JP2009004128A - BRONZE-PROCESS Nb3Sn SUPERCONDUCTING WIRE, AND PRECURSOR THEREOF - Google Patents

BRONZE-PROCESS Nb3Sn SUPERCONDUCTING WIRE, AND PRECURSOR THEREOF Download PDF

Info

Publication number
JP2009004128A
JP2009004128A JP2007161777A JP2007161777A JP2009004128A JP 2009004128 A JP2009004128 A JP 2009004128A JP 2007161777 A JP2007161777 A JP 2007161777A JP 2007161777 A JP2007161777 A JP 2007161777A JP 2009004128 A JP2009004128 A JP 2009004128A
Authority
JP
Japan
Prior art keywords
precursor
superconducting
superconducting wire
wire
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007161777A
Other languages
Japanese (ja)
Inventor
Takashi Hase
隆司 長谷
Takashi Zaitsu
享司 財津
Hiroyuki Kato
弘之 加藤
Yukinobu Murakami
幸伸 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Japan Superconductor Technology Inc
Original Assignee
Kobe Steel Ltd
Japan Superconductor Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Japan Superconductor Technology Inc filed Critical Kobe Steel Ltd
Priority to JP2007161777A priority Critical patent/JP2009004128A/en
Publication of JP2009004128A publication Critical patent/JP2009004128A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bronze-process Nb<SB>3</SB>Sn superconducting wire which will not cause superconducting characteristics to deteriorate; and to provide a precursor (precursor for manufacturing a superconductive wire) for providing such a superconducting wire. <P>SOLUTION: This precursor is provided with a superconducting matrix part, having a plurality of Nb or Nb base alloy filaments arranged inside a Cu-Sn base alloy, and has stabilized copper arranged in its outer periphery. In the precursor, a reinforcing layer formed of Ta or a Ta base alloy is interposed between the superconducting matrix part and the stabilized copper; and when it is assumed that the distance from the center of a cross section of the precursor to the outer surface thereof, the distance from the center of the cross section to the inner surface of the reinforcing layer, and the distance from the center of the cross section to the outer surface of the reinforcing layer are R, r1 and r2, respectively, relations (1): 0.4≤r1/R≤0.8, (2): 0.55≤r2/R≤0.95 and (3): 0.05≤(r2-r1)/R≤0.22 are satisfied. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、Nb3Sn超電導線材をブロンズ法で製造するための前駆体(超電導線材製造用前駆体)、およびこうした前駆体によって製造されるブロンズ法Nb3Sn超電導線材に関するものであり、殊に超電導マグネットの素材として有用なNb3Sn超電導線材およびその前駆体に関するものである。 The present invention, Nb 3 Sn superconducting wire precursor for producing bronze method (precursor for fabricating a superconducting wire), and relates to the bronze process Nb 3 Sn superconducting wire produced by such precursors, in particular The present invention relates to a Nb 3 Sn superconducting wire useful as a material for a superconducting magnet and a precursor thereof.

Nb3Sn超電導線材を巻回したコイルに大電流を流して強磁場を発生させるマグネット(超電導マグネット)は、核磁気共鳴(NMR)分析装置や物性評価用装置の他、磁気エネルギー貯蔵や核融合装置等の電力応用を目指して、その開発が進められている。こうした電力応用の場合には、一本の超電導線材だけでは流せる超電導電流が不十分であることから、複数本の超電導線材を束にして導体化して使用するのが一般的である。 Magnets (superconducting magnets) that generate a strong magnetic field by flowing a large current through a coil wound with Nb 3 Sn superconducting wire are magnetic energy storage and nuclear fusion as well as nuclear magnetic resonance (NMR) analyzers and physical property evaluation devices. The development is progressing with the aim of applying power to devices. In the case of such power application, since a superconducting current that can be flowed with only one superconducting wire is insufficient, it is general to use a plurality of superconducting wires as a bundle in a conductor.

例えば、国際熱核融合実験炉(ITER)のトロイダルコイルやセンターソレノイドコイルには、1000本レベルのNb3Sn前駆体素線(Nb3Sn素線)がステンレス鋼製のジャケットの中に束ねて収容され、撚られた導体(CIC導体)として用いられ、その後で焼成熱処理が施されることになる。この焼成熱処理後には、体積分率で36%程度の空隙が存在しており、コイルを形成して電流を導体に通電する際には大きな電磁力が素線に加わることになり、Nb3Sn素線がその電磁力によって空隙の存在する領域内で動き、隣接する素線と接触することによって、大きな曲げ応力を受けることになる。その結果、超電導線材中のNb3Sn相に曲げ歪みが導入されることになって、臨界電流密度Jcやn値等の超電導特性が劣化するという問題が生じている。尚、前記「n値」とは、超電導線材における線材方向に流れる電流の均一性、即ち線材長手方向での超電導フィラメントの均一性を示す指標となるものであり、このn値が大きいほど超電導特性(即ち、電流の均一性)が優れているといわれているものである。 For example, in the International Thermonuclear Experimental Reactor (ITER) toroidal coil and center solenoid coil, 1000 levels of Nb 3 Sn precursor wires (Nb 3 Sn wires) are bundled in a stainless steel jacket. It is used as a housed and twisted conductor (CIC conductor) and then subjected to a firing heat treatment. After this firing heat treatment, there is a gap of about 36% in volume fraction, and when a coil is formed and a current is passed through the conductor, a large electromagnetic force is applied to the strand, and Nb 3 Sn The strands move within the region where the air gap exists due to the electromagnetic force, and are subjected to a large bending stress by coming into contact with the adjacent strands. As a result, bending strain is introduced into the Nb 3 Sn phase in the superconducting wire, resulting in a problem that superconducting characteristics such as critical current density Jc and n value deteriorate. The “n value” is an index indicating the uniformity of the current flowing in the direction of the wire in the superconducting wire, that is, the uniformity of the superconducting filament in the longitudinal direction of the wire. The larger the n value, the higher the superconducting characteristics. (That is, the uniformity of current) is said to be excellent.

こうした問題を解決するために、CIC導体内部の空隙率をできるだけ減らすことによって曲げ応力を低減することが試みされているが、それほど効果があるとは言えず、むしろNb3Sn素線そのものの特性を、曲げ応力に対して強くすること、換言すれば、曲げ応力が或る程度負荷されても超電導特性の低下が問題とならないような、耐性に優れた前駆体素線を開発することが望まれているのが実情である。 In order to solve these problems, attempts have been made to reduce the bending stress by reducing the void ratio inside the CIC conductor as much as possible, but this is not so effective, but rather the characteristics of the Nb 3 Sn strand itself. Therefore, it is hoped to develop a precursor wire excellent in resistance so that deterioration of superconducting properties does not become a problem even when bending stress is applied to some extent. It is the reality.

こうした技術として、例えば特許文献1には、ヤング率と0.2%耐力が高いTaやハステロイ(Mo含有Ni合金)等を補強材としてNb3Sn素線の内部に埋め込み、引張り応力に対しての強度を高くすることが提案されている。しかしながら、こうした構成は、補強材を素線横断面の中央の相対的に曲げ応力の小さな部分に配置するものであるので、補強材は引張り応力に対しては有効に機能するが、曲げ方向の大きな外表面近傍のNb3Snフィラメントは大きな曲げ歪みを受けることになり、曲げ応力に対して十分な耐性を有するものとはいえない。 As such a technique, for example, in Patent Document 1, Ta or Hastelloy (Mo-containing Ni alloy) having a high Young's modulus and 0.2% proof stress is embedded as a reinforcing material in an Nb 3 Sn strand, and against tensile stress. It has been proposed to increase the strength of. However, such a configuration is such that the reinforcing material is disposed in a portion having a relatively small bending stress at the center of the strand cross section, and thus the reinforcing material functions effectively with respect to the tensile stress. large Nb 3 Sn filaments of the outer surface near will receive a large bending strain, it can not be said to have a sufficient resistance to bending stress.

ところで、Nb3Sn超電導線材の代表的な製造方法としてはブロンズ法が知られているが、このブロンズ法では、図1(Nb3Sn超電導線材製造用前駆体の模式図)に示すように、Cu−Sn基合金マトリックス1中に複数本(図では7本)のNb若しくはNb基合金(例えば、Nb−Ta合金)からなる芯材2を埋設して一次スタック材3が構成される。尚、この一次スタック材3は、図1に示すように断面形状が六角形になるようにされる。 By the way, a bronze method is known as a typical method for producing an Nb 3 Sn superconducting wire. In this bronze method, as shown in FIG. 1 (schematic diagram of a precursor for producing an Nb 3 Sn superconducting wire), A primary stack material 3 is formed by embedding a core material 2 made of a plurality of (seven in the figure) Nb or Nb-based alloy (for example, Nb-Ta alloy) in a Cu-Sn base alloy matrix 1. The primary stack material 3 has a hexagonal cross section as shown in FIG.

上記一次スタック材3は、伸線や押し出し等の減面加工が施されることによって、上記芯材2を細径化してフィラメント(以下、「Nb基フィラメント」と呼ぶことがある)とし、このNb基フィラメントとブロンズとからなる一次スタック材3を複数束ねて線材群となし、これを拡散障壁層4としてのNbシートやTaシートを巻いたパイプ形状のCu−Sn基合金5内に挿入し、或いは一次スタック材3を複数束ねた線材群にNbシートやTaシートを直接巻き、その外周に安定化銅6を配置することによって二次多芯ビレットを組み立てる。   The primary stack material 3 is subjected to surface-reducing processing such as wire drawing and extrusion to reduce the diameter of the core material 2 to form a filament (hereinafter sometimes referred to as “Nb-based filament”). A plurality of primary stack materials 3 made of Nb-based filaments and bronze are bundled to form a wire group, which is inserted into a pipe-shaped Cu-Sn base alloy 5 wound with an Nb sheet or Ta sheet as a diffusion barrier layer 4. Alternatively, a secondary multi-core billet is assembled by directly winding an Nb sheet or a Ta sheet around a wire group in which a plurality of primary stack members 3 are bundled, and disposing stabilizing copper 6 on the outer periphery thereof.

