FOR MANUFACTURING THE SAME
JP7335886B2 (en) Insulation coating compound superconducting wire and its rewinding method
JP4227143B2 (en) Nb3Sn superconducting wire and precursor therefor
JP6585519B2 (en) Precursor for producing Nb3Sn superconducting wire, and method for producing Nb3Sn superconducting wire
EP2696381B1 (en) Niobium-titanium based superconducting wire
JP5117166B2 (en) NbTi superconducting multi-core wire for pulse and NbTi superconducting molded stranded wire for pulse
JP6182577B2 (en) Method for producing compound superconducting wire and method for producing compound superconducting cable
US20160351781A1 (en) Ternary molybdenum chalcogenide superconducting wire and manufacturing thereof
KR940006616B1 (en) Super conductive wire
Berriaud et al. Conductor R&D for the Iseult/INUMAC whole body 11.7 T MRI magnet
JP2009004128A (en) BRONZE-PROCESS Nb3Sn SUPERCONDUCTING WIRE, AND PRECURSOR THEREOF
JP5170897B2 (en) Flat superconducting molded stranded wire and method for manufacturing the same
WO2022075127A1 (en) Nbti superconducting multi-core wire
JP3754522B2 (en) Nb (3) Sn superconducting wire
JP2005141968A (en) Compound superconducting wire material and its manufacturing method
WO2023189275A1 (en) Compound superconducting precursor wire, compound superconducting precursor strand, and compound superconducting strand
JP2004342561A (en) Nb3sn superconductive wire
JP3670888B2 (en) Superconducting wire for alternating current and its manufacturing method
JP2012190595A (en) Elemental wire for superconducting twisted cable, and superconducting twisted cable
JP3753346B2 (en) Aluminum stabilized superconducting wire
JP5632767B2 (en) Precursor for producing Nb3Sn superconducting wire and Nb3Sn superconducting wire
JPH10321060A (en) Alminum-stabilized superconducting wire
JPH09245539A (en) Superconductive wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121017

R151 Written notification of patent or utility model registration

Ref document number: 5117166

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350