JP4009167B2 - Powder method Nb (3) Sn superconducting wire - Google Patents

Powder method Nb (3) Sn superconducting wire Download PDF

Info

Publication number
JP4009167B2
JP4009167B2 JP2002269108A JP2002269108A JP4009167B2 JP 4009167 B2 JP4009167 B2 JP 4009167B2 JP 2002269108 A JP2002269108 A JP 2002269108A JP 2002269108 A JP2002269108 A JP 2002269108A JP 4009167 B2 JP4009167 B2 JP 4009167B2
Authority
JP
Japan
Prior art keywords
powder
wire
superconducting wire
sheath
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002269108A
Other languages
Japanese (ja)
Other versions
JP2004111111A (en
Inventor
弘之 加藤
隆好 宮崎
隆司 長谷
征治 林
恭治 太刀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Tokai University Educational Systems
Original Assignee
Kobe Steel Ltd
Tokai University Educational Systems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Tokai University Educational Systems filed Critical Kobe Steel Ltd
Priority to JP2002269108A priority Critical patent/JP4009167B2/en
Publication of JP2004111111A publication Critical patent/JP2004111111A/en
Application granted granted Critical
Publication of JP4009167B2 publication Critical patent/JP4009167B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、粉末法によって製造されるNb3Sn超電導線材に関するものであり、殊に高磁場発生用超電導マグネットの素材として有用な粉末法Nb3Sn超電導線材に関するものである。
【0002】
【従来の技術】
超電導線材が実用化されている分野のうち、高分解能核磁気共鳴(NMR)分析装置に用いられる超電導マグネットについては発生磁場が高いほど分解能が高まることから、超電導マグネットは近年ますます高磁場化の傾向にある。
【0003】
高磁場発生用超電導マグネットに使用される超電導線材としては、Nb3Sn線材が実用化されており、このNb3Sn超電導線材の製造には主にブロンズ法が採用されている。このブロンズ法は、Cu−Sn基合金(ブロンズ)マトリックス中に複数のNb基芯材を埋設し、伸線加工することによって上記Nb基芯材をフィラメントとなし、このフィラメントを複数束ねて線材群となし、安定化の為の銅(安定化銅)に埋設して伸線加工する。上記線材群を600〜800℃で熱処理(拡散熱処理)することにより、Nb基フィラメントとマトリックスの界面にNb3Sn化合物相を生成する方法である(例えば、非特許文献1参照)。しかしながら、この方法ではブロンズ中に固溶できるSn濃度には限界があり、生成されるNb3Sn層の厚さが薄くなってしまい、高磁場特性が良くないという欠点があった。
【0004】
一方、Nb3Sn超電導線材を製造する方法としては、上記ブロンズ法の他に、粉末法も知られている。この粉末法としては、NbとSnの中間化合物粉末をコア材としてNbシースに充填し、加工後熱処理を行うことにより、芯材とNbシースの界面にNb3Sn相を生成する、いわゆるECN法が知られている。また新しい粉末法として、Ta−Snの合金粉末を芯材としてNbまたはNb基合金シース内に充填し、加工後熱処理をすることで、Sn量の制限が無く、ブロンズ法およびECN法よりも厚いNb3Sn相が生成可能であるため、高磁場特性が優れた超電導線材が得られることが示されている(例えば、特許文献1参照)。
【0005】
ところで、一般に超電導線材では、線材に部分的発熱が生じても熱伝導でその熱を除去して安定化するために、超電導フィラメント径は細いことが必要であり、大電流を得ようとすると超電導フィラメントを多数本含んだ極細多芯線が望ましい。実際、ブロンズ法では数千本〜数万本のNb3Snフィラメントを持つ線材が実用化されている。極細多芯線の出発材はNb芯、NbシースまたはNb基合金シースを1本含む単芯線、または数本含むサブマルチ材であって、それらを束ねて複合体とし、これを押出、伸線または圧延等によって縮径加工することで得られる。
【0006】
上記粉末法(前記特許文献1)では、単芯フィラメントを持つ短尺試作材での超電導特性しか評価できておらず、Ta−Sn粉末法で作成される超電導線材における改良された多芯化法の提供による安定した超電導特性を持つ多芯線材の実現が切望されているのが実状である。
【0007】
【非特許文献1】
K.Tachikawa Filamentary A15 Superconductors,Plenum Press(1980)p1
【特許文献1】
特開平11−250749号公報
【0008】
【発明が解決しようとする課題】
これまで提案されている粉末法では、単芯線を縮径加工する際には問題ないが、単芯線材を束ねて複合体として、これを縮径加工し多芯線を作製する際に、粉末の成形性が悪いことから均一な加工が難しく、加工中にNbシースやNb基合金シースが破損することがあり、これが超電導特性に影響を与えるという問題点があった。
【0009】
また、最終の拡散熱処理後の線材断面を成分分析すると、コア中心部付近に余剰のSn成分が残留しており、全断面積に占めるNb3Sn反応領域の割合が小さく留まっており、Sn成分および高磁場特性の向上に有効なTa成分が有効に活用されているとは言えない状況である。
【0010】
更に、粉末コア部分および金属間化合物であるNb3Sn相部分は拡散熱処理後に脆くなり、NbまたはNb基合金シースのみしか線材強度には寄与しないため、上記方法のNb3Sn線材はブロンズ法に比べて強度が不足するという問題がある。しかも、熱処理後に曲げ歪みを受けると、Nb3Sn相に対する影響が大きくなり、超電導特性が大幅に低下する。これらは、線材をマグネットに実用するときに解決すべき問題となる。
【0011】
本発明はこうした状況の下でなされたものであって、その目的は、線材としての強度を向上すると共に、優れた超電導特性を発揮し、しかも歪みが導入された場合であっても超電導特性の劣化を招くことがないような粉末法Nb3Sn超電導線材を提供することにある。
【0012】
【発明を解決するための手段】
上記目的を達成することのできた本発明のNb3Sn超電導線材とは、粉末を用いて超電導線材を作製する方法によって製造されるNb3Sn超電導線材であって、NbまたはNb基合金からなるシース内に、NbまたはNb基合金からなる芯材を1本または複数本配置すると共に、前記シースと芯材間に形成される空間内に、Ta,NbおよびTiのうちの少なくとも1種の金属とSnとの合金粉末、金属間化合物粉末または混合粉末を充填し、これを縮径加工した線材を一次超電導線として作製されたものである点に要旨を有するものである。
【0013】
本発明の上記目的は、NbまたはNb基合金からなるパイプ状部材内に、Ta,NbおよびTiのうちの少なくとも1種の金属とSnとの合金粉末、金属間化合物粉末または混合粉末を充填して縮径加工した線材を、NbまたはNb基合金からなるシース内に1本または複数本配置すると共に、前記シースと線材間に形成される空間内に、Ta,NbおよびTiのうちの少なくとも1種の金属とSnとの合金粉末、金属間化合物粉末または混合粉末を充填し、これを縮径加工した線材を一次超電導線として作製されたNb3Sn超電導線材によっても達成される。
【0014】
本発明の粉末法Nb3Sn超電導線材で用いる前記粉末としては、更にCuを構成元素として含有したものを用いることも好ましい。
【0015】
上記のような超電導線材で用いる一次超電導線の単数または複数本をCuマトリックス内に埋設した線材を用いることや、このCuマトリックス内に埋設した線材の複数本を更にCuマトリックス内に埋設した線材を用いても本発明の粉末法Nb3Sn超電導線材を作製することができ、こうした構成によって多芯化した超電導線材とすることができる。
【0016】
また、上記のような各種超電導原線の外周に、Nb3Sn相形成の拡散処理時に外部へのSnの拡散を防止するバリヤ層を配置し、更にその外周にCuシースを配置して複合体を構成し、この複合体を用いても本発明の粉末法Nb3Sn超電導線材を作製することができる。
【0017】
更に、本発明の超電導線材においては、前記NbまたはNb基合金からなるシースと粉末との間にCuシースを介在させた超電導原線または複合体を用いて作製することもでき、こうした構成の超電導線材では、縮径加工の際にNbまたはNb基合金のより均一な加工が可能なものとなる。
【0018】
【発明の実施の形態】
本発明者らは、上記目的を達成するために様々な角度から検討した。その結果、上記のような構成の各種超電導原線若しくは複合体を用いて作製した粉末法Nb3Sn超電導線材では、上記目的が見事に達成されることを見出し、本発明を完成した。本発明の構成を図面に基づいて説明する。
【0019】
図1は、本発明で用いる一次超電導線の一構成例を示した概略断面図であり、図中1はNbまたはNb基合金からなる芯材、2はNbまたはNb基合金からなるシース、3は原料粉末、4はCuシースを夫々示し、これらの部材によって本発明の一次超電導線10が構成される。この一次超電導線10では、NbまたはNb基合金からなるシース2内に、NbまたはNb基合金からなる芯材1を1本または複数本配置すると共に、前記シースと芯材間に形成される空間内に、原料粉末3を充填し、これを縮径加工した線材である。
【0020】
このとき用いる原料粉末3としては、Ta,NbおよびTiのうちの少なくとも1種の金属とSnとを成分として含むものであり、その形態は合金粉末、金属間化合物粉末または混合粉末のいずれでも良い。この原料粉末3に含まれる成分のうちSnは、周囲に配置されるNbやNb基合金と反応してNb3Sn相を形成するものとなるが、Ta,NbおよびTi等の成分は、Nb3Sn相の形成を促進したり、それ自体がSnと反応して超電導体となるという作用を発揮するものである。この原料粉末3中のSn成分の含有量は、20〜75原子%程度であることが好ましく、Sn含有量が20原子%未満となるとNb3Sn相が薄くなり、超電導特性が劣化し、75原子%を超えると拡散熱処理時にSnの蒸発が起きてボイドが形成され、強度および超電導特性が低下する原因となる。尚、この原料粉末3は、いずれの形態を採るにしても、その平均粒径は熱処理時の反応性を高めるという観点から150μm以下(100メッシュアンダー)であることが好ましい。
【0021】
また、この原料粉末3には、必要によってCu成分を含有することも有効である。このCu成分は、拡散熱処理温度を低減する作用を発揮する。即ち、従来の粉末法においてCu成分が含有されていない場合の最適反応温度(拡散熱処理温度)は900〜925℃であり、一方ブロンズ法の最適反応温度は650〜850℃程度であり、900℃以上で熱処理すると結晶粒が大きくなり過ぎて超電導特性が劣化するときがあるが、原料粉末にCu成分を含有させることによって、最適熱処理温度を下げることができ、その結果、結晶粒が微細化され、Nb3Sn超電導線材における高特性が実現できるのである。こうした作用を発揮させるためには、原料粉末中のCu含有量は0.3質量%以上であることが好ましいが、Cu含有量が大きくなり過ぎると、生成するNb3Snに対してCuが不純物として作用して特性が劣化するので、その上限は30質量%程度にすることが好ましい。
【0022】
図1に示したような一次超電導線10を用いて拡散熱処理することによって、シース中のNbと原料粉末中のSnとが反応してNb3Sn相が形成されて本発明の超電導線材が得られる。こうした構成では、NbまたはNb基合金からなる芯材1が粉末内部に入った状態であるため、従来線材に比べると線材全体の強度が増加し、NbまたはNb基合金からなるシース2が破損しにくくなり、断線も極力回避でできることになる。また、粉末中心部(コア部)のSn成分の付近に芯材が配置されることによって、Sn原子の拡散距離を短くすること、および粉末内部に芯材を埋め込むことで粉末に接するNbやNb基合金の表面積が増加することになり、線材全断面積に占めるNb3Sn反応層の比率を大きくして臨界電流を大きくすることができる。
【0023】
また、本発明の超電導線材によれば、Nb3Sn相が各部に分散されて生成するため、個々部分のNb3Sn相の厚みが薄くなりひび割れしにくくなることや、また一部にひび割れが入っても残りのNb3Sn相で影響を補えるため、拡散熱処理後の線材に対して歪みがかかった場合であっても、Nb3Sn相に対する影響は少なくなって、超電導特性の低下を防止することができるものとなる。尚、これらの作用を考慮すると、芯材1と原料粉末3の面積比率(芯材:原料粉末)は1:0.1〜7程度であることが好ましい。
【0024】
図2は本発明で用いる一次超電導線の他の構成例を示した概略断面図であり、図中5はNbまたはNb基合金からなるパイプ状部材、6、8は原料粉末、7はNbまたはNb基合金からなるシース、9はCuシースを夫々示し、これらの部材によって本発明の一次超電導線11が構成される。この一次超電導線11の構成は、パイプ状部材5内に原料粉末を充填して縮径加工した線材を前記芯材の代わりに用いる以外は、基本的に前記図1に示した一次超電導線10と類似するものである。
【0025】
こうした構成では、パイプ状部材5が前記芯材1と同様の機能を発揮する他、図1に示した一次超電導線10よりも更に原料粉末6、8に接するNbまたはNb基合金の表面積を増加させることで、NbSn相の生成面積を増加させることができる。また、図2のように原料粉末8の内部にNbまたはNb基合金からなるパイプ状部材5がある場合、その部材が加工途中で破損しても原料粉末6中のSn成分は原料粉末8部に流出するだけであり、従来線材のようにCuシースに拡散して無駄に消費されることはないのでNbSn相の生成に影響を及ぼすことが無くなるのである。
【0026】
前記図1、2に示した一次超電導線10、11に対して拡散熱処理を施すことによって希望する特性を発揮する超電導線材が得られるのであるが、上記一次超電導線10(図1)、11(図2)および一次超電導線10、11よりCuシース4、9を除いたものの単数または複数本をCuマトリックス12内に埋設した線材(図3、4)を用いることや、このCuマトリックス12内に埋設した線材の複数本を更にCuマトリックス内に埋設した超電導原線を用いても本発明の粉末法NbSn超電導線材を作製することができ、こうした構成によって多芯化(例えば、一次超電導線の数が10000程度まで)した超電導線材とすることができる。また、このCuマトリックスは、NbSn相を磁気的に安定化させる作用も発揮する。
【0027】
また、上記のような各種超電導原線の外周に、Nb3Sn相形成の拡散処理時に外部へのSnの拡散を防止するバリヤ層(例えば、Nb層)を配置し、更にその外周にCuシースを配置して複合体を構成し、この複合体を用いても本発明の粉末法Nb3Sn超電導線材を作成することができる。
【0028】
更に、本発明の超電導線材においては、前記NbまたはNb基合金からなるシースと原料粉末との間にCuシースを介在させた超電導原線または複合体を用いて作成することもでき、こうした構成の超電導線材では、縮径加工の際にNbまたはNb基合金シースのより均一な加工が可能なものとなる。
【0029】
尚、本発明で用いるNbまたはNb基合金からなるシース2、7(図1、2)は、最終的に管状となれば良く、例えば薄肉のNbまたはNb基合金からなるシートを重ね巻きしたり、またそれらを溶接することによって管状としたものを採用することができる。
【0030】
以下、本発明を実施例によってより具体的に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に徴して設計変更することは、いずれも本発明の技術的範囲に含まれるものである。
【0031】
【実施例】
実施例1
325メッシュ以下のTa粉末とSn粉末を、その原子比が6:5(Ta:Sn)となるよう混合し、この混合粉末に更に325メッシュ以下のCu粉末を混合後の全体粉末量に対して2質量%になるよう添加混合した。この混合粉末を、アルミナ製坩堝に入れ、1.33×10-3Paの真空中で950℃、20時間反応させてTa−Sn−Cu合金微粉末を作製した。
【0032】
次に、外径:8mm、内径:5mmのNb−4.0原子%Ta合金製シース内の中央部に、外径:2mmのNb−4.0原子%Ta合金製芯材を配置しておき、これに(シース材と芯材間に形成される空間内に)先に作製したTa−Sn−Cu合金微粉末を充填し、溝ロールにより1.0mm角正方形断面の線材(一次超電導線)に加工した。このとき比較材として、シース内に芯材を配置せずにTa−Sn−Cu合金粉末を充填し、溝ロールにより1.0mm角正方形断面の線材に加工したものについても作製した。
【0033】
両線材に800℃で80時間の拡散熱処理を行って、超電導線材とした。比較材のNb3Sn線材の断面を図5(図面代用金属電子顕微鏡写真)に示すが、Nb−4.0原子%Ta合金製シースの一部(線材の端部以外)にSnの流出が認められた。これは加工中の強度不足によってシースが不均一に薄くなったことが原因と考えられる。
【0034】
一方、本発明材の超電導線材の断面を図6(図面代用金属電子顕微鏡写真)に示すが、Nb−4.0原子%Ta合金製シースには、線材の端部以外でのSnの流出は認められなかった。
【0035】
これらのNb3Sn超電導線材をCuめっきした後、液体ヘリウム中(4.2K)で14〜17Tの磁場(外部磁場)における臨界電流密度(臨界電流Icを、安定化銅を除いた線材断面積で割った値:Jc)を測定したところ、下記のような値が得られた。
【0036】
[臨界電流密度Jcの測定値]
(1)本発明材
523A/mm2(14T)、481A/mm2(15T)、461A/mm2(16T)、445A/mm2(16.5T)、419A/mm2(17T)
(2)比較材
107A/mm2(16T)、89A/mm2(17T)
例えば、外部磁場が17TのときのJcは、比較材で89A/mm2、本発明材は419A/mm2となっており、本発明材では従来のブロンズ法で得られる実績値の200A/mm2を大幅に上回る特性を示していた。外部磁場Bと臨界電流密度Jcの関係を図10に示す。尚図10には、Cu−Sn基合金(Sn含有量:14質量%)の臨界電流密度Jcについても同時に示した。
【0037】
また、各超電導線材について、臨界電流Icの曲げ歪み依存性を、歪が0のときの臨界電流Ic0との比(Ic/Ic0)で評価した。その結果を、図11に示すが、比較材では急激にIcが低下していたが、本発明材ではIcの低下率が大幅に抑制されていることが分かる。
【0038】
実施例2
実施例1と同様にして作製したTa−Sn−Cu合金微粉末を、外径:8mm、内径:5mmのNb−4.0原子%Ta合金製パイプ状部材内に充填し、溝ロールにより2.0mm角正方形断面の線材に加工した。その後、この線材をスエージング加工して円形断面の線材とした(以下、この線材を「加工線材」と呼ぶ)。
【0039】
次に、別途準備した外径:8mm、内径:5mmのNb−4.0原子%Ta合金製シース内の中央部に、上記加工線材を配置しておき、これに(シースと加工線材間に形成される空間内に)、実施例1で作製したTa−Sn−Cu合金微粉末を充填し、溝ロールにより1.0mm角正方形断面の線材に加工した。
【0040】
この線材に800℃で80時間の拡散熱処理を行って、超電導線材とした。得られた超電導線材の断面を図7(図面代用金属電子顕微鏡写真)に示すが、実施例1(本発明例)の場合と同様に、線材の端部以外でのSnの流出は認められなかった。
【0041】
この超電導線材について、実施例1と同様にして17〜24Tの磁場(外部磁場)における臨界電流密度Jcを測定したところ、下記のような値が得られた。これらの値を、前記図10に併せて示す。
【0042】
[臨界電流密度Jcの測定値]
559A/mm2(17T)、167A/mm2(22T)、92A/mm2(23T)、46A/mm2(24T)、21A/mm2(25T)
また、この超電導線材について、臨界電流Icの曲げ歪み依存性を、実施例1と同様にして調査した。その結果を、前記図11に併記するが、Icの低下率が比較材と比べて顕著に抑制されていることが分かる。
【0043】
実施例3
外径:8mm、内径:5mmのNb−4.0原子%Ta合金製シース内の中央部に、外径:0.8mmのNb製芯材を7本束ねて配置しておき、これに(シースとNb製芯材間に形成される空間内に)、実施例1で作製したTa−Sn−Cu合金微粉末を充填し、溝ロールにより1.4mm角正方形断面の線材に加工した。
【0044】
この線材に800℃で80時間の拡散熱処理を行って、超電導線材とした。得られた超電導線材の断面を図8(図面代用金属電子顕微鏡写真)に示すが、実施例1(本発明例)の場合と同様に、線材の端部以外でのSnの流出は認められなかった。
【0045】
この超電導線材について、実施例1と同様にして15〜25Tの磁場(外部磁場)における臨界電流密度Jcを測定したところ、下記のような値が得られた。これらの値を、前記図10に併せて示す。
【0046】
[臨界電流密度Jcの測定値]
264A/mm2(15T)、261A/mm2(15.5T)、259A/mm2(16T)、256A/mm2(16.5T)、253A/mm2(17T)、240A/mm2(18T)、200A/mm2(20T)、166A/mm2(21T)、130A/mm2(22T)、91A/mm2(23T)、45A/mm2(24T)、20A/mm2(25T)
また、この超電導線材について、臨界電流Icの曲げ歪み依存性を、実施例1と同様にして調査した。その結果を、前記図11に併記するが、Icの低下率が比較材と比べて明瞭に抑制されていることが分かる。
【0047】
実施例4
外径:53mm、内径49mmのCuシースと、ネジ込み式のCu蓋を準備し、Cu蓋に内径:5mm、深さ:3mm程度の凹みを31個均等に開け、その凹みに、外径:5mmのNb−4.0原子%Ta合金芯材を31本差し込むことで保持し、Cuシース内に芯材が均等に配置されるようにした。これに実施例1と同様に作製したTa−Sn−Cu合金微粉末を充填したものに、もう一方の蓋をし、更にその外周を厚さ0.2mmのNbシートを外径が59mmになるまで巻きつけ(Nbシース)、これを外径:68mm、内径:60mmのCuビレット(安定化銅)内に装填して複合体とした。
【0048】
この複合体を、押出加工と伸線加工によって外径:2.0mmになるまで加工し、得られた線材に800℃で80時間の拡散熱処理を行って、超電導線材とした。得られた超電導線材の断面を図9(図面代用金属顕微鏡写真)に示すが、NbシートとCuシース部の境界部およびNb−4.0原子%Ta合金芯材と粉末コア境界部にNb3Sn相が均一に生成されていた。
【0049】
この超電導線材について、実施例1と同様にして17Tの磁場(外部磁場)における臨界電流密度Jcを測定したところ、300A/mm2となり、従来のブロンズ法線材を上回っていた。また、この超電導線材について、臨界電流Icの曲げ歪み依存性を、実施例1と同様にして調査した。その結果を、前記図11に併記するが、Icの低下率が著しく抑制されていることが分かる。
【0050】
【発明の効果】
本発明は以上のように構成されており、線材としての強度を向上すると共に、優れた超電導特性を発揮し、しかも歪みが導入された場合であっても超電導特性の劣化を招くことがないような粉末法Nb3Sn超電導線材が実現できた。
【図面の簡単な説明】
【図1】本発明で用いる超電導原線の一構成例を示した概略断面図である。
【図2】本発明で用いる超電導原線の他の構成例を示した概略断面図である。
【図3】本発明で用いる超電導原線の更に他の構成例を示した概略断面図である。
【図4】本発明で用いる超電導原線の他の構成例を示した概略断面図である。
【図5】実施例1で得られた超電導線材(比較材)の断面を示す図面代用金属顕微鏡写真である。
【図6】実施例1で得られた超電導線材(本発明材)の断面を示す図面代用金属顕微鏡写真である。
【図7】実施例2で得られた超電導線材(本発明材)の断面を示す図面代用金属顕微鏡写真である。
【図8】実施例3で得られた超電導線材(本発明材)の断面を示す図面代用金属顕微鏡写真である。
【図9】実施例4で得られた超電導線材(本発明材)の断面を示す図面代用金属顕微鏡写真である。
【図10】各実施例1〜3で得られたNb3Sn超電導線のJc特性と外部磁場との関係を示すグラフである。
【図11】各実施例1〜4で得られたNb3Sn超電導線の曲げ歪み依存性を比較して示したグラフである。
【符号の説明】
1 NbまたはNb基合金からなる芯材
2、7 NbまたはNb基合金からなるシース
3、6、8 原料粉末
4、9 Cuシース
10、11 一次超電導線
12 Cuマトリックス
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a Nb 3 Sn superconducting wire produced by a powder method, and particularly to a powder method Nb 3 Sn superconducting wire useful as a material for a superconducting magnet for generating a high magnetic field.
[0002]
[Prior art]
Among the fields in which superconducting wire is put to practical use, superconducting magnets used in high-resolution nuclear magnetic resonance (NMR) analyzers have higher resolution as the generated magnetic field increases. There is a tendency.
[0003]
As a superconducting wire used for the superconducting magnet for generating a high magnetic field, a Nb 3 Sn wire is put into practical use, and the bronze method is mainly used for manufacturing this Nb 3 Sn superconducting wire. In this bronze method, a plurality of Nb base materials are embedded in a Cu-Sn base alloy (bronze) matrix and drawn to form the Nb base material as a filament, and a plurality of these filaments are bundled to form a wire group. No, it is buried in copper for stabilization (stabilized copper) and drawn. This is a method of generating a Nb 3 Sn compound phase at the interface between the Nb-based filament and the matrix by heat-treating the wire group at 600 to 800 ° C. (diffusion heat treatment) (for example, see Non-Patent Document 1). However, this method has a drawback in that there is a limit to the Sn concentration that can be dissolved in the bronze, the thickness of the Nb 3 Sn layer to be formed becomes thin, and the high magnetic field characteristics are not good.
[0004]
On the other hand, as a method for producing an Nb 3 Sn superconducting wire, a powder method is also known in addition to the bronze method. As this powder method, an Nb and Sn intermediate compound powder is filled in a Nb sheath as a core material, and a heat treatment is performed after processing to generate an Nb 3 Sn phase at the interface between the core material and the Nb sheath. It has been known. In addition, as a new powder method, Ta-Sn alloy powder is filled into a Nb or Nb-based alloy sheath as a core material and heat-treated after processing, so that there is no limit on the amount of Sn, and it is thicker than the bronze method and ECN method It has been shown that since a Nb 3 Sn phase can be generated, a superconducting wire excellent in high magnetic field characteristics can be obtained (for example, see Patent Document 1).
[0005]
By the way, in general, a superconducting wire needs to have a thin superconducting filament diameter in order to remove and stabilize the heat even if partial heat generation occurs in the wire. An ultrafine multifilamentary wire containing many filaments is desirable. Actually, in the bronze method, a wire having thousands to tens of thousands of Nb 3 Sn filaments has been put into practical use. The starting material of the ultra-fine multi-core wire is a single-core wire containing one Nb core, Nb sheath or Nb-based alloy sheath, or a sub-multi material containing several wires, which are bundled into a composite, which is extruded, drawn or rolled It can be obtained by reducing the diameter by, for example
[0006]
In the powder method (Patent Document 1), only the superconducting properties of a short prototype material having a single-core filament can be evaluated, and an improved multi-core method for a superconducting wire produced by the Ta-Sn powder method is used. The reality is that realization of a multi-core wire having stable superconducting properties by providing is eagerly desired.
[0007]
[Non-Patent Document 1]
K. Tachikawa Filamentary A15 Superconductors, Plenum Press (1980) p1
[Patent Document 1]
Japanese Patent Laid-Open No. 11-250749
[Problems to be solved by the invention]
In the powder method proposed so far, there is no problem when the single core wire is reduced in diameter, but when the single core wire is bundled into a composite to reduce the diameter to produce a multi-core wire, Since the formability is poor, uniform processing is difficult, and the Nb sheath or Nb-based alloy sheath may be damaged during processing, which has the problem of affecting the superconducting properties.
[0009]
Further, when the cross section of the wire after the final diffusion heat treatment is analyzed, surplus Sn component remains in the vicinity of the core center, and the ratio of the Nb 3 Sn reaction region in the total cross-sectional area remains small, and the Sn component In addition, it cannot be said that a Ta component effective for improving high magnetic field characteristics is effectively utilized.
[0010]
Furthermore, the powder core portion and Nb 3 Sn phase portion which is an intermetallic compound becomes brittle after diffusion heat treatment, since only Nb or Nb-based alloy sheath only do not contribute to wire strength, Nb 3 Sn wire of the above method the bronze process There is a problem that the strength is insufficient. In addition, when subjected to bending strain after the heat treatment, the influence on the Nb 3 Sn phase is increased, and the superconducting characteristics are greatly deteriorated. These are problems to be solved when the wire is used in a magnet.
[0011]
The present invention has been made under such circumstances, and its purpose is to improve the strength as a wire, to exhibit excellent superconducting characteristics, and even when strain is introduced, the superconducting characteristics are improved. The object is to provide a powder Nb 3 Sn superconducting wire that does not cause deterioration.
[0012]
[Means for Solving the Invention]
The Nb 3 Sn superconducting wires of the present invention which could achieve the above object, the powder a Nb 3 Sn superconducting wire produced by the method of making a superconducting wire using, consisting of Nb or Nb-based alloy sheath One or a plurality of cores made of Nb or Nb-based alloy are disposed therein, and at least one metal of Ta, Nb and Ti is formed in a space formed between the sheath and the core It has a gist in that a wire material obtained by filling an alloy powder with Sn, an intermetallic compound powder, or a mixed powder and reducing the diameter thereof is used as a primary superconducting wire.
[0013]
The object of the present invention is to fill a pipe-shaped member made of Nb or an Nb-based alloy with an alloy powder, an intermetallic compound powder or a mixed powder of at least one of Ta, Nb and Ti with Sn. One or a plurality of wire rods that have been reduced in diameter are arranged in a sheath made of Nb or an Nb-based alloy, and at least one of Ta, Nb, and Ti is formed in a space formed between the sheath and the wire rod. This can also be achieved by an Nb 3 Sn superconducting wire prepared by using a wire material obtained by filling an alloy powder, intermetallic compound powder or mixed powder of a seed metal and Sn and reducing the diameter thereof as a primary superconducting wire.
[0014]
As the powder used in the powder method Nb 3 Sn superconducting wire of the present invention, it is also preferable to use a powder further containing Cu as a constituent element.
[0015]
Use a wire in which one or more primary superconducting wires used in the superconducting wire as described above are embedded in a Cu matrix, or a wire in which a plurality of wires embedded in the Cu matrix are further embedded in a Cu matrix. used can also be prepared powder method Nb 3 Sn superconducting wire of the present invention can be a multi-sinkers were superconducting wire by such configuration.
[0016]
In addition, a composite layer is formed by disposing a barrier layer for preventing the diffusion of Sn to the outside during the diffusion process for forming the Nb 3 Sn phase on the outer periphery of the various superconducting wires as described above, and further disposing a Cu sheath on the outer periphery. Even if this composite is used, the powder method Nb 3 Sn superconducting wire of the present invention can be produced.
[0017]
Furthermore, the superconducting wire of the present invention can be produced using a superconducting wire or composite in which a Cu sheath is interposed between the sheath made of the Nb or Nb-based alloy and the powder. In the case of a wire rod, Nb or an Nb-based alloy can be processed more uniformly during diameter reduction processing.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors have studied from various angles in order to achieve the above object. As a result, the present inventors have found that the above object can be achieved with the powder method Nb 3 Sn superconducting wire produced using various superconducting wires or composites having the above-described configuration, and the present invention has been completed. The configuration of the present invention will be described with reference to the drawings.
[0019]
FIG. 1 is a schematic cross-sectional view showing a configuration example of a primary superconducting wire used in the present invention, in which 1 is a core material made of Nb or Nb-based alloy, 2 is a sheath made of Nb or Nb-based alloy, 3 Indicates a raw material powder, 4 indicates a Cu sheath, and the primary superconducting wire 10 of the present invention is constituted by these members. In the primary superconducting wire 10, one or a plurality of core materials 1 made of Nb or Nb base alloy are arranged in a sheath 2 made of Nb or Nb base alloy, and a space formed between the sheath and the core material. It is a wire rod in which the raw material powder 3 is filled and the diameter thereof is reduced.
[0020]
The raw material powder 3 used at this time contains at least one metal of Ta, Nb, and Ti and Sn as components, and the form thereof may be any of alloy powder, intermetallic compound powder, or mixed powder. . Of the components contained in the raw material powder 3, Sn reacts with Nb or an Nb-based alloy arranged around it to form an Nb 3 Sn phase. However, components such as Ta, Nb and Ti contain Nb 3 Promotes the formation of the Sn phase, or exerts an effect of reacting with Sn to become a superconductor. The content of the Sn component in the raw material powder 3 is preferably about 20 to 75 atomic%. When the Sn content is less than 20 atomic%, the Nb 3 Sn phase becomes thin, the superconducting characteristics deteriorate, and 75 If it exceeds atomic%, Sn will evaporate during diffusion heat treatment and voids are formed, which causes a decrease in strength and superconducting properties. In addition, even if this raw material powder 3 takes any form, it is preferable that the average particle diameter is 150 micrometers or less (100 mesh under) from a viewpoint of improving the reactivity at the time of heat processing.
[0021]
In addition, it is effective that the raw material powder 3 contains a Cu component as necessary. This Cu component exhibits the effect of reducing the diffusion heat treatment temperature. That is, the optimum reaction temperature (diffusion heat treatment temperature) when the Cu component is not contained in the conventional powder method is 900 to 925 ° C., whereas the optimum reaction temperature of the bronze method is about 650 to 850 ° C. When the heat treatment is performed as described above, the superconducting properties may be deteriorated due to excessively large crystal grains. However, the optimum heat treatment temperature can be lowered by adding a Cu component to the raw material powder, and as a result, the crystal grains are refined. High characteristics in the Nb 3 Sn superconducting wire can be realized. In order to exert such an effect, the Cu content in the raw material powder is preferably 0.3% by mass or more. However, if the Cu content becomes too large, Cu is an impurity with respect to the produced Nb 3 Sn. Therefore, the upper limit is preferably about 30% by mass.
[0022]
By performing a diffusion heat treatment using the primary superconducting wire 10 as shown in FIG. 1, Nb in the sheath and Sn in the raw material powder react to form an Nb 3 Sn phase, thereby obtaining the superconducting wire of the present invention. It is done. In such a configuration, since the core material 1 made of Nb or Nb-based alloy is in the state of the powder, the strength of the entire wire is increased as compared with the conventional wire, and the sheath 2 made of Nb or Nb-based alloy is damaged. It will be difficult, and disconnection can be avoided as much as possible. In addition, by arranging the core material in the vicinity of the Sn component in the powder core (core part), the diffusion distance of Sn atoms is shortened, and the core material is embedded in the powder so that Nb or Nb in contact with the powder The surface area of the base alloy will increase, and the critical current can be increased by increasing the proportion of the Nb 3 Sn reaction layer in the total cross-sectional area of the wire.
[0023]
In addition, according to the superconducting wire of the present invention, since the Nb 3 Sn phase is dispersed and generated in each part, the thickness of the Nb 3 Sn phase in each part becomes thin and it is difficult to crack, and cracks are partly formed. Even if it enters, the remaining Nb 3 Sn phase can compensate for the effect, so even if the wire material after diffusion heat treatment is distorted, the effect on the Nb 3 Sn phase is reduced, preventing deterioration of superconducting properties. Will be able to do. In consideration of these actions, the area ratio of the core material 1 and the raw material powder 3 (core material: raw material powder) is preferably about 1: 0.1 to 7.
[0024]
FIG. 2 is a schematic cross-sectional view showing another configuration example of the primary superconducting wire used in the present invention, in which 5 is a pipe-shaped member made of Nb or an Nb-based alloy, 6 and 8 are raw material powders, and 7 is Nb or A sheath made of an Nb-based alloy, 9 is a Cu sheath, and the primary superconducting wire 11 of the present invention is constituted by these members. The primary superconducting wire 11 basically has the same structure as the primary superconducting wire 10 shown in FIG. 1 except that a wire rod filled with a raw material powder in the pipe-like member 5 is used instead of the core material. Is similar.
[0025]
In such a configuration, the pipe-like member 5 performs the same function as the core material 1 and further increases the surface area of the Nb or Nb-based alloy in contact with the raw material powders 6 and 8 than the primary superconducting wire 10 shown in FIG. By doing so, the generation area of the Nb 3 Sn phase can be increased. In addition, when the pipe-shaped member 5 made of Nb or an Nb-based alloy is present inside the raw material powder 8 as shown in FIG. 2, the Sn component in the raw material powder 6 is 8 parts of the raw material powder even if the member is broken during processing. In other words, it does not diffuse to the Cu sheath and is not wasted as in the case of a conventional wire, so that the generation of the Nb 3 Sn phase is not affected.
[0026]
The primary superconducting wires 10 and 11 shown in FIGS. 1 and 2 are subjected to diffusion heat treatment to obtain a superconducting wire exhibiting desired characteristics. The primary superconducting wires 10 (FIG. 1) and 11 ( 2) and the primary superconducting wires 10 and 11, except for the Cu sheaths 4 and 9, the wire material (FIGS. 3 and 4) in which one or a plurality of wires are embedded in the Cu matrix 12 is used. The powder method Nb 3 Sn superconducting wire of the present invention can also be produced by using a superconducting wire in which a plurality of buried wires are further embedded in a Cu matrix. With such a configuration, the number of cores (for example, a primary superconducting wire) can be increased. Can be a superconducting wire having a number of up to about 10,000). In addition, this Cu matrix also exhibits an effect of magnetically stabilizing the Nb 3 Sn phase.
[0027]
Further, a barrier layer (for example, an Nb layer) for preventing the diffusion of Sn to the outside during the diffusion process for forming the Nb 3 Sn phase is disposed on the outer periphery of the various superconducting wires as described above, and a Cu sheath is further disposed on the outer periphery thereof. The powder method Nb 3 Sn superconducting wire of the present invention can be produced even if the composite is constituted by using the composite.
[0028]
Furthermore, in the superconducting wire of the present invention, it can be prepared using a superconducting wire or composite in which a Cu sheath is interposed between the sheath made of the Nb or Nb-based alloy and the raw material powder. In the superconducting wire, the Nb or Nb-based alloy sheath can be processed more uniformly during the diameter reduction processing.
[0029]
Note that the sheaths 2 and 7 (FIGS. 1 and 2) made of Nb or Nb-based alloy used in the present invention may be finally tubular, for example, a thin sheet of Nb or Nb-based alloy may be rolled up. Moreover, what was made into the tubular form by welding them is employable.
[0030]
Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples are not of a nature that limit the present invention, and any design changes may be made in accordance with the gist of the present invention. It is included in the technical scope.
[0031]
【Example】
Example 1
Ta powder of 325 mesh or less and Sn powder are mixed so that the atomic ratio is 6: 5 (Ta: Sn), and Cu powder of 325 mesh or less is further mixed with this mixed powder with respect to the total amount of powder after mixing. The mixture was added and mixed to 2% by mass. This mixed powder was put in an alumina crucible and reacted in a vacuum of 1.33 × 10 −3 Pa at 950 ° C. for 20 hours to produce a Ta—Sn—Cu alloy fine powder.
[0032]
Next, an Nb-4.0 atom% Ta alloy core material having an outer diameter of 2 mm is arranged at the center of the sheath made of Nb-4.0 atom% Ta alloy having an outer diameter of 8 mm and an inner diameter of 5 mm. This is filled with the Ta-Sn-Cu alloy fine powder prepared earlier (in the space formed between the sheath material and the core material), and a 1.0 mm square square cross-section wire (primary superconducting wire) by a groove roll ). At this time, as a comparative material, Ta-Sn-Cu alloy powder was filled without disposing the core material in the sheath, and processed into a 1.0 mm square square cross-section wire with a groove roll.
[0033]
Both wires were subjected to diffusion heat treatment at 800 ° C. for 80 hours to obtain superconducting wires. The cross section of the comparative Nb 3 Sn wire is shown in FIG. 5 (drawing metal electron micrograph), but Sn outflow occurs in a part of the Nb-4.0 at% Ta alloy sheath (other than the end of the wire). Admitted. This is thought to be because the sheath was thinned unevenly due to insufficient strength during processing.
[0034]
On the other hand, the cross section of the superconducting wire of the present invention material is shown in FIG. 6 (drawing metal electron micrograph), but in the Nb-4.0 atomic% Ta alloy sheath, the outflow of Sn other than the end of the wire is I was not able to admit.
[0035]
After these Nb 3 Sn superconducting wires are plated with Cu, the critical current density (critical current Ic in a magnetic field (external magnetic field) of 14 to 17 T in liquid helium (4.2 K) is obtained by removing the cross-sectional area of the wire. When the value divided by Jc) was measured, the following values were obtained.
[0036]
[Measured value of critical current density Jc]
(1) Invention material 523A / mm 2 (14T), 481A / mm 2 (15T), 461A / mm 2 (16T), 445A / mm 2 (16.5T), 419A / mm 2 (17T)
(2) Comparative material 107A / mm 2 (16T), 89A / mm 2 (17T)
For example, the Jc when the external magnetic field is 17 T is 89 A / mm 2 for the comparative material and 419 A / mm 2 for the inventive material, and the actual material obtained by the conventional bronze method is 200 A / mm for the inventive material. The characteristics were significantly higher than 2 . The relationship between the external magnetic field B and the critical current density Jc is shown in FIG. In FIG. 10, the critical current density Jc of the Cu—Sn base alloy (Sn content: 14 mass%) is also shown.
[0037]
For each superconducting wire, the bending strain dependence of the critical current Ic was evaluated by the ratio (Ic / Ic 0 ) with the critical current Ic 0 when the strain was zero. The results are shown in FIG. 11, and it is understood that the Ic decreases rapidly in the comparative material, but the decrease rate of Ic is greatly suppressed in the present invention material.
[0038]
Example 2
A Ta—Sn—Cu alloy fine powder produced in the same manner as in Example 1 was filled into a pipe-shaped member made of Nb-4.0 at% Ta alloy having an outer diameter of 8 mm and an inner diameter of 5 mm, and 2 by a groove roll. It was processed into a wire rod having a square section of 0.0 mm square. Thereafter, the wire was swaged to obtain a wire having a circular cross section (hereinafter, this wire is referred to as “processed wire”).
[0039]
Next, the processed wire is placed in the center of a separately prepared sheath of Nb-4.0 atomic% Ta alloy having an outer diameter of 8 mm and an inner diameter of 5 mm. In the space to be formed), the Ta—Sn—Cu alloy fine powder produced in Example 1 was filled and processed into a 1.0 mm square square cross-section wire with a groove roll.
[0040]
This wire was subjected to a diffusion heat treatment at 800 ° C. for 80 hours to obtain a superconducting wire. A cross section of the obtained superconducting wire is shown in FIG. 7 (drawing-substitute metal electron micrograph). As in the case of Example 1 (example of the present invention), no outflow of Sn was observed except at the end of the wire. It was.
[0041]
With respect to this superconducting wire, when the critical current density Jc in a magnetic field (external magnetic field) of 17 to 24 T was measured in the same manner as in Example 1, the following values were obtained. These values are also shown in FIG.
[0042]
[Measured value of critical current density Jc]
559A / mm 2 (17T), 167A / mm 2 (22T), 92A / mm 2 (23T), 46A / mm 2 (24T), 21A / mm 2 (25T)
In addition, for this superconducting wire, the bending strain dependence of the critical current Ic was investigated in the same manner as in Example 1. The results are also shown in FIG. 11, and it can be seen that the decrease rate of Ic is significantly suppressed as compared with the comparative material.
[0043]
Example 3
Seven cores made of Nb with an outer diameter of 0.8 mm are bundled and arranged in the center of a sheath made of an Nb-4.0 atomic% Ta alloy with an outer diameter of 8 mm and an inner diameter of 5 mm. The Ta-Sn-Cu alloy fine powder produced in Example 1 was filled in a space formed between the sheath and the Nb core material, and processed into a wire having a 1.4 mm square square cross section by a groove roll.
[0044]
This wire was subjected to a diffusion heat treatment at 800 ° C. for 80 hours to obtain a superconducting wire. The cross section of the obtained superconducting wire is shown in FIG. 8 (drawing-substitute metal electron micrograph). As in the case of Example 1 (example of the present invention), no outflow of Sn was observed except at the ends of the wire. It was.
[0045]
With respect to this superconducting wire, when the critical current density Jc in a magnetic field (external magnetic field) of 15 to 25 T was measured in the same manner as in Example 1, the following values were obtained. These values are also shown in FIG.
[0046]
[Measured value of critical current density Jc]
264A / mm 2 (15T), 261A / mm 2 (15.5T), 259A / mm 2 (16T), 256A / mm 2 (16.5T), 253A / mm 2 (17T), 240A / mm 2 (18T ), 200A / mm 2 (20T), 166A / mm 2 (21T), 130A / mm 2 (22T), 91A / mm 2 (23T), 45A / mm 2 (24T), 20A / mm 2 (25T)
In addition, for this superconducting wire, the bending strain dependence of the critical current Ic was investigated in the same manner as in Example 1. The results are also shown in FIG. 11, and it can be seen that the decrease rate of Ic is clearly suppressed as compared with the comparative material.
[0047]
Example 4
Prepare a Cu sheath with an outer diameter of 53 mm and an inner diameter of 49 mm and a screw-in type Cu lid, and evenly open 31 dents with an inner diameter of about 5 mm and a depth of about 3 mm in the Cu lid. 31 Nb-4.0 atomic% Ta alloy cores of 5 mm were inserted and held, and the cores were arranged uniformly in the Cu sheath. This is filled with Ta-Sn-Cu alloy fine powder prepared in the same manner as in Example 1, and the other lid is applied. Further, the outer periphery of the Nb sheet is 0.2 mm thick and the outer diameter is 59 mm. (Nb sheath), and this was loaded into a Cu billet (stabilized copper) having an outer diameter of 68 mm and an inner diameter of 60 mm to obtain a composite.
[0048]
This composite was processed by extrusion and wire drawing until the outer diameter became 2.0 mm, and the obtained wire was subjected to diffusion heat treatment at 800 ° C. for 80 hours to obtain a superconducting wire. A cross section of the obtained superconducting wire is shown in FIG. 9 (drawing metallurgical micrograph). Nb 3 at the boundary between the Nb sheet and the Cu sheath, and at the boundary between the Nb-4.0 atomic% Ta alloy core and the powder core. Sn phase was uniformly generated.
[0049]
With respect to this superconducting wire, the critical current density Jc in a 17 T magnetic field (external magnetic field) was measured in the same manner as in Example 1. As a result, it was 300 A / mm 2 , which exceeded the conventional bronze normal wire. In addition, for this superconducting wire, the bending strain dependence of the critical current Ic was investigated in the same manner as in Example 1. The results are also shown in FIG. 11, and it can be seen that the decrease rate of Ic is remarkably suppressed.
[0050]
【The invention's effect】
The present invention is configured as described above, improves the strength as a wire, exhibits excellent superconducting characteristics, and does not cause deterioration of superconducting characteristics even when strain is introduced. A powder method Nb 3 Sn superconducting wire was realized.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a structural example of a superconducting wire used in the present invention.
FIG. 2 is a schematic sectional view showing another configuration example of the superconducting wire used in the present invention.
FIG. 3 is a schematic sectional view showing still another configuration example of the superconducting wire used in the present invention.
FIG. 4 is a schematic cross-sectional view showing another configuration example of the superconducting wire used in the present invention.
5 is a drawing-substitute metallurgical micrograph showing a cross section of the superconducting wire (comparative material) obtained in Example 1. FIG.
6 is a drawing-substitute metallurgical micrograph showing a cross section of the superconducting wire (material of the present invention) obtained in Example 1. FIG.
7 is a drawing-substitute metallurgical micrograph showing a cross section of the superconducting wire (material of the present invention) obtained in Example 2. FIG.
8 is a drawing-substitute metallurgical micrograph showing a cross section of the superconducting wire (material of the present invention) obtained in Example 3. FIG.
9 is a drawing-substitute metallurgical micrograph showing a cross section of the superconducting wire (material of the present invention) obtained in Example 4. FIG.
FIG. 10 is a graph showing the relationship between Jc characteristics of Nb 3 Sn superconducting wires obtained in Examples 1 to 3 and an external magnetic field.
FIG. 11 is a graph showing a comparison of the bending strain dependence of Nb 3 Sn superconducting wires obtained in Examples 1 to 4;
[Explanation of symbols]
1 Core material 2 made of Nb or Nb base alloy, 7 Sheath 3, 6, 8 raw material powder 4, 9 Cu sheath 10, 11 made of Nb or Nb base alloy Primary superconducting wire 12 Cu matrix

Claims (7)

粉末を用いて超電導線材を作製する方法によって製造されるNb3Sn超電導線材であって、NbまたはNb基合金からなるシース内に、NbまたはNb基合金からなる芯材を1本または複数本配置すると共に、前記シースと芯材間に形成される空間内に、Ta,NbおよびTiのうちの少なくとも1種の金属とSnとの合金粉末、金属間化合物粉末または混合粉末を充填し、これを縮径加工した線材を一次超電導線として作製されたものであることを特徴とする粉末法Nb3Sn超電導線材。An Nb 3 Sn superconducting wire manufactured by a method of producing a superconducting wire using powder, wherein one or a plurality of cores made of Nb or Nb base alloy are arranged in a sheath made of Nb or Nb base alloy And filling the space formed between the sheath and the core with an alloy powder, intermetallic compound powder or mixed powder of at least one metal of Ta, Nb and Ti with Sn, A powder-processed Nb 3 Sn superconducting wire, characterized in that it is produced as a primary superconducting wire using a diameter-reduced wire. 粉末を用いて超電導線材を作製する方法によって製造されるNb3Sn超電導線材であって、NbまたはNb基合金からなるパイプ状部材内に、Ta,NbおよびTiのうちの少なくとも1種の金属とSnとの合金粉末、金属間化合物粉末または混合粉末を充填して縮径加工した線材を、NbまたはNb基合金からなるシース内に1本または複数本配置すると共に、前記シースと線材間に形成される空間内に、Ta,NbおよびTiのうちの少なくとも1種の金属とSnとの合金粉末、金属間化合物粉末または混合粉末を充填し、これを縮径加工した線材を一次超電導線として作製されたものであることを特徴とする粉末法Nb3Sn超電導線材。An Nb 3 Sn superconducting wire manufactured by a method of producing a superconducting wire using powder, and a pipe-shaped member made of Nb or an Nb-based alloy and at least one metal of Ta, Nb and Ti One or a plurality of wire rods filled with Sn alloy powder, intermetallic compound powder or mixed powder and reduced in diameter are placed in a sheath made of Nb or Nb-based alloy, and formed between the sheath and the wire rod. The space is filled with an alloy powder, intermetallic compound powder or mixed powder of at least one metal of Ta, Nb and Ti and Sn, and a wire rod obtained by reducing the diameter is produced as a primary superconducting wire. powder method Nb 3 Sn superconducting wire is characterized in that which is. 前記粉末は、更にCuを構成元素として含有したものである請求項1または2に記載の粉末法Nb3Sn超電導線材。The powder method Nb 3 Sn superconducting wire according to claim 1 or 2, wherein the powder further contains Cu as a constituent element. 請求項1〜3のいずれかに記載の一次超電導線の単数または複数本をCuマトリックス内に埋設した線材を用いて作製されたものである粉末法Nb3Sn超電導線材。A powder-processed Nb 3 Sn superconducting wire produced by using a wire in which one or more primary superconducting wires according to any one of claims 1 to 3 are embedded in a Cu matrix. 請求項4に記載の線材の複数本を更にCuマトリックス内に埋設した線材を用いて作製されたものである粉末法Nb3Sn超電導線材。A powder method Nb 3 Sn superconducting wire produced by using a wire in which a plurality of the wires according to claim 4 are further embedded in a Cu matrix. 請求項1〜5のいずれかに記載の超電導原線の外周に、Nb3Sn相形成の拡散処理時に外部へのSnの拡散を防止するバリヤ層を配置し、更にその外周にCuシースを配置して複合体を構成し、この複合体を用いて作製されたものである粉末法Nb3Sn超電導線材。A barrier layer for preventing the diffusion of Sn to the outside during the diffusion process for forming the Nb 3 Sn phase is disposed on the outer periphery of the superconducting wire according to any one of claims 1 to 5, and a Cu sheath is disposed on the outer periphery thereof. Then, a powder method Nb 3 Sn superconducting wire, which is a composite produced by using the composite. 前記NbまたはNb基合金からなるシースと粉末との間にCuシースを介在させた一次超電導線または複合体を用いて作製されたものである請求項1〜6のいずれかに記載の粉末法Nb3Sn超電導線材。The powder method Nb according to any one of claims 1 to 6, wherein the powder method Nb is produced using a primary superconducting wire or a composite in which a Cu sheath is interposed between a sheath made of the Nb or Nb-based alloy and powder. 3 Sn superconducting wire.
JP2002269108A 2002-09-13 2002-09-13 Powder method Nb (3) Sn superconducting wire Expired - Fee Related JP4009167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002269108A JP4009167B2 (en) 2002-09-13 2002-09-13 Powder method Nb (3) Sn superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002269108A JP4009167B2 (en) 2002-09-13 2002-09-13 Powder method Nb (3) Sn superconducting wire

Publications (2)

Publication Number Publication Date
JP2004111111A JP2004111111A (en) 2004-04-08
JP4009167B2 true JP4009167B2 (en) 2007-11-14

Family

ID=32267146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002269108A Expired - Fee Related JP4009167B2 (en) 2002-09-13 2002-09-13 Powder method Nb (3) Sn superconducting wire

Country Status (1)

Country Link
JP (1) JP4009167B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4728006B2 (en) * 2005-02-09 2011-07-20 株式会社神戸製鋼所 Powder method Nb3Sn superconducting wire manufacturing method and composite member therefor
JP4523861B2 (en) * 2005-03-10 2010-08-11 株式会社神戸製鋼所 Method for producing Nb3Sn superconducting wire
JP4723327B2 (en) * 2005-09-13 2011-07-13 株式会社神戸製鋼所 Powder process Nb3Sn superconducting wire manufacturing method and precursor therefor

Also Published As

Publication number Publication date
JP2004111111A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
US20060204779A1 (en) Precursor for fabricating Nb3Sn superconducting wire, and Nb3Sn superconducting wire and method for fabricating same
EP2448029A2 (en) Precursor for Nb3Sn superconductor wire, superconductor wire using the same and method for manufacturing Nb3Sn superconductor wire
US11491543B2 (en) Method for producing an Nb3Sn superconductor wire
Kumakura et al. Superconducting Properties of Diffusion-Processed Multifilamentary ${\rm MgB} _ {2} $ Wires
JP6719141B2 (en) Nb3Sn superconducting wire manufacturing method, precursor for Nb3Sn superconducting wire, and Nb3Sn superconducting wire using the same
JP4009167B2 (en) Powder method Nb (3) Sn superconducting wire
WO2006030744A1 (en) METHOD FOR PRODUCING Nb3Sn SUPERCONDUCTIVE WIRE MATERIAL THROUGH POWDER METHOD
WO2021024529A1 (en) PRECURSOR FOR Nb3Sn SUPERCONDUCTIVE WIRE MATERIAL, PRODUCTION METHOD THEREFOR, AND PRODUCTION METHOD FOR Nb3Sn SUPERCONDUCTIVE WIRE MATERIAL USING SAME
US7887644B2 (en) Superconductive elements containing copper inclusions, and a composite and a method for their production
JP3945600B2 (en) Method for producing Nb 3 Sn superconducting wire
JP3920606B2 (en) Powder method Nb (3) Method for producing Sn superconducting wire
JP4214200B2 (en) Powder method Nb3Sn superconducting wire
JP5356132B2 (en) Superconducting wire
JP4652938B2 (en) Powder method Nb3Sn superconducting wire manufacturing method
JP4727914B2 (en) Nb3Sn superconducting wire and method for manufacturing the same
JP4193194B2 (en) Method for producing Nb3Sn superconducting wire
JP3187829B2 (en) Superconductor and manufacturing method
JP2003331660A (en) Metal-sheathed superconductor wire, superconducting coil, and its manufacturing method
Morita et al. Fabrication of New Internal Tin Nb $ _ {3} $ Sn Wire Using Sn-Zn Alloy as Sn Core
JP3866969B2 (en) Manufacturing method of Nb (3) Sn superconducting wire
Gregory et al. The introduction of Titanium into internal-Tin Nb/sub 3/Sn by a variety of procedures
JP4476800B2 (en) Method for producing Nb3Sn superconducting wire
KR101017779B1 (en) APPARATUS AND METHOD FOR MANUFACTURING MgB2 SUPERCONDUCTING MULTI-CORE WIRE/TAPES AND MgB2 SUPERCONDUCTING MULTI-CORE WIRE/TAPES THEREOF
JP2005032631A (en) Powder method nb3sn superconducting wire rod
Thoener et al. Method for producing an Nb 3 Sn superconductor wire

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041006

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041006

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees