JPS61279662A - Production of nb3sn multi-cored superconductive wire - Google Patents

Production of nb3sn multi-cored superconductive wire

Info

Publication number
JPS61279662A
JPS61279662A JP60123344A JP12334485A JPS61279662A JP S61279662 A JPS61279662 A JP S61279662A JP 60123344 A JP60123344 A JP 60123344A JP 12334485 A JP12334485 A JP 12334485A JP S61279662 A JPS61279662 A JP S61279662A
Authority
JP
Japan
Prior art keywords
heat treatment
composite
wires
rods
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60123344A
Other languages
Japanese (ja)
Other versions
JPH0717992B2 (en
Inventor
Hidemoto Suzuki
鈴木 英元
Masamitsu Ichihara
市原 政光
Yoshimasa Kamisada
神定 良昌
Nobuo Aoki
伸夫 青木
Tomoyuki Kumano
智幸 熊野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP60123344A priority Critical patent/JPH0717992B2/en
Publication of JPS61279662A publication Critical patent/JPS61279662A/en
Publication of JPH0717992B2 publication Critical patent/JPH0717992B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To produce quickly a multi-cored Nb3Sn superconductive wire by dividing plural pieces of composite Cu-Nb composite wires by Cu to plural groups, disposing the wires to the outside periphery of Sn rods, housing the rods into a Cu pipe and subjecting the pipe to sectional area reducing working and heat treatment. CONSTITUTION:Plural pieces of the composite wires 2 formed by disposing many pieces of Nb filaments 2b into Cu matrixes 2a to the outside periphery of the rods 3 consisting of the Sn or Sn alloy rods 3a coated with Cu 3b are housed into the stabilized Cu pipe 6 via an Nb or Ta diffusion barrier 5 and the above-mentioned composite wires 2 are disposed in the spaces formed by dividing the spaces between the barrier 5 and plural pieces of the aggregated rods 3 by the Cu wires 4. The composite body 1 formed in the above-mentioned manner is subjected to the sectional area reducing working such as drawing, then to a diffusion heat treatment of Sn and heat treatment for forming Nb3Sn. The above-mentioned Cu wires 4 reduces the time for the diffusion heat treatment as the Sn diffusion path. The multi-cored Nb3Sn superconductive wire having the excellent workability and superconductive characteristic is thus obtd.

Description

【発明の詳細な説明】 ッ  [発明の技術分野] 本発明は超電導線の製造方法に係り、特に内部拡散法に
よる多芯構造のNb、Sn多芯超電導線の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a superconducting wire, and particularly to a method for manufacturing a multicore Nb, Sn multicore superconducting wire using an internal diffusion method.

[発明の技術的背景] 従来、多芯構造のNb、3 Sn超電導線の製造方法と
して内部拡散法によるものが知られている。この方法に
おいては、 Cuマトリックス中に拡散源となる5nと
多数のNb線が配置され、加工後2段階の熱処理を施す
ことにより、 Nb線外周あるいは全体にNbHSn層
が形成される。通常は上記のCuマトリックス外周に拡
散障壁を介して安定化Cuが配置さjする。
[Technical Background of the Invention] Conventionally, an internal diffusion method has been known as a method for producing a multicore Nb, 3 Sn superconducting wire. In this method, a 5N wire serving as a diffusion source and a large number of Nb wires are arranged in a Cu matrix, and a two-step heat treatment is performed after processing to form an NbHSn layer around or over the entire Nb wire. Usually, stabilized Cu is placed around the outer periphery of the Cu matrix with a diffusion barrier interposed therebetween.

上記の熱処理は、(1)Cuマトリックス中に50を拡
散させるための500°C未満の熱処理(第1段階の熱
処理)と、(2)Nb、3 Sn生成のための500℃
以上。
The above heat treatments include (1) a heat treatment below 500 °C to diffuse 50 into the Cu matrix (first stage heat treatment), and (2) a heat treatment below 500 °C to form Nb,3Sn.
that's all.

