JP5661582B2 - Precursor for producing Nb3Sn superconducting wire and Nb3Sn superconducting wire - Google Patents

Precursor for producing Nb3Sn superconducting wire and Nb3Sn superconducting wire Download PDF

Info

Publication number
JP5661582B2
JP5661582B2 JP2011197934A JP2011197934A JP5661582B2 JP 5661582 B2 JP5661582 B2 JP 5661582B2 JP 2011197934 A JP2011197934 A JP 2011197934A JP 2011197934 A JP2011197934 A JP 2011197934A JP 5661582 B2 JP5661582 B2 JP 5661582B2
Authority
JP
Japan
Prior art keywords
superconducting
precursor
superconducting wire
reinforcing member
matrix portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011197934A
Other languages
Japanese (ja)
Other versions
JP2013062039A (en
Inventor
秀文 倉橋
秀文 倉橋
村上 幸伸
幸伸 村上
加藤 弘之
弘之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Superconductor Technology Inc
Original Assignee
Japan Superconductor Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Superconductor Technology Inc filed Critical Japan Superconductor Technology Inc
Priority to JP2011197934A priority Critical patent/JP5661582B2/en
Publication of JP2013062039A publication Critical patent/JP2013062039A/en
Application granted granted Critical
Publication of JP5661582B2 publication Critical patent/JP5661582B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

本発明は、NbSn超電導線材の製造に用いられるNbSn超電導線材製造用前駆体、および、この前駆体を用いて製造されるNbSn超電導線材に関する。 The present invention, Nb 3 Sn superconducting wire precursor for manufacturing used in the production of Nb 3 Sn superconducting wire, and to a Nb 3 Sn superconducting wire produced using the precursor.

特許文献1に従来のNbSn超電導線材が記載されている。この超電導線材は、超電導マグネットのコイルの巻線などとして用いられる。この超電導マグネットは、核磁気共鳴(NMR)分析装置、物性評価装置、電力貯蔵や核融合炉等に用いられる。超電導マグネットの高磁場化や大口径化(高度応用)に伴い、超電導線材に働く電磁力(フープ力)がより大きくなるので、超電導線材の低温での強度向上が求められている。 Patent Document 1 describes a conventional Nb 3 Sn superconducting wire. This superconducting wire is used as a winding of a coil of a superconducting magnet. This superconducting magnet is used in nuclear magnetic resonance (NMR) analyzers, physical property evaluation apparatuses, power storage, fusion reactors, and the like. As the superconducting magnet has a higher magnetic field and larger diameter (advanced application), the electromagnetic force (hoop force) acting on the superconducting wire becomes larger, and therefore there is a demand for improving the strength of the superconducting wire at low temperatures.

特許文献1〜3には、強度向上を図った超電導線材が記載されている。特許文献1には、アルミナ分散銅で超電導線材を補強した技術が記載されている。特許文献2及び3には、高強度材(後述)で超電導線材を補強した技術が記載されている。   Patent Documents 1 to 3 describe superconducting wires that are improved in strength. Patent Document 1 describes a technique in which a superconducting wire is reinforced with alumina-dispersed copper. Patent Documents 2 and 3 describe techniques in which a superconducting wire is reinforced with a high-strength material (described later).

特公平3−55011号公報Japanese Patent Publication No. 3-55011 特許第3153539号公報Japanese Patent No. 3153539 特開2003−86032号公報JP 2003-86032 A

しかしながら、これらの技術には以下の問題がある。
特許文献1には、アルミナ分散銅で超電導線材を補強した技術が記載されている。アルミナ分散銅は、NbSn生成熱処理後に軟化し、強度が低下する。特に、超電導マグネットの高度応用に伴い超電導線材にかかる電磁力が大きくなっているところ、特許文献1に記載の超電導線材では、この大きな電磁力に十分耐えうる強度を得ることができない。
However, these techniques have the following problems.
Patent Document 1 describes a technique in which a superconducting wire is reinforced with alumina-dispersed copper. Alumina-dispersed copper softens after Nb 3 Sn generation heat treatment, and the strength decreases. In particular, the electromagnetic force applied to the superconducting wire is increasing with the advanced application of the superconducting magnet. However, the superconducting wire described in Patent Document 1 cannot obtain a strength sufficient to withstand this large electromagnetic force.

特許文献2及び3には高強度材で超電導線材を補強した技術が記載されている。この高強度材として、特許文献2にはTa、特許文献3にはTa、W、Mo、V、Zr、Hfが記載されている。これらの金属は高価であり、安定した入手が困難である(いわゆるレアメタルである)。よって、これらの金属で補強した超電導線材は高価である。   Patent Documents 2 and 3 describe techniques in which a superconducting wire is reinforced with a high-strength material. As this high-strength material, Patent Document 2 describes Ta, and Patent Document 3 describes Ta, W, Mo, V, Zr, and Hf. These metals are expensive and difficult to obtain stably (so-called rare metals). Therefore, superconducting wires reinforced with these metals are expensive.

また、特許文献2及び3に記載の技術では、補強部材を設けた分、超電導線材の断面に占めるNbSn超電導相の割合が減る。よって、超電導特性(臨界磁場、臨界電流密度)が低下する。 In the techniques described in Patent Documents 2 and 3, the proportion of the Nb 3 Sn superconducting phase in the cross section of the superconducting wire is reduced by providing the reinforcing member. Therefore, the superconducting properties (critical magnetic field, critical current density) are reduced.

なお、特許文献3の図2及び図3には、NbまたはNb合金(6)の内部にフィラメント補強材(7)を配置した技術が記載されている。また、特許文献3の図5に記載の補強材(4)はTaである(特許文献3の段落0005参照)。   2 and 3 of Patent Document 3 describe a technique in which a filament reinforcing material (7) is arranged inside Nb or an Nb alloy (6). Further, the reinforcing material (4) described in FIG. 5 of Patent Document 3 is Ta (see Paragraph 0005 of Patent Document 3).

そこで本発明は、超電導特性を向上でき、容易に量産でき、かつ、強度を高くできるNbSn超電導線材を製造するためのNbSn超電導線材製造用前駆体を提供することを目的とする。 Therefore, an object of the present invention is to provide a precursor for producing an Nb 3 Sn superconducting wire for producing an Nb 3 Sn superconducting wire that can improve superconducting characteristics, can be easily mass-produced, and can have high strength.

本発明は、NbSn超電導線材の製造に用いられるNbSn超電導線材製造用前駆体である。この前駆体は、純NbまたはNb基合金からなる複数本のNb基フィラメントがCu−Sn基合金中に配置された超電導マトリックス部と、前記超電導マトリックス部の外周に配置された拡散障壁層と、前記拡散障壁層の外周に配置された安定化銅層と、前記超電導マトリックス部内に配置された補強部材と、を備える。前記補強部材は、純TiまたはTi基合金からなる。前記補強部材の外周と前記Cu−Sn基合金とが直接接触する。 The present invention is a Nb 3 Sn superconducting wire precursor for manufacturing used in the production of Nb 3 Sn superconducting wire. The precursor includes a superconducting matrix portion in which a plurality of Nb-based filaments made of pure Nb or Nb-based alloy are disposed in a Cu-Sn based alloy, a diffusion barrier layer disposed on the outer periphery of the superconducting matrix portion, A stabilizing copper layer disposed on an outer periphery of the diffusion barrier layer; and a reinforcing member disposed in the superconducting matrix portion. The reinforcing member is made of pure Ti or a Ti-based alloy. The outer periphery of the reinforcing member and the Cu—Sn base alloy are in direct contact.

本発明では、超電導特性を向上でき、容易に量産でき、かつ、強度を高くできる。   In the present invention, superconducting characteristics can be improved, mass production can be easily performed, and strength can be increased.

NbSn超電導線製造用前駆体を軸方向から見た断面図である。The nb 3 Sn superconducting wire precursor for manufacturing a cross-sectional view as viewed from the axial direction. 変形例1の図1相当図である。FIG. 9 is a view corresponding to FIG.

図1を参照して本発明の実施形態の前駆体1(NbSn超電導線材製造用前駆体)等について説明する。まず、前駆体1を用いて製造される超電導線材(NbSn超電導線材)について説明する。 A precursor 1 (a precursor for producing a Nb 3 Sn superconducting wire) according to an embodiment of the present invention will be described with reference to FIG. First, a superconducting wire (Nb 3 Sn superconducting wire) manufactured using the precursor 1 will be described.

超電導線材(NbSn超電導線材)は、前駆体1に対してNbSn生成熱処理を施し、NbSn系超電導相を形成させることで製造される(製法は後述)。この超電導線材の軸直角断面(軸方向に直交する断面、軸方向から見た断面)の構造は、後述する前駆体1の軸直角断面の構造とほぼ同様である。この超電導線材は、例えば、超電導マグネットのコイルの巻線として用いられる。このコイルを励磁させると、超電導線材は、電磁力によりコイル径方向外側にひろがる力(フープ力)を受ける。その結果、超電導線材は、軸方向に引張荷重を受けて歪む。超電導線材は、歪みにより臨界電流が下がる(臨界電流特性が劣化する)。そこで、超電導線材の強度は、この歪みを十分抑制できるように設定される。 The superconducting wire (Nb 3 Sn superconducting wire) is manufactured by subjecting the precursor 1 to Nb 3 Sn generation heat treatment to form an Nb 3 Sn-based superconducting phase (the manufacturing method will be described later). The structure of this superconducting wire in the cross section perpendicular to the axis (cross section orthogonal to the axial direction, cross section viewed from the axial direction) is substantially the same as the structure of the cross section perpendicular to the axis of the precursor 1 described later. This superconducting wire is used, for example, as a winding of a coil of a superconducting magnet. When this coil is excited, the superconducting wire receives a force (hoop force) that spreads outward in the radial direction of the coil due to electromagnetic force. As a result, the superconducting wire is distorted by receiving a tensile load in the axial direction. In a superconducting wire, the critical current decreases due to strain (the critical current characteristics deteriorate). Therefore, the strength of the superconducting wire is set so that this distortion can be sufficiently suppressed.

前駆体1(NbSn超電導線材製造用前駆体)は、ブロンズ法により製造されるNbSn超電導線材の製造に用いられる線材である。前駆体1は、NbSn生成熱処理を施す前の段階の前駆体である。詳細は後述するが、前駆体1は、静水圧押出しした二次多芯ビレットを伸線加工した後の段階の前駆体である。 Precursor 1 (precursor for producing Nb 3 Sn superconducting wire) is a wire used for producing an Nb 3 Sn superconducting wire produced by a bronze method. The precursor 1 is a precursor at a stage before performing the Nb 3 Sn generation heat treatment. Although details will be described later, the precursor 1 is a precursor at a stage after drawing a secondary multi-core billet that has been extruded by hydrostatic pressure.

この前駆体1の軸直角断面の形状は、前駆体1を用いて製造した超電導線材を巻線としてコイルを形成したときに、デッドスペースを減らせるように形成される。具体的には、前駆体1は、軸直角断面が矩形状(正方形を含む長方形)である。すなわち、前駆体1は平角線材である。前記「矩形状」には、矩形の4つの角が丸いものを含む。矩形の4つの角が直角に近いほど、デッドスペースが少なくなる。ただし、矩形の2つの角(対角を除く)の間に直線部分があることが、前記「矩形状」であることの必要条件とする。さらに詳しくは、前駆体1の軸直角断面の外周が、平行な2本の直線と、この2本の直線に直交する平行な2本の直線と、を備えることが、前記「矩形状」であることの必要条件とする(上記「平行」及び「直交」は、「略平行」及び「略直交」でも良い)。前駆体1の軸直角断面の長辺側長さをW、短辺側長さをHとすると、長辺側長さW/短辺側長さHは、例えば1.2〜2.0である(この範囲外としても良い)。なお、前駆体1の軸直角断面の形状は、円形や楕円形など、矩形状以外の形状としても良い。   The shape of the cross section perpendicular to the axis of the precursor 1 is formed so that dead space can be reduced when a coil is formed by using a superconducting wire manufactured using the precursor 1 as a winding. Specifically, the precursor 1 has a rectangular cross section perpendicular to the axis (a rectangle including a square). That is, the precursor 1 is a flat wire. The “rectangular shape” includes a rectangular shape having four rounded corners. The closer the four corners of the rectangle are to a right angle, the less dead space. However, it is a necessary condition for the “rectangular shape” that there is a straight line portion between two corners of the rectangle (excluding the diagonal). More specifically, the outer periphery of the cross section perpendicular to the axis of the precursor 1 includes two parallel straight lines and two parallel straight lines orthogonal to the two straight lines. It is a necessary condition (the above “parallel” and “orthogonal” may be “substantially parallel” and “substantially orthogonal”). When the long side length of the cross section perpendicular to the axis of the precursor 1 is W and the short side length is H, the long side length W / short side length H is, for example, 1.2 to 2.0. Yes (may be outside this range). The shape of the cross section perpendicular to the axis of the precursor 1 may be a shape other than a rectangular shape such as a circle or an ellipse.

この前駆体1は、超電導マトリックス部2と、超電導マトリックス部2の径方向外側に配置された拡散障壁層6および安定化銅層7と、超電導マトリックス部2の径方向内側に配置された補強部材8とを備える。   The precursor 1 includes a superconducting matrix portion 2, a diffusion barrier layer 6 and a stabilizing copper layer 7 disposed on the radially outer side of the superconducting matrix portion 2, and a reinforcing member disposed on the radially inner side of the superconducting matrix portion 2. 8.

超電導マトリックス部2は、複数本のNb基フィラメント5がCu−Sn基合金(ブロンズマトリックス部4)中に配置された構造を備える。超電導マトリックス部2は、例えば、数十本、数百本、または数千本などの複数の多芯部3を並べた構造を備える(図1では複数の多芯部3の一部を図示している)。複数の多芯部3はそれぞれ、ブロンズマトリックス部4と、ブロンズマトリックス部4中に複数本配置されたNb基フィラメント5とを備える。   The superconducting matrix portion 2 has a structure in which a plurality of Nb-based filaments 5 are arranged in a Cu—Sn-based alloy (bronze matrix portion 4). The superconducting matrix portion 2 has a structure in which a plurality of multi-core portions 3 such as tens, hundreds, or thousands are arranged, for example (FIG. 1 illustrates a part of the plurality of multi-core portions 3. ing). Each of the plurality of multi-core portions 3 includes a bronze matrix portion 4 and a plurality of Nb-based filaments 5 arranged in the bronze matrix portion 4.

ブロンズマトリックス部4(ブロンズ母材)の軸直角断面の形状は、例えば六角形である(円形等でも良い)。ブロンズマトリックス部4は、Cu−Sn基合金からなる。Cu−Sn基合金には、補強部材8からのTiの拡散(後述)とは別に、例えば0.3〜0.5質量%程度のTiが含まれても良い。Cu−Sn基合金には、補強部材8からのTiの拡散の結果、例えば0.3〜0.5質量%程度のTiが含まれることになっても良い。Cu−Sn基合金にはTi以外の元素が含まれても良い。   The shape of the cross section perpendicular to the axis of the bronze matrix portion 4 (bronze base material) is, for example, a hexagon (may be a circle or the like). The bronze matrix portion 4 is made of a Cu—Sn base alloy. In addition to Ti diffusion (described later) from the reinforcing member 8, the Cu—Sn base alloy may contain, for example, about 0.3 to 0.5 mass% of Ti. As a result of diffusion of Ti from the reinforcing member 8, the Cu—Sn base alloy may contain, for example, about 0.3 to 0.5 mass% of Ti. The Cu—Sn base alloy may contain elements other than Ti.