上記のような二次多芯ビレットを静水圧押し出しし、続いて引き抜き加工等による減面加工を施し、図1の断面形状を維持したまま保持された超電導線材製造用前駆体や、図2に示すような断面矩形状の平角線材の超電導線材製造用前駆体(以下、単に「前駆体」と呼ぶことがある)に加工される。   The secondary multi-core billet as described above is hydrostatically extruded and subsequently subjected to surface reduction by drawing or the like, and the precursor for manufacturing a superconducting wire held while maintaining the cross-sectional shape of FIG. It is processed into a precursor for manufacturing a superconducting wire with a rectangular wire having a rectangular cross section as shown (hereinafter sometimes simply referred to as “precursor”).

上記のような前駆体(伸線加工後の線材)を600〜700℃付近の温度で100時間程度の拡散熱処理(Nb3Sn生成熱処理)をすることにより、Nb基フィラメントとブロンズマトリックスの界面にNb3Sn化合物層(この層の全体的な形状に着目して、「超電導フィラメント」または「Nb3Snフィラメント」と呼ぶことがある)を生成させて超電導線材とする。 By performing diffusion heat treatment (Nb 3 Sn generation heat treatment) for about 100 hours at a temperature near 600 to 700 ° C., the above precursor (wire material after wire drawing) is applied to the interface between the Nb-based filament and the bronze matrix. An Nb 3 Sn compound layer (which may be referred to as a “superconducting filament” or “Nb 3 Sn filament” by paying attention to the overall shape of this layer) is used as a superconducting wire.

一般に、ブロンズ法Nb3Sn超電導前駆体の断面構成としては、図1、2に示したように、横断面中央部にCu−Sn基合金マトリックス中に複数のNb基フィラメントが配置された部分(以下、この部分を「超電導マトリックス部」と呼ぶ)と、その外側にCu−Sn基合金5層(この層は省略されることがある:前記図2参照)、更にその外側に、超電導マトリックス部のSnが安定化銅(前記図1,2の6)に拡散して汚染するのを防止する機能を発揮する拡散障壁層(前記図1、2の4)が配置され、最外層に安定化銅が配置される構成となっている。 In general, as shown in FIGS. 1 and 2, the cross-sectional configuration of the bronze Nb 3 Sn superconducting precursor is a portion in which a plurality of Nb-based filaments are arranged in a Cu—Sn-based alloy matrix at the center of the cross section ( Hereinafter, this portion is referred to as a “superconducting matrix portion”, and five layers of Cu—Sn base alloy are provided on the outside thereof (this layer may be omitted: see FIG. 2), and further, the superconducting matrix portion is provided on the outside thereof. A diffusion barrier layer (4 in FIGS. 1 and 2) that functions to prevent Sn from diffusing into and contaminating stabilized copper (6 in FIGS. 1 and 2) is disposed and stabilized in the outermost layer. Copper is arranged.

上記の様な前駆体構成において、拡散障壁層4としては、安定化銅6と反応せず、或る程度の加工性を有するという観点から、Nbが用いられることが多いが、上記のようにTaが用いられることがある。これらの素材から構成される拡散障壁層4は、超電導マトリックスの外側にあるので、焼成熱処理後にNb3Snフィラメントよりも大きい曲げ応力を受ける位置にあり、素線全体の曲げ歪みを低減できる可能性のある位置にある。しかしながら、従来の拡散障壁層を構成するTaまたはTa基合金層は、破損しない程度でSnの拡散を防止できれば良いとの観点から構成されており、その厚さは10μm程度と薄いものであり、曲げ歪みを軽減するまでには至らないものである。 In the precursor structure as described above, Nb is often used as the diffusion barrier layer 4 from the viewpoint that it does not react with the stabilized copper 6 and has a certain degree of workability. Ta may be used. Since the diffusion barrier layer 4 made of these materials is outside the superconducting matrix, it is in a position to receive a bending stress larger than that of the Nb 3 Sn filament after the heat treatment for heat treatment, and the possibility of reducing the bending strain of the entire strand can be reduced. It is in a certain position. However, the Ta or Ta-based alloy layer constituting the conventional diffusion barrier layer is configured from the viewpoint that it is only necessary to prevent the diffusion of Sn to the extent that it does not break, and its thickness is as thin as about 10 μm. This is not enough to reduce bending distortion.

また、拡散障壁層の構成として、Nb,Ta,V,W或いはこれらの合金シートと、CuまたはCu基合金シートを交互に重ね巻きして、押出し、引き抜き加工によって、層状組織から分散繊維状組織に変化させることによって、強度も兼ね備えたものとする技術も提案されている(例えば、特許文献2、3)。   In addition, as a constitution of the diffusion barrier layer, Nb, Ta, V, W or an alloy sheet thereof and a Cu or Cu-based alloy sheet are alternately stacked, extruded, drawn, and drawn to form a dispersed fibrous structure. There has also been proposed a technique that also has strength by changing to (for example, Patent Documents 2 and 3).

こうした技術では、超電導フィラメント集合部の外側の曲げ応力が大きい位置に補強材が配置されることになるので、健全な加工が可能であれば、曲げ応力を緩和するのに有効であると考えられる。しかしながら、こうした構成では、異種金属が複雑に乱れて加工されることになるので、加工中に内部応力のバランスが崩れ、結果的に横断面(或は縦断面においても)厚さの不均一な補強層が形成され、超電導フィラメント集合部の面積も影響を受けて、超電導特性のバラツキが大きくなるという問題が生じる。また、最悪の場合には、異種金属を組合わせることによる影響によって、断線に至るという事態も生じることがある。   In such a technique, the reinforcing material is disposed at a position where the bending stress outside the superconducting filament assembly portion is large. Therefore, it is considered effective to alleviate the bending stress if sound processing is possible. . However, in such a configuration, dissimilar metals are processed in a complicated manner, so that the balance of internal stress is lost during processing, resulting in uneven thickness in the cross section (or even in the vertical section). The reinforcing layer is formed, and the area of the superconducting filament assembly is also affected, resulting in a problem that the variation in superconducting characteristics increases. In the worst case, a disconnection may occur due to the effect of combining different kinds of metals.

一方、特許文献4には、Taの加工性を重視して、ビレットの全断面積に対する拡散障壁Ta層用のTa管の断面積の比率を大きくして規定する技術も提案されている。このようにしてTa管の断面積を大きくすると、線材に加工したときの線材の全断面積に対する拡散障壁Ta層の断面積の比率を高くでき、この断面積比率が低い場合に比べて相対的に曲げ歪みに対する耐性が向上するものと考えられる。   On the other hand, Patent Document 4 also proposes a technique for prescribing and specifying the ratio of the cross-sectional area of the Ta tube for the diffusion barrier Ta layer with respect to the total cross-sectional area of the billet with emphasis on the workability of Ta. When the cross-sectional area of the Ta tube is increased in this way, the ratio of the cross-sectional area of the diffusion barrier Ta layer to the total cross-sectional area of the wire when processed into the wire can be increased, and the relative area compared to the case where the cross-sectional area ratio is low It is considered that resistance to bending strain is improved.

しかしながら、ただ単純に断面積や厚みを大きくするだけでは、曲げ歪みに対する耐性を効果的に向上できるとは言えず、場合によっては超電導特性が劣化したり、却って耐性が低下することがある。また、この技術では、板状Taを筒状に丸めて縁端部を溶接接合した溶接管を用いることを想定しており、曲げ応力がかかると溶接接合部に応力が集中することになって、周方向に均等に曲げ応力を緩和することができず、特定位置に存在する超電導フィラメントに大きな曲げ応力がかかってしまい、超電導特性の劣化を招くという問題がある。
特開平2−213008号公報 特開平9―153310号公報 特開2001−229749号公報 特許第3454550号公報
However, simply increasing the cross-sectional area and thickness cannot effectively improve the resistance to bending strain, and in some cases the superconducting characteristics may deteriorate or the resistance may decrease. In this technique, it is assumed that a welded pipe obtained by rounding plate-like Ta into a cylindrical shape and welding and joining the edge portions is used. When bending stress is applied, stress is concentrated on the welded joint. There is a problem that the bending stress cannot be alleviated evenly in the circumferential direction, and a large bending stress is applied to the superconducting filament existing at a specific position, thereby degrading the superconducting characteristics.
JP-A-2-213008 JP-A-9-153310 JP 2001-229749 A Japanese Patent No. 3454550

本発明はこうした状況の下でなされたものであって、その目的は、ブロンズ法Nb3Sn超電導線材における曲げ応力を効果的に緩和すると共に、加工時においても均一な加工ができるようにすることによって、超電導特性を劣化させないようなブロンズ法Nb3Sn超電導線材、およびこうした超電導線材を実現するための前駆体(超電導線材製造用前駆体)を提供することにある。 The present invention has been made under such circumstances, and the purpose thereof is to effectively relieve bending stress in the bronze Nb 3 Sn superconducting wire and to perform uniform processing even during processing. Is to provide a bronze Nb 3 Sn superconducting wire that does not deteriorate the superconducting characteristics, and a precursor (precursor for producing a superconducting wire) for realizing such a superconducting wire.

上記目的を達成することのできた本発明のNb3Sn超電導線材前駆体とは、ブロンズ法Nb3Sn超電導線材を製造する際に用いる超電導線材前駆体において、Cu−Sn基合金中に複数本のNbまたはNb基合金フィラメントが配置された超電導マトリックス部を備えると共に、その外周に安定化銅が配置された前駆体であって、
前記超電導マトリックス部と安定化銅の間には、TaまたはTa基合金からなる補強層が介在されると共に、前駆体の横断面中心から外表面までの距離をR、横断面中心から補強層内面までの距離をr1、横断面中心から補強層外面までの距離をr2としたとき、下記(1)〜(3)の関係を満足するものである点に要旨を有するものである。
0.4≦r1/R≦0.8 …(1)
0.55≦r2/R≦0.95 …(2)
0.05≦(r2−r1)/R≦0.22 …(3)
The Nb 3 Sn superconducting wire precursor of the present invention that has achieved the above object is a superconducting wire precursor used in the production of a bronze Nb 3 Sn superconducting wire. A precursor having a superconducting matrix portion on which Nb or Nb-based alloy filaments are arranged, and a stabilizing copper on the outer periphery thereof,
A reinforcing layer made of Ta or a Ta-based alloy is interposed between the superconducting matrix portion and the stabilizing copper, and the distance from the center of the cross section to the outer surface is R, and the inner surface of the reinforcing layer is from the center of the cross section. And the distance from the center of the cross section to the outer surface of the reinforcing layer is r2, the following points (1) to (3) are satisfied.
0.4 ≦ r1 / R ≦ 0.8 (1)
0.55 ≦ r2 / R ≦ 0.95 (2)
0.05 ≦ (r2-r1) /R≦0.22 (3)

本発明の上記Nb3Sn超電導線材前駆体においては、前記補強層を形成するTa基合金としては、Nb,V,WおよびMoよりなる群から選ばれる1種以上の元素を0.5質量%以下(0%を含まない)の割合で含有するものが挙げられる。 In the Nb 3 Sn superconducting wire precursor of the present invention, the Ta-based alloy forming the reinforcing layer contains 0.5% by mass or more of one or more elements selected from the group consisting of Nb, V, W and Mo. What is contained in the following ratio (excluding 0%) is mentioned.

また本発明の上記Nb3Sn超電導線材前駆体の好ましい実施形態としては、(a)前記補強層の内面側および/または外面側に、NbまたはNb基合金からなる層を形成したものであること、(b)前記補強層は、TaまたはTa基合金からなるシート状部材を巻回することによって単層にまたは積層して形成されたものであること、(c)TaまたはTa基合金からなるシート状部材を巻回して積層して形成するに際し、各層間にNbまたはNb基合金層シートを介在させたものであること、等の構成が挙げられる。 Further, as a preferred embodiment of the Nb 3 Sn superconducting wire precursor of the present invention, (a) a layer made of Nb or an Nb-based alloy is formed on the inner surface side and / or outer surface side of the reinforcing layer. (B) The reinforcing layer is formed by winding or laminating a sheet-like member made of Ta or a Ta-based alloy, and (c) made of Ta or a Ta-based alloy. When forming a sheet-like member by winding and laminating, a configuration in which an Nb or Nb-based alloy layer sheet is interposed between the respective layers is exemplified.

上記のような各種超電導線材製造用前駆体を用いて、拡散熱処理することによって希望する超電導特性(臨界電流密度Jc、n値および耐性)を発揮するNb3Sn超電導線材を製造することができる。 Nb 3 Sn superconducting wires exhibiting desired superconducting properties (critical current density Jc, n value and resistance) can be produced by diffusion heat treatment using the various superconducting wire production precursors as described above.

本発明においては、ブロンズ法Nb3Sn超電導線材を製造する際に構成される前駆体において、線材断面の適切な位置に、線材断面に対して適切な割合となる厚みのTaまたはTa基合金層を形成するという構成を採用することによって、良好な超電導特性を維持しつつ強度的にも十分な超電導線材を得ることができた。 In the present invention, a Ta or Ta-based alloy layer having a thickness suitable for the cross section of the wire at an appropriate position in the cross section of the wire in the precursor formed when manufacturing the bronze Nb 3 Sn superconducting wire By adopting the configuration of forming a superconducting wire, it was possible to obtain a superconducting wire having sufficient strength while maintaining good superconducting characteristics.

これまで提案されている技術では、用いる補強材として、NbSnを生成する熱処理によっても再結晶化が生じて軟化しないように、V(融点:1902℃)、W(融点:3380℃)、Mo(融点:2617℃)、Ta(融点:2998℃)、Nb(融点:2467℃)等の高融点金属が使用されている。しかしながら、これらの金属の内で、超電導線材製造用前駆体のように、室温での強加工にも耐え得るという必要条件を満足し得るものは、TaとNbだけである。また、TaとNbを比べてみると、低温でのヤング率や0.2%耐力も高く、補強材(補強層)として少量で十分な補強効果が期待できるのはTaだけである。尚、本発明で補強層として用いるTa(純Ta)としては、水素、窒素、炭素、酸素等の不可避不純物を夫々200ppm以下で含んでいても良い。具体的には、水素:10ppm以下、窒素:50ppm以下、炭素:50ppm以下、酸素:100ppm以下が好ましい。   In the technology proposed so far, V (melting point: 1902 ° C.), W (melting point: 3380 ° C.), Mo (so that the recrystallization is not caused and softened by the heat treatment for generating NbSn as the reinforcing material to be used. High melting point metals such as melting point: 2617 ° C., Ta (melting point: 2998 ° C.), Nb (melting point: 2467 ° C.) are used. However, among these metals, only Ta and Nb can satisfy the requirement of being able to withstand strong processing at room temperature, such as a precursor for producing a superconducting wire. Further, when comparing Ta with Nb, the Young's modulus at low temperature and the 0.2% proof stress are high, and only Ta can be expected to have a sufficient reinforcing effect in a small amount as a reinforcing material (reinforcing layer). In addition, as Ta (pure Ta) used as a reinforcing layer in the present invention, inevitable impurities such as hydrogen, nitrogen, carbon, and oxygen may be included at 200 ppm or less, respectively. Specifically, hydrogen: 10 ppm or less, nitrogen: 50 ppm or less, carbon: 50 ppm or less, and oxygen: 100 ppm or less are preferable.

また、上記のようなTaに、Nb,V,W,Mo等の合金元素を0.5質量%程度まで含有させたTa基合金を用いても、Taと比べて加工性を損なうことなく、補強効果が向上できるものとなる。更に、上記のようなTaまたはTa基合金をシート状部材として巻回することによって、溶接接合部を存在させずに、応力分布が周方向に均一な加工を行うことができると考えられる。   Further, even when using a Ta-based alloy containing alloy elements such as Nb, V, W, and Mo up to about 0.5% by mass in Ta as described above, the workability is not impaired as compared with Ta. The reinforcing effect can be improved. Furthermore, it is considered that by winding Ta or a Ta-based alloy as described above as a sheet-like member, it is possible to perform processing with a uniform stress distribution in the circumferential direction without the presence of a weld joint.

本発明者らは、上記のような特性を有するTaまたはTa基合金を補強材(補強層)として用いることを前提とし、その具体的な構成について検討した。そして、上記のようなTaまたはTa基合金を線材前駆体中央部ではなく、断面内で相対的に曲げ応力が大きく働く位置に配置することによって、曲げ応力を効果的に緩和し得るとの着想が得られた。   The inventors of the present invention have studied the specific configuration on the premise that Ta or a Ta-based alloy having the above characteristics is used as a reinforcing material (reinforcing layer). And the idea that the bending stress can be effectively relieved by arranging Ta or a Ta-based alloy as described above not at the central portion of the wire precursor but at a position where the bending stress is relatively large in the cross section. was gotten.

TaまたはTa基合金の断面積率を高くすると、曲げ応力を緩和する効果は高くなるが、単純に断面積率を高めるだけでは、超電導フィラメント(Nb3Snフィラメント)の面積割合が低下して、臨界電流密度Jcが低下することになる。 Increasing the cross-sectional area ratio of Ta or a Ta-based alloy increases the effect of reducing the bending stress, but simply increasing the cross-sectional area ratio decreases the area ratio of the superconducting filament (Nb 3 Sn filament), The critical current density Jc will decrease.

こうした状況の下で、本発明者らは、曲げ応力を効果的に緩和すると共に、臨界電流密度Jcの低下をも抑制し、しかも均一な加工が実現できるような、超電導線材前駆体の構成について更に検討した。   Under such circumstances, the present inventors are able to reduce the bending stress effectively, suppress a decrease in the critical current density Jc, and achieve a uniform processing, thereby realizing a structure of the superconducting wire precursor. Further investigation was made.

その結果、前駆体の横断面中心から外表面までの距離をR、横断面中心から補強層内面までの距離をr1、横断面中心から補強層外面までの距離をr2としたとき、下記(1)〜(3)の関係を満足するようにすれば、上記目的が見事に達成されることを見出し、本発明を完成した。
0.4≦r1/R≦0.8 …(1)
0.55≦r2/R≦0.95 …(2)
0.05≦(r2−r1)/R≦0.22 …(3)
As a result, when the distance from the center of the cross section to the outer surface is R, the distance from the center of the cross section to the inner surface of the reinforcing layer is r1, and the distance from the center of the cross section to the outer surface of the reinforcing layer is r2, the following (1 ) To (3), the inventors have found that the above object can be achieved brilliantly, thereby completing the present invention.
0.4 ≦ r1 / R ≦ 0.8 (1)
0.55 ≦ r2 / R ≦ 0.95 (2)
0.05 ≦ (r2-r1) /R≦0.22 (3)

横断面中心から補強層内面までの距離r1が、距離Rとの比(r1/R)で0.4よりも小さくなると、曲げ応力を緩和することができなくなり、0.8よりも大きくなると、最外層にTaが配置されるか若しくは相対的に非常に薄いCu層(安定化銅)が配置されることになるので、伸線加工等の冷間加工時にダイスが焼き付き等の加工上の不都合が生じることになる。尚、(r1/R)の好ましい下限は0.57であり、好ましい上限は0.72である。   If the distance r1 from the center of the cross section to the inner surface of the reinforcing layer is smaller than 0.4 in the ratio (r1 / R) to the distance R, the bending stress cannot be relaxed, and if larger than 0.8, Since Ta is arranged in the outermost layer or a relatively very thin Cu layer (stabilized copper) is arranged, inconvenience in processing such as die seizure during cold working such as wire drawing. Will occur. In addition, the preferable minimum of (r1 / R) is 0.57, and a preferable upper limit is 0.72.

横断面中心から補強層外面までの距離r2が、距離Rとの比(r2/R)で0.55よりも小さくなると、曲げ応力を緩和することができなくなり、0.95よりも大きくなると、最外層にTaが配置されるか若しくは相対的に非常に薄いCu層(安定化銅)が配置されることになるので、伸線加工等の冷間加工時にダイスが焼き付き等の加工上の不都合が生じることになる。尚、(r2/R)の好ましい下限は0.60であり、好ましい上限は0.75である。   When the distance r2 from the center of the cross section to the outer surface of the reinforcing layer is smaller than 0.55 in the ratio (r2 / R) to the distance R, the bending stress cannot be relaxed, and when larger than 0.95, Since Ta is arranged in the outermost layer or a relatively very thin Cu layer (stabilized copper) is arranged, inconvenience in processing such as die seizure during cold working such as wire drawing. Will occur. In addition, the preferable minimum of (r2 / R) is 0.60, and a preferable upper limit is 0.75.

また、補強層の厚さ(r2−r1)がRとの比[(r2−r1)/R]で小さくなり過ぎると、補強層の断面積比が小さくなって曲げ応力の緩和効果が発揮できず、大きくなり過ぎると、臨界電流密度Jcの低下が著しくなる。こうした観点から、(r2−r1)/Rは、0.05〜0.22の範囲とする必要がある。尚、(r2−r1)/Rの好ましい下限は0.07であり、好ましい上限は0.14である。   Moreover, if the thickness (r2-r1) of the reinforcing layer becomes too small in the ratio [(r2-r1) / R] to R, the cross-sectional area ratio of the reinforcing layer becomes small, and the bending stress relaxation effect can be exhibited. However, if it becomes too large, the critical current density Jc is significantly reduced. From such a viewpoint, (r2-r1) / R needs to be in the range of 0.05 to 0.22. In addition, the preferable minimum of (r2-r1) / R is 0.07, and a preferable upper limit is 0.14.

本発明の前駆体では、断面中心からの各距離r1,r2,および補強層の厚み(r2−r1)をRとの関係で規定することによって[上記(1)〜(3)式]、本発明の効果が発揮されるものであるが、本発明は前記図1に示した丸線材前駆体は勿論のこと、断面が矩形状の平角線材の前駆体にも適用できるものである。例えば、丸線材前駆体の場合では、上記距離Rは線材断面の半径として捉えることができ、r1,r2は線材中心から補強層の内面および外面への距離(半径方向の距離)として捉えることができる。一方、平角線材の場合には、最終的な断面形状において、長辺方向(図2の左右方向)および短辺方向(図2の上下方向)の夫々において、上記の関係を満足するように設計すれば良い。   In the precursor of the present invention, the distances r1, r2 from the center of the cross section and the thickness of the reinforcing layer (r2-r1) are defined in relation to R [the above formulas (1) to (3)], Although the effect of the invention is exhibited, the present invention can be applied not only to the round wire precursor shown in FIG. 1 but also to a rectangular wire precursor having a rectangular cross section. For example, in the case of a round wire precursor, the distance R can be taken as the radius of the wire cross section, and r1 and r2 can be taken as the distance (radial distance) from the wire center to the inner and outer surfaces of the reinforcing layer. it can. On the other hand, in the case of a rectangular wire, the final cross-sectional shape is designed to satisfy the above relationship in each of the long side direction (left-right direction in FIG. 2) and the short side direction (up-down direction in FIG. 2). Just do it.

本発明の前駆体を形成するに当たっては、その基本的な構成として、図1、2に示した六角断面形状の一次スタック材3を複数束ねて二次多芯ビレットを構成することが好ましいが、こうした多芯構造とすることによって、Nbフィラメント本数を増やしてNbフィラメント径を細くすることができる。生成するNb3Sn層の厚さは2μm程度と薄くなるので、Nb3Snフィラメント径を細く(例えば5μm程度)することによって、未反応のNbをなくし、オーバーオールの臨界電流密度(臨界電流を線材の全断面積で除した電流密度)を高くすることができる。 In forming the precursor of the present invention, as a basic configuration, it is preferable to configure a secondary multi-core billet by bundling a plurality of hexagonal cross-section primary stack materials 3 shown in FIGS. With such a multi-core structure, the number of Nb filaments can be increased and the Nb filament diameter can be reduced. Since the thickness of the Nb 3 Sn layer to be formed is as thin as about 2 μm, by reducing the diameter of the Nb 3 Sn filament (for example, about 5 μm), unreacted Nb is eliminated and the critical current density of the overall (the critical current becomes the wire rod). Current density divided by the total cross-sectional area) can be increased.

本発明の前駆体では、TaまたはTa基合金からなる補強層を上記(1)〜(3)式の関係を満足する所定の位置に配置することに特徴を有するものであり、こうした補強層を配置するに当たっては、基本的に円筒状のもの(最終形状で角筒状になることもある)を超電導マトリックスの外周に配置すればよいが、一体的にこのような形状に形成するには加工性の点で難がある。また、溶接施工によって形成する場合であっても、溶接接合部の存在によって、均一加工が難しいものとなる。   The precursor of the present invention is characterized in that a reinforcing layer made of Ta or a Ta-based alloy is arranged at a predetermined position satisfying the relationships of the above formulas (1) to (3). For placement, a cylindrical shape (which may be a square tube in the final shape) may be placed on the outer periphery of the superconducting matrix. There are difficulties in terms of sex. Moreover, even if it is a case where it forms by welding construction, a uniform process will become difficult by presence of a welding junction part.

そこで、補強層を配置するための具体的構成として、上記のようなTaまたはTa基合金からなるシート状部材を巻回することによって(即ち、全体形状として円筒状とすることによって)、シート状部材が単層または積層して形成された補強層として形成することが好ましい。こうした構成では、加工性や溶接接合部による不都合を発生させることなく、補強層を容易に形成することができる。   Therefore, as a specific configuration for arranging the reinforcing layer, by winding a sheet-like member made of Ta or a Ta-based alloy as described above (that is, by making the entire shape cylindrical), a sheet-like member is formed. It is preferable to form the member as a reinforcing layer formed of a single layer or a stacked layer. In such a configuration, the reinforcing layer can be easily formed without causing inconvenience due to workability and welded joints.

上記のような補強層を形成するに際して、補強層の内面側および外面側(即ち、補強層の超電導マトリックス側および安定化銅側)の少なくとも一方に、NbまたはNb基合金からなる層を配置することも好ましい実施形態である。こうした層を配置することによって、これらはCuやCu―Sn基合金と、TaまたはTa基合金の中間の機械的特性(伸びや引張強度等)を有するので、TaまたはTa基合金が直接Cu等と接触する場合に比べて加工バランスが良くなり、断面形状の均一性が更に向上することになる。   In forming the reinforcing layer as described above, a layer made of Nb or an Nb-based alloy is disposed on at least one of the inner surface side and the outer surface side of the reinforcing layer (that is, the superconducting matrix side and the stabilized copper side of the reinforcing layer). This is also a preferred embodiment. By arranging such layers, they have intermediate mechanical properties (elongation, tensile strength, etc.) between Cu or Cu-Sn base alloy and Ta or Ta base alloy, so that Ta or Ta base alloy is directly Cu etc. Compared with the case where it contacts, the processing balance is improved, and the uniformity of the cross-sectional shape is further improved.

また、補強層をシート状部材として巻回して積層形成するに際しては、その層間にNbまたはNb基合金からなるシートを介在させて巻回することによって、TaまたはTa基合金の(111)面集積の傾向が緩和され、TaまたはTa基合金の単独層の場合に比べて、加工性が高い状態に維持でき、断面形状に均一性がより向上することになる。   In addition, when a reinforcing layer is wound as a sheet-like member to form a laminate, a (111) surface integration of Ta or Ta-based alloy is performed by winding a sheet made of Nb or Nb-based alloy between the layers. As compared with the case of a single layer of Ta or a Ta-based alloy, it is possible to maintain a higher workability and to improve the uniformity of the cross-sectional shape.

これらの構成で用いることのできるNb基合金としては、NbにTa,V,W,Mo等の合金元素を0.5質量%以下で含有させたものが挙げられる。また、超電導マトリックスに配置されるNb基フィラメントとして用いるNb基合金についても、これらの合金を用いることができるが、その他、Zr,Ti,Hf,等を0.5質量%程度まで含有するNb基合金も用いることができる。   Examples of Nb-based alloys that can be used in these configurations include Nb containing alloy elements such as Ta, V, W, and Mo in an amount of 0.5% by mass or less. In addition, these Nb-based alloys used as Nb-based filaments arranged in the superconducting matrix can also be used, but other than these, Nb groups containing up to about 0.5% by mass of Zr, Ti, Hf, etc. Alloys can also be used.

上記のような補強層は、基本的に超電導マトリックス内のSnの外部への拡散を防止できるので、拡散障壁層としての機能をも発揮することになる。   Since the reinforcing layer as described above can basically prevent the diffusion of Sn in the superconducting matrix to the outside, it also functions as a diffusion barrier layer.

尚、本発明の超電導線材前駆体では、その最外層に安定化銅(図1または2の6)が配置されることになるが、この安定化銅の他の部分(非銅部)に対する面積割合(銅比)は、0.2〜2.0程度とすることが好ましく、より好ましくは0.3〜1.5である。この銅比が0.2未満では安定化銅としての機能が低下し、2.0よりも大きくなると、オーバーオールの臨界電流密度(臨界電流を線材の全断面積で除した電流密度)が低下することになる。   In the superconducting wire precursor of the present invention, stabilized copper (6 in FIG. 1 or 2) is arranged in the outermost layer, but the area relative to other parts (non-copper part) of this stabilized copper. The ratio (copper ratio) is preferably about 0.2 to 2.0, and more preferably 0.3 to 1.5. When the copper ratio is less than 0.2, the function as a stabilized copper is lowered. When the copper ratio is larger than 2.0, the critical current density of the overall (current density obtained by dividing the critical current by the total cross-sectional area of the wire) is lowered. It will be.

本発明の前駆体で用いるCu−Sn基合金は、Sn含有量が14〜17質量%程度であることが好ましい。こうした含有量とすることによって、臨界電流密度Jcを更に改善することができる。このSn含有量が、14質量%未満では、Sn濃度を高める効果が発揮できず、17質量%を超えると、Cu−Sn系化合物が多量に析出して線材の均一加工が困難になる。尚、このCu−Sn基合金は、0.1〜1.5質量%程度のTiを含有したものであっても良い。   The Cu—Sn base alloy used in the precursor of the present invention preferably has a Sn content of about 14 to 17% by mass. By setting it as such content, the critical current density Jc can be further improved. If the Sn content is less than 14% by mass, the effect of increasing the Sn concentration cannot be exhibited. If the Sn content exceeds 17% by mass, a large amount of Cu—Sn-based compound is precipitated, and uniform processing of the wire becomes difficult. In addition, this Cu-Sn base alloy may contain about 0.1-1.5 mass% Ti.

上記のようにして構成される超電導線材前駆体を、拡散熱処理(例えば600〜700℃で100時間程度)を施すことによって、良好な超電導特性(臨界電流密度Jcおよびn値)を発揮し、適切な強度を有するNb3Sn超電導線材を得ることができる。 The superconducting wire precursor configured as described above is subjected to diffusion heat treatment (for example, at about 600 to 700 ° C. for about 100 hours) to exhibit good superconducting properties (critical current density Jc and n value) An Nb 3 Sn superconducting wire having a sufficient strength can be obtained.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

(比較例1)
直径67mmのCu−15質量%Sn−0.3質量%Tiの組成のCu−Sn基合金インゴットに、直径8.0mmの孔を19箇所開け、その孔と同サイズのNb棒を孔に挿入し、電子ビーム溶接を行い、一次スタック材用の押し出しビレットを作製した。このビレットを、熱間押し出しし、途中で焼鈍を行いながら、縮径加工して、対辺距離が2.0mの六角断面形状の一次スタック材に加工した。
(Comparative Example 1)
Nineteen holes with a diameter of 8.0 mm are made in a Cu-Sn base alloy ingot with a composition of Cu-15 mass% Sn-0.3 mass% Ti with a diameter of 67 mm, and an Nb bar having the same size as the hole is inserted into the hole. Electron beam welding was then performed to produce an extruded billet for the primary stack material. The billet was hot-extruded and reduced in diameter while being annealed in the middle to form a primary stack material having a hexagonal cross-section with an opposite side distance of 2.0 m.

上記一次スタック材を433本束ね、その外周に厚さ0.2mmのNbシートを6回巻き(拡散障壁層)、これらを一体化して、外径67mm、内径47mmの純Cuパイプ内に挿入し、電子ビーム溶接を行い、二次スタック材用の押し出しビレットを作製した。このビレットを、熱間押し出しし、途中で焼鈍を行いながら、縮径加工して、直径が0.80mmの丸線前駆体に加工した。このとき、R=0.400mm、r1=0.260mm、r2=0.274mmであり、r1/R=0.650、r2/R=0.685、(r2−r1)/R=0.035である。尚、この前駆体の銅比は、1.0である(実施例2、3、比較例1、2についても同じ)。   433 of the above-mentioned primary stack materials are bundled, and an Nb sheet having a thickness of 0.2 mm is wound around the outer periphery 6 times (diffusion barrier layer), and these are integrated and inserted into a pure Cu pipe having an outer diameter of 67 mm and an inner diameter of 47 mm. Electron beam welding was performed to produce an extruded billet for the secondary stack material. This billet was hot-extruded and reduced in diameter while being annealed in the middle to be processed into a round wire precursor having a diameter of 0.80 mm. At this time, R = 0.400 mm, r1 = 0.260 mm, r2 = 0.274 mm, r1 / R = 0.650, r2 / R = 0.585, (r2-r1) /R=0.035 It is. The copper ratio of this precursor is 1.0 (the same applies to Examples 2 and 3 and Comparative Examples 1 and 2).

得られた前駆体に650℃×100時間の拡散熱処理を施してNb3Sn超電導線材とした。得られた超電導線材について、4.2K温度の液体ヘリウム、外部磁場12T(テスラ)中においた図3[図3(a)は曲げ応力印加前、図3(b)は曲げ応力印加後を示す]に示す治具により、Nb3Sn超電導線材に曲げ応力を印加して、その状態で4端子法によって発生電圧を測定し、10μV/cm基準(基準電圧)での臨界電流Ic(電圧端子間距離1cm当り10μVの電圧が発生したときの電流値)を測定した。尚、図3において、曲げ応力を加えたポンチ先端部の曲率半径は20mmであり、Nb3Sn超電導線材(Nb3Sn線材)に取り付けた電圧端子(図中「●」印で示す)間の距離は30mmである。 The obtained precursor was subjected to diffusion heat treatment at 650 ° C. for 100 hours to obtain a Nb 3 Sn superconducting wire. The obtained superconducting wire was placed in a liquid helium at 4.2 K temperature in an external magnetic field 12T (Tesla). FIG. 3 (FIG. 3 (a) shows before bending stress application, and FIG. 3 (b) shows after bending stress application. ], A bending stress is applied to the Nb 3 Sn superconducting wire, and the generated voltage is measured by the four-terminal method in that state, and a critical current Ic (between voltage terminals) on the basis of 10 μV / cm (reference voltage) is measured. The current value when a voltage of 10 μV per 1 cm was generated was measured. In FIG. 3, the radius of curvature of the tip of the punch to which bending stress is applied is 20 mm, and it is between voltage terminals (indicated by “●” in the figure) attached to the Nb 3 Sn superconducting wire (Nb 3 Sn wire). The distance is 30 mm.

臨界電流Icを、曲げ応力が0における臨界電流をIc0で規格化して(Ic/Ic0)で示し、この(Ic/Ic0)と曲げ応力印加力(曲げ印加力)との関係を図4に示す(図中「○」印が比較例1のときの値)。 The critical current Ic is expressed as (Ic / Ic 0 ) by normalizing the critical current at a bending stress of 0 with Ic 0 , and the relationship between (Ic / Ic 0 ) and the bending stress applying force (bending applying force) is shown in FIG. 4 (value in the figure where “◯” mark is Comparative Example 1).

この結果から明らかなように、曲げ印加力が400Nのときの臨界電流Icは、曲げ印加力が0のときに比べて約半分に低下し(Ic/Ic0=0.5)、曲げ応力に対して臨界電流の低下が大きいことが分かる。 As is clear from this result, the critical current Ic when the bending applied force is 400 N is reduced to about half compared to when the bending applied force is 0 (Ic / Ic 0 = 0.5). On the other hand, it can be seen that the critical current is greatly reduced.

また得られた超電導線材について、下記の各方法によって臨界電流密度Jcを測定すると共に、n値を測定した。尚、この比較例1においては、上記(Ic/Ic0)が0.95となるときの臨界電流Icに基づいてn値を求めた。また、本発明で規定するr1,r2,R等を、図5に模式的に示す。 Moreover, about the obtained superconducting wire, while measuring critical current density Jc by each of the following method, n value was measured. In Comparative Example 1, the n value was obtained based on the critical current Ic when (Ic / Ic 0 ) was 0.95. Moreover, r1, r2, R, etc. which are prescribed | regulated by this invention are typically shown in FIG.

[臨界電流密度Jcの測定]
上記で求めた臨界電流(Ic)を、線材断面中の非銅部断面積で除し、非銅部の臨界電流密度Jc(nonCu−Jc)を求めた。
[Measurement of critical current density Jc]
The critical current (Ic) determined above was divided by the cross-sectional area of the non-copper portion in the cross section of the wire to determine the critical current density Jc (nonCu-Jc) of the non-copper portion.

[n値の測定]
臨界電流Icを求めたのと同じ計測によって得られた(Ic−Vc)曲線において、10μVと100μVの間のデータを両対数表示し、その傾きとして求めた。尚、上記電流と電圧の関係は、経験的に下記(4)式のような近似式で表されるが、この式に基づいてnの値(即ち、「n値」を求めたものである。
V=Vc(I/Ic)n …(4)
但し、VおよびIは、夫々Vc,Icよりも低い任意の電圧と電流である。
[Measurement of n value]
In the (Ic−Vc) curve obtained by the same measurement as that for obtaining the critical current Ic, data between 10 μV and 100 μV was displayed in logarithm and obtained as the slope. The relationship between the current and the voltage is empirically expressed by an approximate expression such as the following expression (4). The value of n (that is, the “n value”) is obtained based on this expression. .
V = Vc (I / Ic) n (4)
However, V and I are arbitrary voltages and currents lower than Vc and Ic, respectively.

(実施例1)
比較例1と同様にして一次スタック材を作製し、この一次スタック材を403本束ね、その外周に、比較例1で用いたNbシートの代りに厚さ0.2mmの純Taシートを12回巻き(Ta補強層)、これらを一体化して、外径67mm、内径47mmの純Cuパイプ内に挿入し、電子ビーム溶接を行い、二次スタック材用の押し出しビレットを作製した。このビレットを、熱間押し出しし、途中で焼鈍を行いながら、縮径加工して、直径が0.80mmの丸線前駆体に加工した。このとき、R=0.400mm、r1=0.245mm、r2=0.274mmであり、r1/R=0.613、r2/R=0.685、(r2−r1)/R=0.0725である。
(Example 1)
A primary stack material was produced in the same manner as in Comparative Example 1, and 403 primary stack materials were bundled, and a pure Ta sheet having a thickness of 0.2 mm was used 12 times instead of the Nb sheet used in Comparative Example 1. Winding (Ta reinforcing layer) and these were integrated and inserted into a pure Cu pipe having an outer diameter of 67 mm and an inner diameter of 47 mm, and electron beam welding was performed to produce an extruded billet for a secondary stack material. This billet was hot-extruded and reduced in diameter while being annealed in the middle to be processed into a round wire precursor having a diameter of 0.80 mm. At this time, R = 0.400 mm, r1 = 0.245 mm, r2 = 0.274 mm, r1 / R = 0.613, r2 / R = 0.585, (r2-r1) /R=0.0725 It is.

得られた前駆体に650℃×100時間の拡散熱処理を施してNb3Sn超電導線材とした。得られた超電導線材について、比較例1と同様にして臨界電流Icを求め、この臨界電流Icを規格化し(Ic/Ic0)、曲げ応力印加力(曲げ印加力)との関係を調査した。その結果を、前記図4に併記する(図中「●」印が実施例1のときの値)。 The obtained precursor was subjected to diffusion heat treatment at 650 ° C. for 100 hours to obtain a Nb 3 Sn superconducting wire. The obtained superconducting wire, determine the critical current Ic in the same manner as in Comparative Example 1, the critical current Ic was normalized (Ic / Ic 0), investigated the relationship between the bending stress applied force (bending applied force). The results are also shown in FIG. 4 (“●” in the figure is the value in Example 1).

この結果から明らかなように、曲げ印加力が400Nのときでも臨界電流Icは曲げ印加力が0のときの約80%を維持し、曲げ印加力が800Nのときでも臨界電流Icは約40%を維持していることが分かる。即ち、比較例1の場合に比べて、曲げ応力を受けたときの臨界電流Icの低下を顕著に抑制できていることが分かる。   As is apparent from this result, even when the bending force is 400 N, the critical current Ic maintains about 80% when the bending force is 0, and even when the bending force is 800 N, the critical current Ic is about 40%. It can be seen that That is, as compared with the case of Comparative Example 1, it can be seen that the decrease in the critical current Ic when subjected to bending stress can be remarkably suppressed.

また得られた超電導線材について、上記で示した方法によって、臨界電流密度Jc(nonCu−Jc)とn値を測定した[いずれも(Ic/Ic0)が0.95となるときのIc基準]。その結果、臨界電流密度Jcは805A/mm2であり、n値は29であった(後記表1参照)。尚、上記電流密度Jcは、曲げ応力を印加した後の値である。 Further the obtained superconducting wire, by the method indicated above, [Ic criteria for any of (Ic / Ic 0) is 0.95] the critical current density Jc (nonCu-Jc) and were measured n values . As a result, the critical current density Jc was 805 A / mm 2 and the n value was 29 (see Table 1 below). The current density Jc is a value after applying a bending stress.

(比較例2)
比較例1と同様にして、r2/R=0.30の一定で、(r2−r1)/Rの異なる丸線材前駆体を複数本作製した。具体的には、比較例1と同様にして、一次スタック材を作製し、この一次スタック材を複数本束ね、その外周に厚さ0.2mmの純Taシートを巻き、更にその外側に一次スタック材を複数体配置した。このとき、一次スタック材を複数本束ねてその外側にTaシートを巻く代りに、線材断面中央部にTa棒を配置したものも準備した。また、一次スタック材の本数と純Taシートの巻回数、Ta棒の直径を調節して、最終径の0.80mmに加工したときに、r2/R=0.30の一定となるようにした。
(Comparative Example 2)
In the same manner as in Comparative Example 1, a plurality of round wire precursors having a constant r2 / R = 0.30 and different (r2-r1) / R were produced. Specifically, in the same manner as in Comparative Example 1, a primary stack material was produced, a plurality of primary stack materials were bundled, a pure Ta sheet having a thickness of 0.2 mm was wound around the outer periphery, and the primary stack was further formed on the outer side. A plurality of materials were arranged. At this time, instead of bundling a plurality of primary stack materials and winding a Ta sheet on the outside thereof, a material in which a Ta rod was arranged at the central portion of the wire cross section was also prepared. In addition, by adjusting the number of primary stack materials, the number of windings of pure Ta sheet, and the diameter of the Ta rod, when processed to a final diameter of 0.80 mm, r2 / R = 0.30 was made constant. .

上記のように束ねて一体化した各一次スタック材を、比較例1のときと同様にして、外径67mm、内径47mmの純Cuパイプ内に挿入し、電子ビーム溶接を行い、二次スタック材用の押し出しビレットを作製した。このビレットを、熱間押し出しし、途中で焼鈍を行いながら、縮径加工して、r2/R=0.30の一定で(r2−r1)/Rが異なる直径0.80mmの各種丸線前駆体に加工した。   Each primary stack material bundled and integrated as described above was inserted into a pure Cu pipe having an outer diameter of 67 mm and an inner diameter of 47 mm in the same manner as in Comparative Example 1, and then subjected to electron beam welding to obtain a secondary stack material. An extruded billet was prepared. This billet is hot-extruded and reduced in diameter while annealing, and various round wire precursors having a diameter of 0.80 mm with a constant (r2-r1) / R of r2 / R = 0.30 and different (r2-r1) / R. Processed into body.

得られた各前駆体に650℃×100時間の拡散熱処理を施してNb3Sn超電導線材とした。得られた超電導線材について、比較例1と同様にして臨界電流Icを求め、この臨界電流Icを規格化した(Ic/Ic0)が0.95となるときの、曲げ応力印加力(曲げ印加力)および臨界電流密度Jc(nonCu−Jc)を測定し、(r2−r1)/Rが曲げ印加力および臨界電流密度Jcに与える影響を調査した。その結果を、前記図6に示す。 The obtained precursors were subjected to diffusion heat treatment at 650 ° C. for 100 hours to obtain Nb 3 Sn superconducting wires. For the obtained superconducting wire, the critical current Ic was obtained in the same manner as in Comparative Example 1, and the bending stress application force (bending application) when the critical current Ic was normalized (Ic / Ic 0 ) was 0.95. Force) and critical current density Jc (nonCu-Jc) were measured, and the influence of (r2-r1) / R on bending applied force and critical current density Jc was investigated. The results are shown in FIG.

この結果から明らかなように、(Ic/Ic0)が0.95になるときの曲げ印加力が100N以上で且つ臨界電流密度Jcが700A/mm2以上の実用的な値は、(r2−r1)/Rの全範囲で得ることができないことが分かる。 As is clear from this result, a practical value where the bending force applied when (Ic / Ic 0 ) is 0.95 is 100 N or more and the critical current density Jc is 700 A / mm 2 or more is (r2− It can be seen that it cannot be obtained in the entire range of r1) / R.

(実施例2)
比較例1と同様にして、r2/R=0.685の一定で、(r2−r1)/Rの異なる丸線材前駆体を複数本作製した。具体的には、比較例1と同様にして、一次スタック材を作製し、この一次スタック材を複数本束ね、その外周に厚さ0.2mmの純Taシートを巻き、一次スタック材の本数と純Taシートの巻回数を調節して、最終径の0.80mmに加工したときに、r2/R=0.685の一定となるようにした。
(Example 2)
In the same manner as in Comparative Example 1, a plurality of round wire precursors having a constant r2 / R = 0.85 and different (r2-r1) / R were produced. Specifically, in the same manner as in Comparative Example 1, a primary stack material was produced, a plurality of primary stack materials were bundled, a pure Ta sheet having a thickness of 0.2 mm was wound around the outer periphery, and the number of primary stack materials When the number of windings of the pure Ta sheet was adjusted and processed to a final diameter of 0.80 mm, r2 / R = 0.685 was maintained constant.

上記のように束ねて一体化した各一次スタック材を、比較例1のときと同様にして、外径67mm、内径47mmの純Cuパイプ内に挿入し、電子ビーム溶接を行い、二次スタック材用の押し出しビレットを作製した。このビレットを、熱間押し出しし、途中で焼鈍を行いながら、縮径加工して、r2=0.685の一定で(r2−r1)/Rが異なる直径0.80mmの各種丸線前駆体に加工した。   Each primary stack material bundled and integrated as described above was inserted into a pure Cu pipe having an outer diameter of 67 mm and an inner diameter of 47 mm in the same manner as in Comparative Example 1, and then subjected to electron beam welding to obtain a secondary stack material. An extruded billet was prepared. This billet is hot-extruded and reduced in diameter while being annealed to obtain various round wire precursors having a diameter of 0.80 mm with a constant (r2-r1) / R of r2 = 0.585. processed.

得られた各前駆体に650℃×100時間の拡散熱処理を施してNb3Sn超電導線材とした。得られた超電導線材について、比較例1と同様にして臨界電流Icを求め、この臨界電流Icを規格化した(Ic/Ic0)が0.95となるときの、曲げ応力印加力(曲げ印加力)および臨界電流密度Jc(nonCu−Jc)を測定し、(r2−r1)/Rが曲げ印加力および臨界電流密度Jcに与える影響を調査した。その結果を、図7に示す。 The obtained precursors were subjected to diffusion heat treatment at 650 ° C. for 100 hours to obtain Nb 3 Sn superconducting wires. The obtained superconducting wire, determine the critical current Ic in the same manner as in Comparative Example 1, when the critical current Ic was normalized (Ic / Ic 0) is 0.95, the bending stress applied force (bending applied Force) and critical current density Jc (nonCu-Jc) were measured, and the influence of (r2-r1) / R on bending applied force and critical current density Jc was investigated. The result is shown in FIG.

この結果から明らかなように、(Ic/Ic0)が0.95になるときの曲げ印加力が100N以上で且つ臨界電流密度Jcが700A/mm2以上の実用的な値が得られるのは、(r2−r1)/Rが0.05〜0.22の範囲(但し、0.4≦r1/R≦0.8)であることが分かる。 As is clear from this result, a practical value with a bending application force of 100 N or more and a critical current density Jc of 700 A / mm 2 or more when (Ic / Ic 0 ) is 0.95 is obtained. , (R2-r1) / R is in the range of 0.05 to 0.22 (provided that 0.4 ≦ r1 / R ≦ 0.8).

尚、この実施例2では、一次スタック材の外側に巻回する材料(補強材)として、純Taシートを用いたが、このTaにNb,V,W,Mo等の合金元素を0.5質量%以下で含有させたTa基合金シートを用いた場合であっても、加工性を損なうことなく、同様の補強効果が発揮されることが確認できた。   In Example 2, a pure Ta sheet was used as a material (reinforcing material) to be wound around the outside of the primary stack material. However, alloy elements such as Nb, V, W, and Mo were added to this Ta at 0.5. Even when a Ta-based alloy sheet contained at a mass% or less was used, it was confirmed that the same reinforcing effect was exhibited without impairing workability.

(実施例3)
r2/R=0.685、(r2−r1)/R=0.096の共通条件となるように、(a)一次スタック材の周囲に厚さ0.2mmの純Taシートを16回巻いたもの、(b)上記(a)で一次スタック材の周囲に巻くTaシートのうち、安定化銅と接触する側の純Taシートの2回巻き分の代りに厚さ0.2mmの純Nbシートを2回巻いたもの、(c)各厚さが0.2mmのTaシートとNbシートを交互に巻回し、合計16回となるように巻回したもの、の3種類の二次スタック材のビレットを作製した(他の基本的な手順は比較例1と同様)。
(Example 3)
(a) A pure Ta sheet having a thickness of 0.2 mm was wound 16 times around the primary stack material so as to satisfy the common conditions of r2 / R = 0.585 and (r2-r1) /R=0.096. (B) Of the Ta sheet wound around the primary stack material in (a) above, a pure Nb sheet having a thickness of 0.2 mm instead of the two turns of the pure Ta sheet on the side in contact with the stabilized copper (C) three types of secondary stack materials, (c) a Ta sheet and a Nb sheet each having a thickness of 0.2 mm, and a total of 16 times. A billet was prepared (other basic procedures are the same as in Comparative Example 1).

得られた各前駆体に650℃×100時間の拡散熱処理を施してNb3Sn超電導線材とした。得られた超電導線材について、比較例1と同様にして臨界電流Icを求め、この臨界電流Icを規格化した(Ic/Ic0)が0.95となるときの、曲げ応力印加力(曲げ印加力)および臨界電流密度Jc(nonCu−Jc)を測定した。また上記と同様にしてn値も測定した。 The obtained precursors were subjected to diffusion heat treatment at 650 ° C. for 100 hours to obtain Nb 3 Sn superconducting wires. For the obtained superconducting wire, the critical current Ic was obtained in the same manner as in Comparative Example 1, and the bending stress application force (bending application) when the critical current Ic was normalized (Ic / Ic 0 ) was 0.95. Force) and critical current density Jc (nonCu-Jc). The n value was also measured in the same manner as described above.

その結果(下記表1参照)、各線材は、(Ic/Ic0)が0.95になるときの曲げ印加力が100N以上で且つ臨界電流密度Jcが700A/mm2以上で、n値も20以上の実用的な値を示すが、純Taシートだけを巻回した線材に比べて、純Nbシートに一部置き換えた線材では、特にn値の向上が著しいことが分かる。尚、これら純Nbに一部を置き換えた線材では、分散繊維状組織は観察されなかった。 As a result (see Table 1 below), each wire has a bending applied force of 100 N or more when (Ic / Ic 0 ) is 0.95, a critical current density Jc of 700 A / mm 2 or more, and an n value of Although a practical value of 20 or more is shown, it can be seen that the improvement of the n value is particularly remarkable in the wire partially replaced with the pure Nb sheet as compared with the wire wound only with the pure Ta sheet. Note that no dispersed fibrous structure was observed in the wire whose part was replaced with pure Nb.

尚、この実施例3では、純Taシートの一部を置き換える素材として純Nbを用いたが、このNbにTa,V,W,Mo等の合金元素を0.5質量%以下で含有させたNb合金シートを用いた場合であっても、純Nbシートを同等の加工バランスの維持効果や、TaまたはTa基合金層の(111)面集積抑制効果が得られ、断面形状の均一性が向上することが確認できた。   In Example 3, pure Nb was used as a material to replace a part of the pure Ta sheet, but alloy elements such as Ta, V, W, and Mo were contained in Nb at 0.5 mass% or less. Even when Nb alloy sheets are used, the effect of maintaining the same processing balance as that of pure Nb sheets and the effect of suppressing the (111) plane accumulation of Ta or Ta-based alloy layers are obtained, and the uniformity of the cross-sectional shape is improved. I was able to confirm.

(実施例4)
r2/R=0.852、(r2−r1)/R=0.150の共通条件となるように、実施例3と同様にして、各種の二次スタック材のビレットを作製した(他の基本的な手順は比較例1と同様)。
Example 4
Billets of various secondary stack materials were prepared in the same manner as in Example 3 so as to satisfy the common conditions of r2 / R = 0.852 and (r2-r1) /R=0.150 (other basics The general procedure is the same as in Comparative Example 1).

得られた各前駆体に650℃×100時間の拡散熱処理を施してNb3Sn超電導線材とした。得られた超電導線材について、比較例1と同様にして臨界電流Icを求め、この臨界電流Icを規格化した(Ic/Ic0)が0.95となるときの、曲げ応力印加力(曲げ印加力)および臨界電流密度Jc(nonCu−Jc)を測定した。また上記と同様にしてn値も測定した。 Obtained subjected to diffusion heat treatment of 650 ° C. × 100 hours each precursor was Nb 3 Sn superconducting wire. For the obtained superconducting wire, the critical current Ic was obtained in the same manner as in Comparative Example 1, and the bending stress application force (bending application) when the critical current Ic was normalized (Ic / Ic 0 ) was 0.95. Force) and critical current density Jc (nonCu-Jc). The n value was also measured in the same manner as described above.

上記比較例1,2、実施例1〜4で得られた超電導線材の特性[(Ic/Ic0)=0.95になるときの曲げ印加力、臨界電流密度Jc(nonCu−Jc)およびn値]、前駆体を構成するときの各条件[r1/R,r2/R,(r2−r1)/Rの各値、および補強材の付与形態]と共に、下記表1に示す。 The Comparative Examples 1 and 2, characteristics of the resulting superconducting wire in Example 1~4 [(Ic / Ic 0) = bending applied force of 0.95 becomes that time, the critical current density Jc (nonCu-Jc) and n Value], and each condition [each value of r1 / R, r2 / R, (r2-r1) / R, and application form of the reinforcing material] when constituting the precursor are shown in Table 1 below.

Figure 2009004128
Figure 2009004128

この結果から明らかなように、本発明で規定する要件を満足する実施例1〜4のものでは、(Ic/Ic0)が0.95となるときの曲げ印加力が大きい値となって歪みに対する耐性が向上していることが分かる。これに対し、本発明で規定する要件のいずれかを欠く比較例1〜2のものでは、曲げ印加力による特性劣化が著しく、歪みに対する特性劣化が顕著に現れるものとなっている。 As is clear from this result, in Examples 1 to 4 that satisfy the requirements defined in the present invention, the bending application force when (Ic / Ic 0 ) is 0.95 becomes a large value and distortion occurs. It can be seen that the resistance to is improved. On the other hand, in Comparative Examples 1 and 2 that lack any of the requirements defined in the present invention, the characteristic deterioration due to the bending applied force is remarkable, and the characteristic deterioration with respect to the distortion appears remarkably.

ブロンズ法に適用される超電導線材製造用前駆体の構成例を模式的に示した断面図である。It is sectional drawing which showed typically the example of a structure of the precursor for superconducting wire manufacturing applied to the bronze method. ブロンズ法に適用される超電導線材製造用前駆体の他の構成例を模式的に示した断面図である。It is sectional drawing which showed typically the other structural example of the precursor for superconducting wire manufacturing applied to the bronze method. 超電導線材に曲げ応力を印加する治具の構成を示す概略説明図である。It is a schematic explanatory drawing which shows the structure of the jig | tool which applies a bending stress to a superconducting wire. 比較例1と実施例1で得られた超電導線材について、曲げ印加力と(Ic/Ic0)の関係を示したグラフである。For Example 1 and Comparative Example 1 obtained in the superconducting wire is a graph showing bending applied force and the relationship (Ic / Ic 0). 本発明で規定するr1,r2およびRを説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating r1, r2 and R prescribed | regulated by this invention. 比較例2で得られた超電導線材において、(r2−r1)/Rが曲げ印加力および臨界電流密度Jcに与える影響を示すグラフである。In the superconducting wire obtained by the comparative example 2, it is a graph which shows the influence which (r2-r1) / R has on bending application force and critical current density Jc. 実施例2で得られたNb3Sn超電導線材について、(r2−r1)/Rが曲げ印加力および臨界電流密度Jcに与える影響を示したグラフである。For Nb 3 Sn superconducting wire obtained in Example 2 is a graph showing the effect on (r2-r1) / R bending applied force and the critical current density Jc.

符号の説明Explanation of symbols

1 Cu−Sn基合金マトリックス
2 NbまたはNb基合金からなる芯材
3 一次スタック材
4 拡散障壁層
5 Cu−Sn基合金
6 安定化銅
DESCRIPTION OF SYMBOLS 1 Cu-Sn base alloy matrix 2 Core material consisting of Nb or Nb base alloy 3 Primary stack material 4 Diffusion barrier layer 5 Cu-Sn base alloy 6 Stabilized copper

Claims (6)

ブロンズ法Nb3Sn超電導線材を製造する際に用いる超電導線材前駆体において、Cu−Sn基合金中に複数本のNbまたはNb基合金フィラメントが配置された超電導マトリックス部を備えると共に、その外周に安定化銅が配置された前駆体であって、
前記超電導マトリックス部と安定化銅の間には、TaまたはTa基合金からなる補強層が介在されると共に、前駆体の横断面中心から外表面までの距離をR、横断面中心から補強層内面までの距離をr1、横断面中心から補強層外面までの距離をr2としたとき、下記(1)〜(3)の関係を満足するものであることを特徴とするブロンズ法Nb3Sn超電導線材前駆体。
0.4≦r1/R≦0.8 …(1)
0.55≦r2/R≦0.95 …(2)
0.05≦(r2−r1)/R≦0.22 …(3)
A superconducting wire precursor used for preparing the bronze process Nb 3 Sn superconducting wire, provided with a superconducting matrix portion which a plurality of Nb or Nb-based alloy filaments disposed in Cu-Sn-based alloy, stable on its outer circumference A precursor in which copper chloride is disposed,
A reinforcing layer made of Ta or a Ta-based alloy is interposed between the superconducting matrix portion and the stabilizing copper, and the distance from the center of the cross section to the outer surface is R, and the inner surface of the reinforcing layer is from the center of the cross section. The bronze Nb 3 Sn superconducting wire characterized by satisfying the following relations (1) to (3) where r1 is the distance from the center of the cross section and r2 is the distance from the center of the cross section to the outer surface of the reinforcing layer: precursor.
0.4 ≦ r1 / R ≦ 0.8 (1)
0.55 ≦ r2 / R ≦ 0.95 (2)
0.05 ≦ (r2-r1) /R≦0.22 (3)
前記補強層を形成するTa基合金は、Nb,V,WおよびMoよりなる群から選ばれる1種以上の元素を0.5質量%以下(0%を含まない)の割合で含有するものである請求項1に記載のブロンズ法Nb3Sn超電導線材前駆体。 The Ta-based alloy forming the reinforcing layer contains one or more elements selected from the group consisting of Nb, V, W and Mo in a proportion of 0.5% by mass or less (excluding 0%). The bronze process Nb 3 Sn superconducting wire precursor according to claim 1. 前記補強層の内面側および/または外面側に、NbまたはNb基合金からなる層を形成したものである請求項1または2に記載のブロンズ法Nb3Sn超電導線材前駆体。 The bronze Nb 3 Sn superconducting wire precursor according to claim 1 or 2, wherein a layer made of Nb or an Nb-based alloy is formed on the inner surface side and / or outer surface side of the reinforcing layer. 前記補強層は、TaまたはTa基合金からなるシート状部材を巻回することによって単層または積層して形成されたものである請求項1〜3のいずれかに記載のブロンズ法Nb3Sn超電導線材前駆体。 The bronze Nb 3 Sn superconductivity according to any one of claims 1 to 3, wherein the reinforcing layer is formed by winding a single layer or a laminated layer by winding a sheet-like member made of Ta or a Ta-based alloy. Wire precursor. TaまたはTa基合金からなるシート状部材を巻回して積層して形成するに際し、各層間にNbまたはNb基合金層シートを介在させたものである請求項4に記載のブロンズ法Nb3Sn超電導線材前駆体。 The bronze Nb 3 Sn superconductivity according to claim 4, wherein a sheet-like member made of Ta or a Ta-based alloy is wound and laminated to form a Nb or Nb-based alloy layer sheet interposed between the layers. Wire precursor. 請求項1〜5のいずれかに記載のブロンズ法Nb3Sn超電導線材前駆体を、拡散熱処理することによってNb3Sn超電導相を形成したものであるブロンズ法Nb3Sn超電導線材。 The bronze process Nb 3 Sn superconducting wire precursor according to any one of claims 1 to 5, bronze process Nb 3 Sn superconducting wire is obtained by forming a Nb 3 Sn superconducting phase by diffusion heat treatment.
JP2007161777A 2007-06-19 2007-06-19 BRONZE-PROCESS Nb3Sn SUPERCONDUCTING WIRE, AND PRECURSOR THEREOF Withdrawn JP2009004128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007161777A JP2009004128A (en) 2007-06-19 2007-06-19 BRONZE-PROCESS Nb3Sn SUPERCONDUCTING WIRE, AND PRECURSOR THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007161777A JP2009004128A (en) 2007-06-19 2007-06-19 BRONZE-PROCESS Nb3Sn SUPERCONDUCTING WIRE, AND PRECURSOR THEREOF

Publications (1)

Publication Number Publication Date
JP2009004128A true JP2009004128A (en) 2009-01-08

Family

ID=40320307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007161777A Withdrawn JP2009004128A (en) 2007-06-19 2007-06-19 BRONZE-PROCESS Nb3Sn SUPERCONDUCTING WIRE, AND PRECURSOR THEREOF

Country Status (1)

Country Link
JP (1) JP2009004128A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3062359A1 (en) * 2015-02-24 2016-08-31 Bruker EAS GmbH Precursor wire for a nb3sn superconducting wire and method for producing the precursor wire
KR20200106221A (en) * 2018-03-07 2020-09-11 에이치. 씨. 스타아크 아이앤씨 Diffusion barrier for metallic superconducting wires
US11791066B2 (en) 2016-09-06 2023-10-17 Materion Newton Inc. Diffusion barriers for metallic superconducting wires

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3062359A1 (en) * 2015-02-24 2016-08-31 Bruker EAS GmbH Precursor wire for a nb3sn superconducting wire and method for producing the precursor wire
JP2016195100A (en) * 2015-02-24 2016-11-17 ブルーカー エーアーエス ゲーエムベーハーBruker EAS GmbH SEMI-COMPLETE WIRE MATERIAL HAVING PIT ELEMENT FOR SUPERCONDUCTING WIRE MATERIAL CONTAINING Nb3Sn AND METHOD FOR MANUFACTURING SEMI-COMPLETE WIRE MATERIAL
US9741471B2 (en) 2015-02-24 2017-08-22 Bruker Eas Gmbh Semifinished wire with PIT elements for a superconducting wire containing Nb3Sn and method of producing the semifinished wire
US11791066B2 (en) 2016-09-06 2023-10-17 Materion Newton Inc. Diffusion barriers for metallic superconducting wires
KR20200106221A (en) * 2018-03-07 2020-09-11 에이치. 씨. 스타아크 아이앤씨 Diffusion barrier for metallic superconducting wires
CN111819639A (en) * 2018-03-07 2020-10-23 H.C.施塔克公司 Diffusion barrier for metallic superconducting wire
JP2021516428A (en) * 2018-03-07 2021-07-01 エイチ.シー. スターク インコーポレイテッド Diffusion barrier for metal superconducting wires
KR102423559B1 (en) * 2018-03-07 2022-07-20 에이치. 씨. 스타아크 아이앤씨 Diffusion barrier for metallic superconducting wires
JP7110372B2 (en) 2018-03-07 2022-08-01 エイチ.シー. スターク インコーポレイテッド Diffusion barrier for metallic superconducting wires
CN111819639B (en) * 2018-03-07 2023-10-24 万腾荣牛顿公司 Diffusion barrier for metal superconducting wires

Similar Documents

Publication Publication Date Title
JP6155253B2 (en) Compound superconducting wire and manufacturing method thereof
JP5000252B2 (en) NbTi superconducting wire
JP2009211880A (en) Nb3Sn SUPERCONDUCTING WIRE ROD MADE BY USING INTERNAL Sn METHOD, AND PRECURSOR THEREFOR
JP4227143B2 (en) Nb3Sn superconducting wire and precursor therefor
JP6585519B2 (en) Precursor for producing Nb3Sn superconducting wire, and method for producing Nb3Sn superconducting wire
JP6247813B2 (en) NbTi superconducting wire
JP2014137917A (en) Nb3Sn SUPERCONDUCTOR PRECURSOR WIRE, Nb FILAMENT SINGLE WIRE, Nb3Sn SUPERCONDUCTOR WIRE AND MANUFACTURING METHOD THEREOF
JP5258424B2 (en) Precursor for producing Nb3Sn superconducting wire, method for producing the same, and Nb3Sn superconducting wire
JP2007128686A (en) Nb3Sn SUPERCONDUCTING WIRE MATERIAL MANUFACTURED BY INSIDE DIFFUSION METHOD
JP2009004128A (en) BRONZE-PROCESS Nb3Sn SUPERCONDUCTING WIRE, AND PRECURSOR THEREOF
WO2020066908A1 (en) Compound superconducting twisted wire and rewinding method for compound superconducting twisted wire
JP5100469B2 (en) NbTi superconducting wire and method for manufacturing the same
JP5117166B2 (en) NbTi superconducting multi-core wire for pulse and NbTi superconducting molded stranded wire for pulse
JP5661582B2 (en) Precursor for producing Nb3Sn superconducting wire and Nb3Sn superconducting wire
WO2013031830A1 (en) Precursor for manufacturing nb3sn superconducting wire material and nb3sn superconducting wire material
JP3754522B2 (en) Nb (3) Sn superconducting wire
JP2009059652A (en) BRONZE PROCESS Nb3Sn SUPERCONDUCTING WIRE ROD AND ITS PRECURSOR
JP5164815B2 (en) Precursor for producing Nb3Sn superconducting wire and Nb3Sn superconducting wire
JP5207304B2 (en) Nb3Al superconducting wire manufacturing method
JP4045082B2 (en) Superconducting wire
WO2023089919A1 (en) Niobium-aluminum precursor wire, niobium-aluminum precursor twisted wire, niobium-aluminum superconducting wire, and niobium-aluminum superconducting twisted wire
JP5632767B2 (en) Precursor for producing Nb3Sn superconducting wire and Nb3Sn superconducting wire
WO2023189275A1 (en) Compound superconducting precursor wire, compound superconducting precursor strand, and compound superconducting strand
JP4723345B2 (en) Method for producing Nb3Sn superconducting wire and precursor therefor
JP3608232B2 (en) Nb3Sn superconducting wire

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100907