通常は700℃前後の熱処理(第2段階の熱処理)によ
り施されるが、特に第1段階の熱処理は、通常Snの融
点直上の温度からNb、、Sn生成の反応温度未満の温
度範囲で段階的に施され、その熱処理時間はNbフィラ
メントの径や配置にも依存するが、数日から十数日を要
する。このように長時間の熱処理が必要とされる理由は
、熱処理温度が低いことと、Snの拡散路が近接するN
bフィラメント間隙のCuマトリックスに限定されるた
めである。
Usually, heat treatment is carried out at around 700°C (second stage heat treatment), but in particular, the first stage heat treatment is usually carried out in a temperature range from just above the melting point of Sn to below the reaction temperature for Nb, Sn formation. Although the heat treatment time depends on the diameter and arrangement of the Nb filaments, it takes from several days to more than ten days. The reason why such a long heat treatment is required is that the heat treatment temperature is low and that the Sn diffusion path is close to the N
b This is because it is limited to the Cu matrix in the filament gap.

[背景技術の問題点] 以上述べた内部拡散法は、加工中に中n■焼鈍を施す必
要がない利点を有するが、第1段階のSnの拡散熱処理
に長時間を要し、十分均質にSnが拡散していない場合
には、第2段階の熱処理においてNb3Snの生成が不
十分となり、超電導特性が低ドするという難点を有する
[Problems in the background art] The internal diffusion method described above has the advantage of not requiring intermediate annealing during processing, but the first step of Sn diffusion heat treatment takes a long time, and it is difficult to achieve sufficient homogeneity. If Sn is not diffused, the generation of Nb3Sn will be insufficient in the second stage heat treatment, resulting in a disadvantage that the superconducting properties will deteriorate.

[発明の目的] 本発明は、上記の難点を解消するためになされたもので
、Nbフィラメント群をSnの拡散通路となるCuで複
数に分割することにより、第り段階の熱処理時間を短縮
するとともに、第2段階の熱処理後の超電導特性を向上
させることをその11的とする。
[Object of the Invention] The present invention has been made to solve the above-mentioned difficulties, and by dividing the Nb filament group into a plurality of pieces using Cu, which serves as a diffusion path for Sn, the heat treatment time in the first stage is shortened. In addition, the eleventh objective is to improve the superconducting properties after the second stage heat treatment.

[発明の概要] 本発明は、 SnまたはSn合金ロッドの外周に、 C
uマトリックス中に多数本のNbフィラメントを配置し
た複合線の複数本を集合し、これらを拡散障壁を介して
安定化Cu9中に収容した複合体に断面減少加工を施し
、次いでSnの拡散熱処理およびNb、3Sn生成の熱
処理を施すことにより超電導線を製造する方法において
、前記複合線は、拡散障壁とSnまたはSn合金ロッド
との間をCuによって複数に分割さ九た空間内に配置さ
九ることを特徴としている。
[Summary of the invention] The present invention provides the following features: C on the outer periphery of Sn or Sn alloy rod.
A plurality of composite wires in which a large number of Nb filaments are arranged in a u matrix are assembled, and the composite wires are housed in stabilized Cu9 via a diffusion barrier.The composite wire is subjected to a cross-section reduction process, and then Sn diffusion heat treatment and In the method of manufacturing a superconducting wire by applying heat treatment to generate Nb and 3Sn, the composite wire is arranged in a space divided into a plurality of spaces by Cu between a diffusion barrier and a Sn or Sn alloy rod. It is characterized by

本発明における複合線は、Cu被r1.Nbロッドを断
面正六角形に加工し、この多数本をCu管中に収容した
後、さらに断面正六角形に加工することにより得られる
The composite wire in the present invention is Cu covered r1. It is obtained by processing Nb rods into a regular hexagonal cross section, accommodating a large number of these rods in a Cu tube, and then further processing them into a regular hexagonal cross section.

一方、SnまたはSn合金ロッドはCu被覆されたロッ
ドを用いることができ、上記複合線と同断面形状とする
ことにより、任意の集合体の外周に複合線の複数本を密
接した状態でCu管中に充填することができる。
On the other hand, the Sn or Sn alloy rod can be a Cu-coated rod, and by making it have the same cross-sectional shape as the above-mentioned composite wire, a plurality of composite wires can be closely spaced around the outer periphery of an arbitrary aggregate. It can be filled inside.

[発明の実施例] 以上1本発明の一実施例について説明する。[Embodiments of the invention] An embodiment of the present invention will be described above.

[実施例] 第1図は本発明に用いられる複合体1の一部断面図、第
2図はこの複合体1に組込まれる複合線2の断面図、第
3図は複合体1に組込まれるCu被覆Snロッド3の断
面図を示したものであり、複合体lを以上に述べる方法
により製造した。
[Example] FIG. 1 is a partial sectional view of a composite 1 used in the present invention, FIG. 2 is a sectional view of a composite wire 2 incorporated into this composite 1, and FIG. 3 is a sectional view of a composite wire 2 incorporated into the composite 1. It shows a cross-sectional view of a Cu-coated Sn rod 3, in which a composite 1 was manufactured by the method described above.

第2図に示すようにCuマトリックス2a中に931本
のNbフィラメント2bを配置した銅比1.0.平行面
間距離2.13+u+aの断面正六角形の複合線2、お
よび第3図に示すように、この複合線2と同一断面形状
のSnロッド3aの外周にCu3bを被覆した15vし
%Sn組成のCu被Jil S r+ロッド3を冷間加
工により製造した。さらに複合線2と同一断面形状のC
u腺4を別途製造し、 Cu被覆Snロッド3の127
本を集合した外周に複合線2の174本をCu線4によ
り6分割されるように配置し、これらを厚さ2mmのT
aのパイプ5を介して、外径58mmφ、内径46mm
φのCuバイブロ中に収容して複合体lを構成した。
As shown in FIG. 2, 931 Nb filaments 2b are arranged in a Cu matrix 2a with a copper ratio of 1.0. As shown in FIG. 3, there is a composite wire 2 with a regular hexagonal cross section with a distance between parallel planes of 2.13+u+a, and a 15v wire with a %Sn composition of Sn rod 3a coated with Cu3b on the outer periphery of a Sn rod 3a with the same cross-sectional shape as this composite wire 2, as shown in FIG. A Cu-covered Jil S r+ rod 3 was manufactured by cold working. Furthermore, C with the same cross-sectional shape as composite wire 2
127 of the Cu-coated Sn rod 3.
Arrange 174 composite wires 2 on the outer periphery of the collection of books so that they are divided into 6 by Cu wires 4, and divide them into 2 mm thick T
Through pipe 5 of a, outer diameter 58mmφ, inner diameter 46mm
The complex was housed in a Cu vibro of φ to constitute a complex I.

この複合体1にスウェージング、伸線加工等の断面減少
加工を施して、外径1.0+umφ、フィラメント径0
.9μmφ、フィラメント数14.43万本の線材とし
た後、300℃×3日問および450°CX5日間のS
nの拡散熱処理を施し1次いで700℃×60時間のN
b3 Sn生成の熱処理を施して多芯構造のNb3Sn
超電導線を製造した。この超電導線の臨界電流値は9 
Tで60Aであった。
This composite 1 is subjected to cross-sectional reduction processing such as swaging and wire drawing, so that the outer diameter is 1.0 + umφ and the filament diameter is 0.
.. After making a wire with a diameter of 9 μm and 144,300 filaments, it was subjected to S at 300°C for 3 days and at 450°C for 5 days.
First, N diffusion heat treatment was performed at 700°C for 60 hours.
b3 Nb3Sn with multi-core structure after heat treatment to generate Sn
Manufactured superconducting wire. The critical current value of this superconducting wire is 9
It was 60A at T.

[比較例] ’15 m 91 b= s°t6a*K 1 (DA
I−jNk−1!iQ@°11     。
[Comparative example] '15 m 91 b= s°t6a*K 1 (DA
I-jNk-1! iQ@°11.

るCu線4を複合線2で置換え、Cuの拡散路を設けな
い構造とした第4図に示す複合体7に、実施例    
  1゜と同様の加工方法を施して外径1.0II11
1Iφ、フィシ       fメン外径0.9μmφ
、フィラメント数1(i、095万本のa *A & 
’<* f: * 、°°°°0°58 nll *;
−11,0450’CX ] 05     B。
The composite wire 4 shown in FIG. 4 is replaced with a composite wire 2, and the composite wire 7 shown in FIG.
Using the same processing method as 1°, the outer diameter was 1.0II11.
1Iφ, F-men outer diameter 0.9μmφ
, number of filaments 1 (i, 0.95 million a *A &
'<* f: * , °°°°0°58 nll *;
-11,0450'CX ] 05 B.

間のSnの拡散熱処理を施し1次いで700°CX60
時       [:′1: 間のNb3Sn+生成の熱処理を施して多芯構造の超電
      14導線を製造した。この超電導線の臨界
電流値は9Tで46Aであった。
First, Sn diffusion heat treatment was performed at 700°C
A superconductor 14 conductor with a multi-core structure was produced by heat treatment to generate Nb3Sn+ between [:'1:]. The critical current value of this superconducting wire was 9T and 46A.

[発明の効果] 以上述べたように1本発明のNb3 Sn超電導線の製
造方法によれば、熱処理前の最終線径とした線材内にC
uよりなるSnの拡散路が設けられているため、Snの
拡散熱処理時間を大巾に短縮し得るとともに、加工性に
も優れ、さらに熱処理後の超電導特性も向上するという
利点を有する。
[Effects of the Invention] As described above, according to the method for manufacturing a Nb3Sn superconducting wire of the present invention, C is contained in the wire having the final wire diameter before heat treatment.
Since the Sn diffusion path made of U is provided, the Sn diffusion heat treatment time can be greatly shortened, and the processability is also excellent, and the superconducting properties after the heat treatment are also improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法に用いられる複合体の一部断面図
、第2図および第3図は、それぞれこの複合体中に組込
まれる複合線およびCu被覆Snロッドの断面図、第4
図は比較例における複合体の一部断面図である。 1、7・・・・・・・複合体 2・・・・・・・・・・複合線
FIG. 1 is a partial cross-sectional view of a composite used in the method of the present invention, FIGS. 2 and 3 are cross-sectional views of a composite wire and a Cu-coated Sn rod incorporated into this composite, respectively, and FIG.
The figure is a partial cross-sectional view of a composite in a comparative example. 1, 7...Compound 2...Compound line

Claims (1)

【特許請求の範囲】 1、SnまたはSn合金ロッドの外周に、Cuマトリッ
クス中に多数本のNbフィラメントを配置した複合線の
複数本を集合し、これらを拡散障壁を介して安定化Cu
管中に収容した複合体に断面減少加工を施し、次いでS
nの拡散熱処理およびNb_3Sn生成の熱処理を施す
ことにより超電導線を製造する方法において、前記複合
線は、拡散障壁とSnまたはSn合金ロッドとの間をC
uによって複数に分割された空間内に配置されることを
特徴とするNb_3Sn多芯超電導線の製造方法。 2、SnまたはSn合金ロッドは、Cu被覆ロッドであ
る特許請求の範囲第1項記載のNb_3Sn多芯超電導
線の製造方法。 3、SnまたはSn合金ロッドは、複数本集合されて成
る特許請求の範囲第1項あるいは第2項記載のNb_3
Sn多芯超電導線の製造方法。 4、拡散障壁は、NbあるいはTaより成る特許請求の
範囲第1項記載のNb_3Sn多芯超電導線の製造方法
[Claims] 1. A plurality of composite wires in which a large number of Nb filaments are arranged in a Cu matrix are assembled around the outer periphery of a Sn or Sn alloy rod, and these are stabilized by Cu via a diffusion barrier.
The composite housed in the tube is subjected to cross-section reduction processing, and then S
In the method for manufacturing a superconducting wire by performing a diffusion heat treatment of n and a heat treatment for producing Nb_3Sn, the composite wire has carbon between a diffusion barrier and a Sn or Sn alloy rod.
A method for producing a Nb_3Sn multicore superconducting wire, characterized in that the Nb_3Sn multicore superconducting wire is arranged in a space divided into a plurality of spaces by u. 2. The method for manufacturing a Nb_3Sn multicore superconducting wire according to claim 1, wherein the Sn or Sn alloy rod is a Cu-coated rod. 3. Nb_3 according to claim 1 or 2, in which a plurality of Sn or Sn alloy rods are assembled.
A method for manufacturing Sn multicore superconducting wire. 4. The method for manufacturing a Nb_3Sn multicore superconducting wire according to claim 1, wherein the diffusion barrier is made of Nb or Ta.
JP60123344A 1985-06-05 1985-06-05 Nb (bottom 3) Method for manufacturing Sn multicore superconducting wire Expired - Lifetime JPH0717992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60123344A JPH0717992B2 (en) 1985-06-05 1985-06-05 Nb (bottom 3) Method for manufacturing Sn multicore superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60123344A JPH0717992B2 (en) 1985-06-05 1985-06-05 Nb (bottom 3) Method for manufacturing Sn multicore superconducting wire

Publications (2)

Publication Number Publication Date
JPS61279662A true JPS61279662A (en) 1986-12-10
JPH0717992B2 JPH0717992B2 (en) 1995-03-01

Family

ID=14858239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60123344A Expired - Lifetime JPH0717992B2 (en) 1985-06-05 1985-06-05 Nb (bottom 3) Method for manufacturing Sn multicore superconducting wire

Country Status (1)

Country Link
JP (1) JPH0717992B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013062239A (en) * 2011-08-25 2013-04-04 Hitachi Cable Ltd Nb3Sn SUPERCONDUCTING WIRE AND METHOD FOR MANUFACTURING THE SAME
CN114694894A (en) * 2022-05-20 2022-07-01 西部超导材料科技股份有限公司 Short-distance diffusion type Nb3Preparation method of Sn superconducting wire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013062239A (en) * 2011-08-25 2013-04-04 Hitachi Cable Ltd Nb3Sn SUPERCONDUCTING WIRE AND METHOD FOR MANUFACTURING THE SAME
CN114694894A (en) * 2022-05-20 2022-07-01 西部超导材料科技股份有限公司 Short-distance diffusion type Nb3Preparation method of Sn superconducting wire
CN114694894B (en) * 2022-05-20 2023-10-03 西部超导材料科技股份有限公司 Short-range diffusion type Nb 3 Preparation method of Sn superconducting wire

Also Published As

Publication number Publication date
JPH0717992B2 (en) 1995-03-01

Similar Documents

Publication Publication Date Title
CN107850745A (en) The manufacture of the superconductivity wire of reinforcing
CN115295242B (en) Preparation method of niobium tri-tin superconducting stranded wire with high critical current density
CN115295243A (en) Preparation method of element-doped high-critical-current-density niobium-tin superconducting strand
JPS61194155A (en) Production of nb3sn superconductive wire
JPS61279662A (en) Production of nb3sn multi-cored superconductive wire
US6471785B1 (en) Process for producing a strip-shaped, multi-core superconductor with high-Tc superconducting material and superconductor produced by this process
JPH0211733A (en) Manufacture of nb3 sn superconducting wire by internal diffusing method
JP3058904B2 (en) Nb Lower 3 Method for Manufacturing Sn Multicore Superconducting Wire
JP3059570B2 (en) Superconducting wire and its manufacturing method
JPS62240751A (en) Manufacture of nb3sn super conducting wire by internal diffusion method
JPS63271818A (en) Manufacture of nb3sn superconductive wire by external diffusion method
JPS6113508A (en) Method of producing low copper ratio nb3sn superconductive wire
JPH0471117A (en) Manufacture of copper stability nb3sn fine multiple-conductor superconducting wire
JPS6044914A (en) Method of producing nb3sn multicore superconductive wire
JPH01304617A (en) Manufacture of nb3 sn multi-superconductor wire
JPS6267156A (en) Production of multicore superconductor for alternating current
JPS63213212A (en) Manufacture of internal diffusion type nb3 sn superconductive wire
JPH05334929A (en) Manufacture of nb3sn superconductor
JPH07141938A (en) Manufacture of composite multiple core superconductive wire
Jakob et al. The fabrication and properties of Nb/sub 3/Sn superconductors by the internal tin process
JPH0211732A (en) Manufacture of nb3sn multicore superconducting wire
JPH03283320A (en) Manufacture of nb3sn multicore superconductor
JPH01321033A (en) Manufacture of nb3x series superconducting material
JPH1079206A (en) Hct multi-conductor wire having deviated inner arrangement
JPS63245826A (en) Manufacture of compound superconductive wire