このブロンズマトリックス部4を形成するCu−Sn基合金中のSnの濃度(以下、単に「Sn濃度」とも言う)が高いほど、臨界電流密度(Jc)が高くなる(前駆体1を用いて製造された超電導線材の臨界電流密度が高くなる)。Sn濃度は、必要な臨界電流密度に応じて適切に設定する。具体的には例えば、Sn濃度は、13.5質量%以上であり、14質量%以上が好ましく、15質量%以上がさらに好ましい。また、Sn濃度は、通常15.6質量%まで高めることができる。さらに、Ti及びZrの少なくともいずれかをCu−Sn基合金に含有させれば、Sn濃度を19質量%まで高めることができる。
このSn濃度についてさらに詳しく説明する。Sn濃度は、通常15.6質量%より大きくできない。これは、Cu−Sn基合金中に15.6質量%を超えてSnを含有させようとすると、Cu−Snの金属間化合物が生成するからである。また、Cu−Snの金属間化合物には、代表的なものとして「δ相」がある。このδ相は硬く延性が乏しいので、前駆体1製造時の加工性(後述する減面加工の加工性)が悪くなる。そこで、Ti及びZrの少なくともいずれかをCu−Sn基合金に含有させる。すると、Cu−Sn基合金中のδ相を消失させることができる。その結果、固溶限界とされる15.6質量%よりも多くのSnを、Cu−Sn基合金に含有させることができる。具体的には、Sn濃度を19質量%まで高めることができる。
The higher the Sn concentration in the Cu—Sn base alloy forming the bronze matrix portion 4 (hereinafter also simply referred to as “Sn concentration”), the higher the critical current density (Jc) (produced using the precursor 1). The critical current density of the superconducting wire is increased). The Sn concentration is appropriately set according to the required critical current density. Specifically, for example, the Sn concentration is 13.5% by mass or more, preferably 14% by mass or more, and more preferably 15% by mass or more. Moreover, Sn concentration can be normally raised to 15.6 mass%. Furthermore, if at least one of Ti and Zr is contained in the Cu—Sn based alloy, the Sn concentration can be increased to 19% by mass.
This Sn concentration will be described in more detail. The Sn concentration cannot usually be greater than 15.6% by mass. This is because Cu—Sn intermetallic compounds are produced when Sn is contained in the Cu—Sn base alloy in excess of 15.6% by mass. A typical example of the Cu—Sn intermetallic compound is “δ phase”. Since this δ phase is hard and poor in ductility, the workability at the time of manufacturing the precursor 1 (the workability of the surface-reduction process described later) is deteriorated. Therefore, at least one of Ti and Zr is contained in the Cu—Sn based alloy. Then, the δ phase in the Cu—Sn base alloy can be eliminated. As a result, more Sn than 15.6% by mass, which is considered to be a solid solution limit, can be contained in the Cu—Sn base alloy. Specifically, the Sn concentration can be increased to 19% by mass.

Nb基フィラメント5は、純NbまたはNb基合金からなる。この純Nbは、微量(例えば0.5質量%未満)の不純物を含んだものでも良い。このNb基合金は、添加元素(例えばTa、Hf、Zr、Ti等)を10質量%〜0.5質量%程度含有する合金である。Nb基フィラメント5は、1つの多芯部3中に例えば7本配置される(6本以下や8本以上でも良い)。なお、図1では、複数のNb基フィラメント5のうち、1つのNb基フィラメント5にのみ符号を付している。Nb基フィラメント5の軸直角断面の形状は、例えば円形である(円形でなくても良い)。   The Nb-based filament 5 is made of pure Nb or an Nb-based alloy. This pure Nb may contain a trace amount (for example, less than 0.5% by mass) of impurities. This Nb-based alloy is an alloy containing about 10% by mass to 0.5% by mass of an additive element (for example, Ta, Hf, Zr, Ti, etc.). For example, seven Nb-based filaments 5 are arranged in one multi-core portion 3 (6 or less or 8 or more may be used). In FIG. 1, only one Nb-based filament 5 among the plurality of Nb-based filaments 5 is given a reference numeral. The shape of the Nb-based filament 5 in the cross section perpendicular to the axis is, for example, a circle (not necessarily a circle).

このNb基フィラメント5の直径(軸直角断面が円形でない場合は等価直径)を細くすると、臨界電流密度が高くなる。しかし、Nb基フィラメント5の直径を細くすると、n値が低くなる。n値とは、超電導状態から常電導状態への転位の鋭さを示す量である。また、Nb基フィラメント5の(等価)直径D5は、補強部材8(後述)の等価直径D8との比率「D5/D8」が、例えば0.001〜0.015、好ましくは0.003〜0.011となるように設定する。   If the diameter of this Nb-based filament 5 (or the equivalent diameter when the cross section perpendicular to the axis is not circular) is reduced, the critical current density increases. However, when the diameter of the Nb-based filament 5 is reduced, the n value decreases. The n value is an amount indicating the sharpness of dislocation from the superconducting state to the normal conducting state. The ratio (D5 / D8) of the (equivalent) diameter D5 of the Nb-based filament 5 to the equivalent diameter D8 of the reinforcing member 8 (described later) is, for example, 0.001 to 0.015, preferably 0.003 to 0. .011 is set.

拡散障壁層6は、NbSn生成熱処理の際に超電導マトリックス部2内のSnが外部(安定化銅層7)に拡散することを抑制する層である。拡散障壁層6は、超電導マトリックス部2の外周(径方向外側)、かつ、安定化銅層7の内周(径方向内側)に配置される。拡散障壁層6は、Nb層およびTa層の少なくともいずれかの層を備える。拡散障壁層6の最内周側の層(超電導マトリックス部2と接する部分)は、Ta層であることが好ましい。その理由は、拡散障壁層6の最内周側の層がTa層でなくNb層の場合、拡散障壁層6のNb層と超電導マトリックス部2内のSnとがNbSn生成熱処理の際に反応し、拡散障壁層6の近傍にNbSn系超電導相(以下、単に「超電導相」とも言う)が形成され、有効フィラメント径が増大して交流損失が大きくなるおそれがあるからである。なお、拡散障壁層6と超電導マトリックス部2とは必ずしも隣接していなくても良く、これらの間に図示しない例えばCu−Sn基合金層などがあっても良い。 The diffusion barrier layer 6 is a layer that suppresses the diffusion of Sn in the superconducting matrix portion 2 to the outside (stabilized copper layer 7) during the Nb 3 Sn generation heat treatment. The diffusion barrier layer 6 is disposed on the outer periphery (radially outer side) of the superconducting matrix portion 2 and on the inner periphery (radially inner side) of the stabilizing copper layer 7. The diffusion barrier layer 6 includes at least one of an Nb layer and a Ta layer. The innermost peripheral layer of diffusion barrier layer 6 (portion in contact with superconducting matrix portion 2) is preferably a Ta layer. The reason is that when the innermost peripheral layer of the diffusion barrier layer 6 is not a Ta layer but an Nb layer, the Nb layer of the diffusion barrier layer 6 and the Sn in the superconducting matrix portion 2 are subjected to Nb 3 Sn generation heat treatment. This is because an Nb 3 Sn-based superconducting phase (hereinafter also simply referred to as “superconducting phase”) is formed in the vicinity of the diffusion barrier layer 6 due to the reaction, and the effective filament diameter increases and the AC loss may increase. Note that the diffusion barrier layer 6 and the superconducting matrix portion 2 do not necessarily have to be adjacent to each other, and there may be, for example, a Cu—Sn base alloy layer (not shown) between them.

安定化銅層7は、拡散障壁層6の外周(径方向外側)に配置される。安定化銅層7は、超電導線材が超電導状態から常電導状態になったときに、超電導相に過電流が流れて超電導相が焼損すること防ぐための層である。なお、安定化銅層7の軸直角断面の外周側端部に囲まれた形状が、前駆体1の軸直角断面の形状である。   The stabilized copper layer 7 is disposed on the outer periphery (radially outer side) of the diffusion barrier layer 6. The stabilized copper layer 7 is a layer for preventing the superconducting phase from being burned out when an overcurrent flows in the superconducting phase when the superconducting wire is changed from the superconducting state to the normal conducting state. In addition, the shape surrounded by the outer peripheral end of the cross section perpendicular to the axis of the stabilized copper layer 7 is the shape of the cross section perpendicular to the axis of the precursor 1.

補強部材8は、超電導線材を補強する部材である。補強部材8の軸直角断面の形状は、例えば略楕円形である(円形や矩形などでも良い)。補強部材8は、超電導マトリックス部2内に配置される。すなわち、補強部材8は、超電導マトリックス部2の外周側端部よりも径方向内側に配置され、好ましくは超電導マトリックス部2の内周側端部よりも径方向内側に配置される。補強部材8は、超電導マトリックス部2の軸直角断面の中央に集中配置される(これ以外の配置は後述)。前記「集中配置」とは、複数箇所に分かれて(例えば分散して)配置されることではなく、一箇所のみに集めて配置されることを意味する。補強部材8が前記「中央に配置される」とは、超電導マトリックス部2の軸直角断面の概ね中央の領域に補強部材8が配置されることを意味する。補強部材8は、超電導マトリックス部2の軸直角断面の中心(図心)に配置されていなくても良い。さらに詳しくは、補強部材8の軸直角断面の外周全体が超電導マトリックス部2よりも内側にあることが前記「中央に配置される」ことの必要条件とする。具体的には例えば、補強部材8の軸直角断面の外周と拡散障壁層6との間に超電導マトリックス部2が存在しない部分がある場合は、前記「中央に配置される」に含まれない。   The reinforcing member 8 is a member that reinforces the superconducting wire. The shape of the reinforcing member 8 in a cross section perpendicular to the axis is, for example, substantially elliptical (may be circular or rectangular). The reinforcing member 8 is disposed in the superconducting matrix portion 2. That is, the reinforcing member 8 is disposed radially inward from the outer peripheral side end of the superconducting matrix portion 2, and preferably disposed radially inward from the inner peripheral end of the superconducting matrix portion 2. The reinforcing members 8 are concentratedly arranged at the center of the cross section perpendicular to the axis of the superconducting matrix portion 2 (other arrangements will be described later). The “concentrated arrangement” does not mean that the arrangement is divided (for example, distributed) into a plurality of places, but is arranged in a single place. The phrase “disposed in the center” means that the reinforcing member 8 is disposed in a substantially central region of the cross section perpendicular to the axis of the superconducting matrix portion 2. The reinforcing member 8 may not be disposed at the center (centroid) of the cross section perpendicular to the axis of the superconducting matrix portion 2. More specifically, it is a necessary condition that the entire outer periphery of the cross section perpendicular to the axis of the reinforcing member 8 is inside the superconducting matrix portion 2 to be “centered”. Specifically, for example, when there is a portion where the superconducting matrix portion 2 does not exist between the outer periphery of the cross section perpendicular to the axis of the reinforcing member 8 and the diffusion barrier layer 6, it is not included in the “disposed at the center”.

この補強部材8は、純TiまたはTi基合金からなる。この純Tiは、微量(例えば0.5質量%未満)の不純物を含んだものでも良い。また、補強部材8を形成するTi基合金は、添加元素を10質量%〜0.5質量%程度含有する合金である。純TiよりもTi基合金のほうが硬い。よって、補強部材8をTi基合金で形成した場合に比べ、補強部材8を純Tiで形成した場合は、前駆体1製造時の加工性(後述する減面加工の加工性)が良い。また、補強部材8を純Tiで形成した場合に比べ、補強部材8をTi基合金で形成した場合は、補強部材8の(超電導線材の)強度が高くなる。ただし、Ti基合金中の添加元素が10質量%を超えると上記の加工性が悪化するので、添加元素は10質量%以下であることが好ましい。   The reinforcing member 8 is made of pure Ti or a Ti-based alloy. This pure Ti may contain a trace amount (for example, less than 0.5 mass%) of impurities. Further, the Ti-based alloy forming the reinforcing member 8 is an alloy containing about 10% by mass to 0.5% by mass of an additive element. Ti-based alloys are harder than pure Ti. Therefore, when the reinforcing member 8 is made of pure Ti, the workability at the time of manufacturing the precursor 1 (the workability of the area reduction process described later) is better than when the reinforcing member 8 is made of a Ti-based alloy. Further, when the reinforcing member 8 is formed of a Ti-based alloy, the strength of the reinforcing member 8 (of the superconducting wire) is higher than when the reinforcing member 8 is formed of pure Ti. However, when the additive element in the Ti-based alloy exceeds 10% by mass, the above workability deteriorates, so the additive element is preferably 10% by mass or less.

この補強部材8の面積率A(前駆体1全体の軸直角断面に占める補強部材8の面積率A)は、次式で表される。
面積率A=(補強部材8の断面積/前駆体1全体の断面積)×100(%)
面積率Aは、例えば5〜30%である。面積率Aの下限は5%より大きくても良く、例えば8%、10%、15%などでも良い。面積率Aの上限は30%より小さくても良く、例えば20%、25%などでも良い。面積率Aが大きいほど超電導線材の強度は上がる。しかし、面積率Aが大きいほど、前駆体1全体の軸直角断面に占める超電導マトリックス部2(超電導相)の割合は減り、超電導線材の軸直角断面全体当たりの臨界電流密度は下がる。
The area ratio A of the reinforcing member 8 (the area ratio A of the reinforcing member 8 occupying the cross section perpendicular to the axis of the entire precursor 1) is expressed by the following equation.
Area ratio A = (cross-sectional area of the reinforcing member 8 / cross-sectional area of the entire precursor 1) × 100 (%)
The area ratio A is, for example, 5 to 30%. The lower limit of the area ratio A may be larger than 5%, for example, 8%, 10%, 15%, etc. The upper limit of the area ratio A may be smaller than 30%, for example, 20% or 25%. The strength of the superconducting wire increases as the area ratio A increases. However, as the area ratio A increases, the proportion of the superconducting matrix portion 2 (superconducting phase) in the cross section perpendicular to the axis of the entire precursor 1 decreases, and the critical current density per whole cross section perpendicular to the axis of the superconducting wire decreases.

この補強部材8の外周は、超電導マトリックス部2のブロンズマトリックス部4と直接接触する。この補強部材8の配置は、補強部材8内のTi元素がブロンズマトリックス部4内へ拡散できるようにするためのものである。補強部材8の外周の全体が、ブロンズマトリックス部4と直接接触することが好ましい(Tiが拡散しやすいため)。なお、補強部材8の外周の一部のみが、ブロンズマトリックス部4と直接接触しても良い。   The outer periphery of the reinforcing member 8 is in direct contact with the bronze matrix portion 4 of the superconducting matrix portion 2. The arrangement of the reinforcing member 8 is for allowing the Ti element in the reinforcing member 8 to diffuse into the bronze matrix portion 4. It is preferable that the entire outer periphery of the reinforcing member 8 is in direct contact with the bronze matrix portion 4 (since Ti easily diffuses). Note that only a part of the outer periphery of the reinforcing member 8 may be in direct contact with the bronze matrix portion 4.

(製法)
次に、ブロンズ法によるNbSn超電導線材の製法の一例を説明する。超電導線材の製法は、一次スタック材(多芯部3に対応)を作製する第1工程と、一次スタック材等を用いて二次多芯ビレット(前駆体1が形成される前の段階のもの)を作製する第2工程と、二次多芯ビレットを加工して前駆体1を形成する第3工程と、前駆体1にNbSn生成熱処理を施して超電導線材とする第4工程とを備える。
(Manufacturing method)
Next, an example of a method of Nb 3 Sn superconducting wire by the bronze process. The superconducting wire manufacturing method includes a first step of producing a primary stack material (corresponding to the multi-core portion 3) and a secondary multi-core billet (before the precursor 1 is formed) using the primary stack material or the like. ), A third step in which the secondary multi-core billet is processed to form the precursor 1, and a fourth step in which the precursor 1 is subjected to Nb 3 Sn generation heat treatment to form a superconducting wire. Prepare.

第1工程は、一次スタック材(多芯部3に対応。以下、前駆体1の段階での部材名を単に括弧を付して記載する場合がある)を作製する工程である。一次スタック材(多芯部3)は以下(a)〜(g)のように作製される。(a)Cu−Sn基合金棒(ブロンズマトリックス部4)を用意する。(b)Cu−Sn基合金棒の軸直角断面の中心とその周囲に、穴を7箇所形成する。(c)その穴に純Nb棒(またはNb基合金棒)(Nb基フィラメント5)を挿入する。(d)上記(b)及び(c)を経たCu−Sn基合金棒(多芯部3)の軸方向両端を、溶接によって真空封止する。この真空封止されたものを「一次多芯ビレット」とする。(e)一次多芯ビレットを静水圧押出し法で押出し(減面加工)する。(f)押出しされた押出材を、引抜加工等により伸線加工(減面加工)する。この伸線加工の途中に、複数回の焼鈍を行う。この焼鈍は、Cu−Sn基合金の加工硬化を原因とした断線がおこらない様にするために行う。(g)伸線加工された線材(棒材)を、六角ダイスにより六角断面形状に仕上げる。これにより、一次スタック材(多芯部3)が作製される。   The first step is a step of producing a primary stack material (corresponding to the multi-core portion 3; hereinafter, the member name at the stage of the precursor 1 may be simply indicated by parentheses). A primary stack material (multi-core part 3) is produced as follows (a)-(g). (A) A Cu—Sn base alloy rod (bronze matrix portion 4) is prepared. (B) Seven holes are formed in the center and the periphery of the cross section perpendicular to the axis of the Cu-Sn base alloy rod. (C) Insert a pure Nb bar (or Nb base alloy bar) (Nb base filament 5) into the hole. (D) Both ends in the axial direction of the Cu-Sn base alloy rod (multi-core portion 3) having undergone the above (b) and (c) are vacuum-sealed by welding. This vacuum sealed product is referred to as a “primary multi-core billet”. (E) The primary multi-core billet is extruded (reduced area) by the hydrostatic extrusion method. (F) The extruded material is drawn (drawn) by drawing or the like. A plurality of annealings are performed during the wire drawing process. This annealing is performed in order to prevent disconnection due to work hardening of the Cu—Sn base alloy. (G) The drawn wire (bar) is finished to a hexagonal cross-sectional shape with a hexagonal die. Thereby, a primary stack material (multi-core part 3) is produced.

第2工程は、一次スタック材等を用いて二次多芯ビレットを作製する工程である。二次多芯ビレットは次の(h)〜(m)のように作製される。(h)純Ti棒(またはTi基合金棒)(補強部材8)を用意する。(i)純Ti等棒(補強部材8)の外周に一次スタック材(多芯部3)を複数配置する。(j)上記(i)の際、純Ti等棒(補強部材8)の外周と一次スタック材(多芯部3)とを直接接触させる。(k)複数の一次スタック材(超電導マトリックス部2)の外周に純Nb等のシート(拡散障壁層6)を巻く。(l)これらの部材を一体化させたもの(上記(h)〜(k)を経てできたもの)を、Cu製パイプ(安定化銅層7)に挿入する。(m)上記(l)を経たCu製パイプ(安定化銅層7)の軸方向両端部を溶接によって真空封止する。この真空封止されたものが「二次多芯ビレット」である。なお、上記各工程の順序は様々に変更できる。例えば、Cu製パイプ(安定化銅層7)にシート(拡散障壁層6)を挿入し、その内側に複数の一次スタック材(多芯部3)を配置した後、純Ti等棒(補強部材8)を配置しても良い。   The second step is a step of producing a secondary multi-core billet using a primary stack material or the like. The secondary multi-core billet is produced as follows (h) to (m). (H) A pure Ti bar (or Ti-based alloy bar) (reinforcing member 8) is prepared. (I) A plurality of primary stack materials (multi-core portion 3) are arranged on the outer periphery of a pure Ti rod (reinforcing member 8). (J) In the case of (i) above, the outer periphery of a pure Ti rod (reinforcing member 8) and the primary stack material (multi-core portion 3) are brought into direct contact. (K) A sheet (diffusion barrier layer 6) of pure Nb or the like is wound around the outer periphery of a plurality of primary stack materials (superconducting matrix portion 2). (L) A material obtained by integrating these members (made through the above (h) to (k)) is inserted into a Cu pipe (stabilized copper layer 7). (M) Both ends in the axial direction of the Cu pipe (stabilized copper layer 7) having undergone the above (l) are vacuum-sealed by welding. This vacuum-sealed product is a “secondary multi-core billet”. In addition, the order of each said process can be changed variously. For example, after inserting a sheet (diffusion barrier layer 6) into a Cu pipe (stabilized copper layer 7) and arranging a plurality of primary stack materials (multi-core portion 3) on the inside thereof, a pure Ti rod (reinforcing member) 8) may be arranged.

第3工程は、二次多芯ビレットを加工して前駆体1を形成する工程である。この工程は次の(n)及び(o)のように行われる。(n)二次多芯ビレットを静水圧押出し法で押出し(減面加工)する。(o)押出しされた押出材を、引抜加工等により伸線加工(減面加工)する。この伸線加工は、線材の軸直角断面が最終的に矩形状となるように行う。また、上記(f)と同様に、伸線加工の途中に複数回の焼鈍を行う。これにより前駆体1が製造される(この段階の製造物が「前駆体1」である)。   The third step is a step of forming the precursor 1 by processing the secondary multi-core billet. This step is performed as in the following (n) and (o). (N) A secondary multi-core billet is extruded (reducing area) by an isostatic extrusion method. (O) The extruded material is drawn (drawn) by drawing or the like. This wire drawing is performed so that the cross section perpendicular to the axis of the wire finally becomes rectangular. Further, similarly to the above (f), annealing is performed a plurality of times during the wire drawing. Thus, the precursor 1 is manufactured (the product at this stage is “precursor 1”).

第4工程は、前駆体1にNbSn生成熱処理(拡散熱処理)を施して超電導線材とする工程である。NbSn生成熱処理は、真空中で、例えば650〜720℃で、例えば80〜200時間行う。このNbSn生成熱処理により、ブロンズマトリックス部4(Cu−Sn基合金)とNb基フィラメント5との界面にNbSn化合物層が生成される。また、このNbSn生成熱処理により、補強部材8のTi元素がブロンズマトリックス部4内に拡散される(この拡散は、他の加熱を伴う工程中に生じても良い)。これにより、NbSn超電導線材が製造される。 The fourth step is a step in which the precursor 1 is subjected to Nb 3 Sn generation heat treatment (diffusion heat treatment) to obtain a superconducting wire. The Nb 3 Sn generation heat treatment is performed in a vacuum at, for example, 650 to 720 ° C., for example, for 80 to 200 hours. By this Nb 3 Sn generation heat treatment, an Nb 3 Sn compound layer is generated at the interface between the bronze matrix portion 4 (Cu—Sn base alloy) and the Nb base filament 5. Further, the Ti element of the reinforcing member 8 is diffused into the bronze matrix portion 4 by the Nb 3 Sn generation heat treatment (this diffusion may occur during other heating-related processes). Thus, Nb 3 Sn superconducting wire is manufactured.

(実験)
上記製法により「実施例の超電導線材」を製造した。また、比較のために「比較例の超電導線材」を製造した。そして、各超電導線材について、0.2%耐力と、臨界電流とを測定した。
(Experiment)
The “superconducting wire of the example” was manufactured by the above manufacturing method. For comparison, a “comparative superconducting wire” was manufactured. And about each superconducting wire, 0.2% yield strength and critical current were measured.

実施例の超電導線材は次のように製造した。上記製法の(a)の工程で用意したCu−Sn基合金棒(ブロンズマトリックス部4)は、Cu−15wt%Sn、直径150mm、軸方向長さ500mmである。上記(c)の工程で穴に挿入した純Nb棒(Nb基フィラメント5)は、直径17mm、軸方向長さ500mmである。上記(a)〜(g)の工程で作製した一次スタック材(多芯部3)の径(六角断面の外接円の直径)は3mmである。上記(h)の工程で用意した純Ti棒(補強部材8)は、直径60mmである。上記(i)の工程で純Ti棒(補強部材)の外周に配置した一次スタック材(多芯部3)は3000本である。上記(l)の工程で用いたCu製パイプ(安定化銅層7)は、外径150mm、内径120mm、軸方向長さ500mmである。上記(k)の工程で一次スタック材(超電導マトリックス部2)の外周に巻いたシート(拡散障壁層6)の材料は、純Nbである。上記(a)〜(o)の工程により製造された前駆体1の軸直角断面の長辺側長さWは1mmである。前駆体1の軸直角断面全体に占める補強部材8の面積率Aは10%である。この前駆体1にNbSn生成熱処理(拡散熱処理)を施して実施例の超電導線材を得た。 The superconducting wire of the example was manufactured as follows. The Cu—Sn base alloy rod (bronze matrix portion 4) prepared in the step (a) of the above production method has Cu-15 wt% Sn, a diameter of 150 mm, and an axial length of 500 mm. The pure Nb rod (Nb-based filament 5) inserted into the hole in the step (c) has a diameter of 17 mm and an axial length of 500 mm. The diameter (the diameter of the circumscribed circle of the hexagonal cross section) of the primary stack material (multi-core part 3) produced in the steps (a) to (g) is 3 mm. The pure Ti rod (reinforcing member 8) prepared in the step (h) has a diameter of 60 mm. There are 3000 primary stack members (multi-core portions 3) arranged on the outer periphery of the pure Ti rod (reinforcing member) in the step (i). The Cu pipe (stabilized copper layer 7) used in the step (l) has an outer diameter of 150 mm, an inner diameter of 120 mm, and an axial length of 500 mm. The material of the sheet (diffusion barrier layer 6) wound around the outer periphery of the primary stack material (superconducting matrix portion 2) in the step (k) is pure Nb. The long side length W of the cross section perpendicular to the axis of the precursor 1 manufactured by the steps (a) to (o) is 1 mm. The area ratio A of the reinforcing member 8 occupying the entire cross section perpendicular to the axis of the precursor 1 is 10%. This precursor 1 was subjected to Nb 3 Sn generation heat treatment (diffusion heat treatment) to obtain the superconducting wire of the example.

比較例の超電導線材は、実施例の超電導線材と同一の寸法及び構造である。ただし、補強部材8の材料は、実施例では純Tiだが、比較例では純Taである。   The superconducting wire of the comparative example has the same size and structure as the superconducting wire of the example. However, the material of the reinforcing member 8 is pure Ti in the embodiment, but pure Ta in the comparative example.

0.2%耐力は、液体ヘリウム中(温度4.2K)に超電導線材を浸漬して、この超電導線材の引張試験を行うことで測定した。臨界電流は、液体ヘリウム中(温度4.2K)で、15T(テスラ)の外部磁場の下で四端子法にて測定した。   The 0.2% proof stress was measured by immersing the superconducting wire in liquid helium (temperature 4.2 K) and conducting a tensile test of the superconducting wire. The critical current was measured by the four probe method in liquid helium (temperature 4.2 K) under an external magnetic field of 15 T (Tesla).

実験結果は次のようになった。比較例の超電導線材の結果を100%としたときの、実施例の超電導線材の結果(比率)を示す。
・線材強度(0.2%耐力@4.2K)
比較例:100%、実施例:105%
・超電導特性(臨界電流@15T)
比較例:100%、実施例:120%
The experimental results were as follows. The result (ratio) of the superconducting wire of the example when the result of the superconducting wire of the comparative example is 100% is shown.
・ Wire strength (0.2% proof stress @ 4.2K)
Comparative example: 100%, Example: 105%
・ Superconducting properties (critical current @ 15T)
Comparative example: 100%, Example: 120%

(線材強度)比較例よりも実施例の方が0.2%耐力が高かった。これは、低温における機械強度が、TaよりもTiの方が高いためである。なお、実施例では0.2%耐力が250MPaより大きかった。   (Wire strength) The 0.2% yield strength of the example was higher than that of the comparative example. This is because the mechanical strength at low temperature is higher for Ti than for Ta. In the examples, the 0.2% proof stress was greater than 250 MPa.

(超電導特性)比較例よりも実施例の方が臨界電流が高かった。これは、補強部材8のTi元素がブロンズマトリックス部4中に拡散し、Ti添加効果(後述)が生じたためである。   (Superconducting characteristics) The critical current was higher in the example than in the comparative example. This is because the Ti element of the reinforcing member 8 diffuses into the bronze matrix portion 4 and a Ti addition effect (described later) occurs.

(効果)
次に、図1に示す前駆体1の効果を説明する。前駆体1は、NbSn超電導線材の製造に用いられる。前駆体1は、純NbまたはNb基合金からなる複数本のNb基フィラメント5がブロンズマトリックス部4(Cu−Sn基合金)中に配置された超電導マトリックス部2と、超電導マトリックス部2の外周に配置された拡散障壁層6と、拡散障壁層6の外周に配置された安定化銅層7と、超電導マトリックス部2内に配置された補強部材8とを備える。
(effect)
Next, the effect of the precursor 1 shown in FIG. 1 will be described. The precursor 1 is used for manufacturing an Nb 3 Sn superconducting wire. The precursor 1 includes a superconducting matrix portion 2 in which a plurality of Nb-based filaments 5 made of pure Nb or an Nb-based alloy are disposed in a bronze matrix portion 4 (Cu—Sn based alloy), and an outer periphery of the superconducting matrix portion 2. Disposed diffusion barrier layer 6, stabilized copper layer 7 disposed on the outer periphery of diffusion barrier layer 6, and reinforcing member 8 disposed in superconducting matrix portion 2.

(効果1−1)
補強部材8は、純TiまたはTi基合金からなる。また、補強部材8の外周とブロンズマトリックス部4とが直接接触する。よって、NbSn生成熱処理時等に、補強部材8のTi元素がブロンズマトリックス部4内(超電導マトリックス部2内)に拡散される。したがって、前駆体1により製造された超電導線材の超電導特性(上部臨界磁場、及び、高磁場での臨界電流密度)を向上できる。
(Effect 1-1)
The reinforcing member 8 is made of pure Ti or a Ti-based alloy. Further, the outer periphery of the reinforcing member 8 and the bronze matrix portion 4 are in direct contact. Therefore, Ti element of the reinforcing member 8 is diffused in the bronze matrix portion 4 (in the superconducting matrix portion 2) during Nb 3 Sn generation heat treatment or the like. Therefore, the superconducting properties (upper critical magnetic field and critical current density in a high magnetic field) of the superconducting wire manufactured by the precursor 1 can be improved.

この効果をさらに説明する。前駆体1内に補強部材8を設けると、超電導線材の強度は上がる。一方、前駆体1の軸直角断面に占める超電導マトリックス部2の面積率(超電導相の面積率)は減る。すなわち、Cu−Sn基合金(ブロンズマトリックス部4)とNb基フィラメント5との接触領域が減る。よって、補強部材8を単に設けるだけでは、超電導特性が小さくなってしまう。しかし、本発明では、上記のTi添加効果により、超電導線材の超電導特性を向上できる。すなわち、本発明では、補強部材8を設けたことによる超電導特性の低下を抑制できる。   This effect will be further described. When the reinforcing member 8 is provided in the precursor 1, the strength of the superconducting wire increases. On the other hand, the area ratio of the superconducting matrix portion 2 occupying the cross section perpendicular to the axis of the precursor 1 (the area ratio of the superconducting phase) decreases. That is, the contact area between the Cu—Sn base alloy (bronze matrix portion 4) and the Nb base filament 5 is reduced. Therefore, simply providing the reinforcing member 8 reduces the superconducting characteristics. However, in the present invention, the superconducting characteristics of the superconducting wire can be improved by the above Ti addition effect. That is, in the present invention, it is possible to suppress a decrease in superconducting characteristics due to the provision of the reinforcing member 8.

(効果1−2)
補強部材8は、純TiまたはTi基合金からなる。
純TiまたはTi基合金は、補強部材8として従来用いられていた高強度材(Ta、W、Mo、V、Zr、Hfなど)に比べ、安定入手が容易であり安価である。よって、前駆体1は容易に量産できる。
純TiまたはTi基合金は、補強部材8として従来用いられていたアルミナ分散銅等に比べ、低温での機械強度特性(低温脆性など)が高い。よって、前駆体1から製造された超電導線材の強度を従来よりも高くできる。
(Effect 1-2)
The reinforcing member 8 is made of pure Ti or a Ti-based alloy.
Pure Ti or Ti-based alloy is easy to obtain and cheaper than high strength materials (Ta, W, Mo, V, Zr, Hf, etc.) conventionally used as the reinforcing member 8. Therefore, the precursor 1 can be easily mass-produced.
Pure Ti or a Ti-based alloy has higher mechanical strength characteristics (such as low-temperature brittleness) at a low temperature than alumina-dispersed copper or the like conventionally used as the reinforcing member 8. Therefore, the strength of the superconducting wire manufactured from the precursor 1 can be made higher than before.

(効果2)
補強部材8は、超電導マトリックス部2の軸直角断面の中央に集中配置される。よって、超電導マトリックス部2内に補強部材8を分散配置させた場合に比べ、補強部材8を容易に配置できる。その結果、前駆体1を容易に製造できる。
(Effect 2)
The reinforcing members 8 are concentrated in the center of the cross section perpendicular to the axis of the superconducting matrix portion 2. Therefore, the reinforcing members 8 can be easily arranged as compared with the case where the reinforcing members 8 are dispersedly arranged in the superconducting matrix portion 2. As a result, the precursor 1 can be easily manufactured.

(効果3)
前駆体1は、軸直角断面が矩形状である。よって、前駆体1を用いて製造された超電導線材をコイルの巻線として用いる場合、軸直角断面が円形状の超電導線材に比べ、超電導線材間のデッドスペースを少なくできる。その結果、このコイルの電流密度を上げることができ、このコイルを用いた超電導マグネットをコンパクト化できる。
(Effect 3)
The precursor 1 has a rectangular cross section perpendicular to the axis. Therefore, when the superconducting wire manufactured using the precursor 1 is used as a coil winding, the dead space between the superconducting wires can be reduced as compared with a superconducting wire having a circular cross section perpendicular to the axis. As a result, the current density of this coil can be increased, and a superconducting magnet using this coil can be made compact.

(効果4)
本発明の超電導線材(NbSn超電導線材)は、前駆体1に対して、NbSn生成熱処理を施してNbSn系超電導相を形成させることで製造される。この超電導線材は、上記(効果1)〜(効果3)の効果を奏するものである。
(Effect 4)
The superconducting wire (Nb 3 Sn superconducting wire) of the present invention is produced by subjecting the precursor 1 to Nb 3 Sn generation heat treatment to form an Nb 3 Sn-based superconducting phase. This superconducting wire has the effects (Effect 1) to (Effect 3).

(その他の効果1)
ブロンズマトリックス部4を形成するCu−Sn基合金中のSnの濃度(Sn濃度)は、13.5質量%以上である。よって、Sn濃度が13.5質量%未満の場合よりも、臨界電流密度を高くできる。したがって、補強部材8を設けたことによる超電導特性の低下をさらに抑制できる。
(Other effects 1)
The Sn concentration (Sn concentration) in the Cu—Sn base alloy forming the bronze matrix portion 4 is 13.5% by mass or more. Therefore, the critical current density can be made higher than when the Sn concentration is less than 13.5% by mass. Therefore, it is possible to further suppress the deterioration of the superconducting characteristics due to the provision of the reinforcing member 8.

(その他の効果2)
補強部材8は、純TiまたはTi基合金からなる。純TiまたはTi基合金は、補強部材8として従来用いられていた材料(アルミナ分散銅、上記の高強度材など)に比べ、比強度(引っ張り強さ/密度)が高い。よって、前駆体1から製造された超電導線材を従来よりも軽量化できる。その結果、この超電導線材を用いて製作される超電導マグネットの軽量化や、この超電導マグネットのサポート構造の簡易化ができる。
(Other effects 2)
The reinforcing member 8 is made of pure Ti or a Ti-based alloy. Pure Ti or Ti-based alloy has a higher specific strength (tensile strength / density) than materials conventionally used as the reinforcing member 8 (alumina-dispersed copper, the above-described high-strength material, etc.). Therefore, the superconducting wire manufactured from the precursor 1 can be made lighter than before. As a result, the weight of the superconducting magnet manufactured using this superconducting wire can be reduced, and the support structure of this superconducting magnet can be simplified.

(変形例1)
図2に変形例1の前駆体11を示す。図1に示すように、上記実施形態の前駆体1の補強部材8は、超電導マトリックス部2の軸直角断面の中央に集中配置された。一方、図2に示すように、超電導マトリックス部2中に補強部材18を分散配置しても良い。以下、この相違点をさらに説明する。
(Modification 1)
FIG. 2 shows a precursor 11 of Modification 1. As shown in FIG. 1, the reinforcing members 8 of the precursor 1 of the above embodiment are concentratedly arranged at the center of the cross section perpendicular to the axis of the superconducting matrix portion 2. On the other hand, as shown in FIG. 2, the reinforcing members 18 may be dispersedly arranged in the superconducting matrix portion 2. Hereinafter, this difference will be further described.

前駆体11は、図1に示す前駆体1の補強部材8に変えて、超電導マトリックス部2中に分散配置された補強部材18を備える。例えば、図1に示す前駆体1の複数の多芯部3の一部を、図2に示す補強部材18に置き換えることで、補強部材18が分散配置される。なお、図2では、複数の補強部材18(黒く塗りつぶして示す)のうち一部にのみ符号を付している。   The precursor 11 includes reinforcing members 18 distributed in the superconducting matrix portion 2 instead of the reinforcing members 8 of the precursor 1 shown in FIG. For example, the reinforcing members 18 are dispersedly arranged by replacing a part of the plurality of multi-core portions 3 of the precursor 1 shown in FIG. 1 with the reinforcing members 18 shown in FIG. In FIG. 2, only some of the plurality of reinforcing members 18 (shown in black) are denoted by reference numerals.

(変形例2)
また、図1に示す前駆体1の補強部材8と、図2に示す前駆体11の補強部材18とを組み合わせても良い。すなわち、前駆体1(11)は、超電導マトリックス部2の軸直角断面の中央に集中配置された補強部材8(図1参照)と、超電導マトリックス部2中に分散配置された補強部材18(図2参照)と、の両方を備えても良い。
(Modification 2)
Moreover, you may combine the reinforcing member 8 of the precursor 1 shown in FIG. 1, and the reinforcing member 18 of the precursor 11 shown in FIG. That is, the precursor 1 (11) includes a reinforcing member 8 (see FIG. 1) concentrated in the center of the cross section perpendicular to the axis of the superconducting matrix portion 2 and a reinforcing member 18 (see FIG. 1) distributed in the superconducting matrix portion 2. 2)).

1、11 前駆体(NbSn超電導線材製造用前駆体)
2 超電導マトリックス部
4 ブロンズマトリックス部4(Cu−Sn基合金)
5 Nb基フィラメント
6 拡散障壁層
7 安定化銅層
8、18 補強部材
1,11 Precursor (Precursor for producing Nb 3 Sn superconducting wire)
2 Superconducting matrix part 4 Bronze matrix part 4 (Cu-Sn based alloy)
5 Nb-based filament 6 Diffusion barrier layer 7 Stabilized copper layer 8, 18 Reinforcing member

Claims (3)

Nb3Sn超電導線材の製造に用いられる前駆体であって、
純NbまたはNb基合金からなる複数本のNb基フィラメントがCu−Sn基合金中に配置された超電導マトリックス部と、
前記超電導マトリックス部の外周に配置された拡散障壁層と、
前記拡散障壁層の外周に配置された安定化銅層と、
前記超電導マトリックス部内に配置された補強部材と、
を備え、
前記補強部材は、純TiまたはTi基合金からなり、
前記補強部材の外周と前記Cu−Sn基合金とが直接接触
前記補強部材は、前記超電導マトリックス部の軸直角断面の中央に集中配置される、
Nb3Sn超電導線材製造用前駆体。
A precursor used in the manufacture of Nb 3 Sn superconducting wire,
A superconducting matrix portion in which a plurality of Nb-based filaments made of pure Nb or Nb-based alloy are arranged in a Cu-Sn based alloy;
A diffusion barrier layer disposed on the outer periphery of the superconducting matrix portion;
A stabilized copper layer disposed on an outer periphery of the diffusion barrier layer;
A reinforcing member disposed in the superconducting matrix portion;
With
The reinforcing member is made of pure Ti or a Ti-based alloy,
The outer periphery of the reinforcing member and said Cu-Sn-based alloy directly contacts,
The reinforcing member is concentrated in the center of the cross section perpendicular to the axis of the superconducting matrix portion.
Precursor for producing Nb 3 Sn superconducting wire.
軸直角断面が矩形状である、請求項1に記載のNb3Sn超電導線材製造用前駆体。 The precursor for producing a Nb 3 Sn superconducting wire according to claim 1, wherein the cross section perpendicular to the axis is rectangular. 請求項1または2に記載のNb3Sn超電導線材製造用前駆体に対して、Nb3Sn生成熱処理を施してNb3Sn系超電導相を形成させることで製造される、Nb3Sn超電導線材。 Against Nb 3 Sn superconducting wire precursor for manufacturing according to claim 1 or 2, is subjected to Nb 3 Sn generated heat treatment is produced by forming a Nb 3 Sn based superconducting phase, Nb 3 Sn superconducting wire.
JP2011197934A 2011-09-12 2011-09-12 Precursor for producing Nb3Sn superconducting wire and Nb3Sn superconducting wire Expired - Fee Related JP5661582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011197934A JP5661582B2 (en) 2011-09-12 2011-09-12 Precursor for producing Nb3Sn superconducting wire and Nb3Sn superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011197934A JP5661582B2 (en) 2011-09-12 2011-09-12 Precursor for producing Nb3Sn superconducting wire and Nb3Sn superconducting wire

Publications (2)

Publication Number Publication Date
JP2013062039A JP2013062039A (en) 2013-04-04
JP5661582B2 true JP5661582B2 (en) 2015-01-28

Family

ID=48186560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011197934A Expired - Fee Related JP5661582B2 (en) 2011-09-12 2011-09-12 Precursor for producing Nb3Sn superconducting wire and Nb3Sn superconducting wire

Country Status (1)

Country Link
JP (1) JP5661582B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6078501B2 (en) * 2014-07-18 2017-02-08 ジャパンスーパーコンダクタテクノロジー株式会社 Precursor for manufacturing Nb3Sn superconducting wire
US10546669B2 (en) 2016-09-06 2020-01-28 H.C. Starck Inc. Diffusion barriers for metallic superconducting wires
JP7110372B2 (en) * 2018-03-07 2022-08-01 エイチ.シー. スターク インコーポレイテッド Diffusion barrier for metallic superconducting wires

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6981309B2 (en) * 2003-10-17 2006-01-03 Oxford Superconducting Technology Method for producing (Nb, Ti)3Sn wire by use of Ti source rods

Also Published As

Publication number Publication date
JP2013062039A (en) 2013-04-04

Similar Documents

Publication Publication Date Title
US10679775B2 (en) Fabrication of reinforced superconducting wires
KR102205386B1 (en) Diffusion barrier for metallic superconducting wires
JP5642727B2 (en) Precursor for producing internal Sn method Nb3Sn superconducting wire, Nb3Sn superconducting wire, and production method thereof
US20130053250A1 (en) Nb3Sn SUPERCONDUCTOR WIRE AND METHOD FOR MANUFACTURING Nb3Sn SUPERCONDUCTOR WIRE
JP2009211880A (en) Nb3Sn SUPERCONDUCTING WIRE ROD MADE BY USING INTERNAL Sn METHOD, AND PRECURSOR THEREFOR
JP6585519B2 (en) Precursor for producing Nb3Sn superconducting wire, and method for producing Nb3Sn superconducting wire
US7718898B2 (en) Precursor for manufacturing Nb3Sn superconducting wire and Nb3Sn superconducting wire
JP5661582B2 (en) Precursor for producing Nb3Sn superconducting wire and Nb3Sn superconducting wire
JP2015185211A (en) METHOD OF PRODUCING Nb3Sn SUPERCONDUCTING WIRE ROD
JP2007128686A (en) Nb3Sn SUPERCONDUCTING WIRE MATERIAL MANUFACTURED BY INSIDE DIFFUSION METHOD
JP2014137917A (en) Nb3Sn SUPERCONDUCTOR PRECURSOR WIRE, Nb FILAMENT SINGLE WIRE, Nb3Sn SUPERCONDUCTOR WIRE AND MANUFACTURING METHOD THEREOF
JP6247813B2 (en) NbTi superconducting wire
JP5805469B2 (en) Precursor for producing Nb3Sn superconducting wire and Nb3Sn superconducting wire
EP3105799B1 (en) Ternary molybdenum chalcogenide superconducting wire and manufacturing thereof
JP2016126950A (en) Multicore superconducting wire material
JP2014072039A (en) PRECURSOR FOR MANUFACTURING Nb3Sn SUPERCONDUCTING WIRE ROD AND Nb3Sn SUPERCONDUCTING WIRE ROD
JP7148103B2 (en) Precursor for Nb3Sn superconducting wire, method for producing same, and method for producing Nb3Sn superconducting wire using same
JP5164815B2 (en) Precursor for producing Nb3Sn superconducting wire and Nb3Sn superconducting wire
JP2009059652A (en) BRONZE PROCESS Nb3Sn SUPERCONDUCTING WIRE ROD AND ITS PRECURSOR
JP2009004128A (en) BRONZE-PROCESS Nb3Sn SUPERCONDUCTING WIRE, AND PRECURSOR THEREOF
JP6078501B2 (en) Precursor for manufacturing Nb3Sn superconducting wire
JP4723345B2 (en) Method for producing Nb3Sn superconducting wire and precursor therefor
JP5632767B2 (en) Precursor for producing Nb3Sn superconducting wire and Nb3Sn superconducting wire
JP2003045247A (en) Superconductive cable
JP2007141682A (en) Nb3Sn SUPERCONDUCTING WIRE AND PRECURSOR FOR THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141114

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141114

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20141114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141203

R150 Certificate of patent or registration of utility model

Ref document number: 5661582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees