JPS63213212A - Manufacture of internal diffusion type nb3 sn superconductive wire - Google Patents

Manufacture of internal diffusion type nb3 sn superconductive wire

Info

Publication number
JPS63213212A
JPS63213212A JP62044628A JP4462887A JPS63213212A JP S63213212 A JPS63213212 A JP S63213212A JP 62044628 A JP62044628 A JP 62044628A JP 4462887 A JP4462887 A JP 4462887A JP S63213212 A JPS63213212 A JP S63213212A
Authority
JP
Japan
Prior art keywords
alloy
matrix
heat treatment
current density
critical current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62044628A
Other languages
Japanese (ja)
Inventor
Hidemoto Suzuki
鈴木 英元
Masamitsu Ichihara
市原 政光
Yoshimasa Kamisada
神定 良昌
Nobuo Aoki
伸夫 青木
Tomoyuki Kumano
智幸 熊野
Ichiro Noguchi
一朗 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP62044628A priority Critical patent/JPS63213212A/en
Publication of JPS63213212A publication Critical patent/JPS63213212A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To prevent melting of a matrix and obtain a wire rod having high critical current density by setting heat treatment temperature in a prescribed range in case of manufacturing a superconductive wire of multicore structure by an internal diffusion method. CONSTITUTION:A number of Nb or Nb alloy wires whose outsides are coated with Cu or a Cu alloy are arranged inside a Cu composite tube, in whose inside a diffusion barrier is arranged, centering round an Sn or Sn alloy rod coated with Cu or a Cu alloy. Then, a surface reducing process is applied thereon to mold it into a first form followed by heat treatment in the temperature range of 650-730 deg.C for generating Nb3Sn. In the above temperature range, matrix melting is not caused so as to obtain a good characteristic, however, improvement of critical current density can not be expected under 650 deg.C, and on the other hand, the matrix is liable to be melted when 730 deg.C is exceeded, and in case of being melted, the critical current density drops remarkably.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は内部拡散法によるNb3Sn超電導線の製造方
法に係り、特に高濃度sn量を用いる場合に好適するN
b3Sn生成の熱処理条件の改善に関する。
Detailed Description of the Invention [Objective of the Invention] (Industrial Field of Application) The present invention relates to a method for manufacturing a Nb3Sn superconducting wire by an internal diffusion method, and the present invention relates to a method for manufacturing a Nb3Sn superconducting wire by an internal diffusion method, and particularly relates to a method for manufacturing a Nb3Sn superconducting wire using a high concentration of Sn.
This invention relates to improvement of heat treatment conditions for b3Sn formation.

(従来の技術) Nl)3sn超電導線の製造方法の一種である内部拡散
法は、その製法が簡単な上、5n量を増加することによ
り臨界電流密度(JC)を容易に向上させることができ
る等の利点を有しており、この内部拡散法による多心構
造のN1)xSn超電導線の製造方法として以下の方法
が知られている。
(Prior art) The internal diffusion method, which is a type of manufacturing method for Nl)3sn superconducting wire, is simple and can easily improve the critical current density (JC) by increasing the amount of 5n. The following method is known as a method for producing a multicore N1)xSn superconducting wire using this internal diffusion method.

すなわちこの方法はSnロッドの外周にCu被覆Nb線
の多数本を配置し、これを拡散障壁を内側に設けたCu
管内に収容して減面加工を施した俊、最終断面形状の状
態で熱処理を施すものであり、この熱処理は通常3nの
拡散によるCu−3n合金生成の熱処理とNb−3nの
反応によるNfia3n生成の熱処理の2段階にわたっ
て行われている。この場合、最終形状で熱処理を行うた
め、Cu−311合金生成後のマトリックス中のSn母
はブロンズ法(加工性の点から一般にSnの固溶限以下
の13〜14wt%とされている。)に比較して高くし
得る利点を有するが、Nb3Sn生成の熱処理温度がマ
トリックスの溶融温度に近いため、マトリックスが溶融
してNb線が凝集し、設計値よりかなり低い臨界電流密
度の値を示す場合を生じ易いという難点があった。
That is, in this method, a large number of Cu-coated Nb wires are arranged around the outer periphery of a Sn rod, and these are connected to a Cu-coated Nb wire with a diffusion barrier inside.
Heat treatment is performed on the final cross-sectional shape of the shell, which has been housed in a tube and subjected to area reduction processing, and this heat treatment usually involves heat treatment to form Cu-3n alloy by diffusion of 3n, and formation of Nfia3n by reaction of Nb-3n. The heat treatment is carried out in two stages. In this case, since heat treatment is performed in the final shape, the Sn matrix in the matrix after Cu-311 alloy formation is bronzed (from the viewpoint of workability, it is generally set at 13 to 14 wt%, which is below the solid solubility limit of Sn). However, since the heat treatment temperature for Nb3Sn formation is close to the melting temperature of the matrix, the matrix melts and the Nb wires aggregate, resulting in a critical current density value that is considerably lower than the designed value. The problem was that it was easy to cause

(発明が解決しようとする問題点) 本発明は上記の難点を解消するためになされたもので、
Nb3Sn生成の熱処理条件を所定範囲に維持すること
によりマトリックスの溶融を防止し、良好な超電導特性
を有する多心超電導線を製造する方法を提供することを
その目的とする。
(Problems to be solved by the invention) The present invention has been made to solve the above-mentioned difficulties.
The object of the present invention is to provide a method for manufacturing a multi-core superconducting wire having good superconducting properties by maintaining heat treatment conditions for Nb3Sn production within a predetermined range to prevent melting of the matrix.

r発明の構成] (問題点を解決するための手段) 本発明の内部拡散型Nb 3Sn超電導線の製造方法は
、内側に拡散障一番配置したCD複合管の内部に、Cu
またはCu合金で被覆されたSnまたはSn合金ロッド
を中心として、その外側にCuまたはCu合金で被覆さ
れたNbまたはNb合金線の多数本を配置し、これに減
面加工を施して最終形状に成形した後、650〜730
 ’Cの温度範囲で熱処理することによりNb 3 S
nを生成せしめることを特徴とする。
rStructure of the Invention] (Means for Solving the Problems) The method for manufacturing an internally diffused Nb 3Sn superconducting wire of the present invention is characterized in that a Cu
Or, centering around a Sn or Sn alloy rod coated with Cu alloy, a large number of Nb or Nb alloy wires coated with Cu or Cu alloy are placed on the outside, and the area is reduced to form the final shape. After molding, 650-730
Nb3S by heat treatment in the temperature range of 'C
It is characterized by generating n.

本発明の方法は、特に5nlit度(Nl)3Sn生成
の熱処理前のNbまたはNb合金を除外したマトリック
ス中の5nWi度)が高い場合、たとえば20〜35w
t%の範囲の場合に好適するものである。
The method of the present invention is particularly effective when the 5nlit degree (Nl) 5nWi degree in the matrix excluding Nb or Nb alloy before the heat treatment for 3Sn formation is high, e.g.
This is suitable for cases where the amount is within the range of t%.

このsn濃度が20wt%未満であると、Sn濃度の増
加による臨界電流密度の向上が期待できず、一方35w
t%を越えると上記の温度範囲でもマトリックスの溶融
を生じ易くなるためである。
If this Sn concentration is less than 20wt%, it is not possible to expect an improvement in critical current density due to an increase in Sn concentration;
This is because if it exceeds t%, the matrix tends to melt even in the above temperature range.

上記の650〜730 ’Cの温度範囲ではマトリック
スの溶融を生ぜず良好な特性を得ることができるが、6
50℃未満では臨界電流密度の向上が期待できず、一方
730°Cを越えるとマトリックスの溶融を生じ易く、
溶融した場合には臨界電流密度が著しく低下する。
In the above temperature range of 650 to 730'C, the matrix does not melt and good properties can be obtained;
If it is below 50°C, no improvement in critical current density can be expected, while if it exceeds 730°C, melting of the matrix is likely to occur.
When melted, the critical current density decreases significantly.

(実施例) 外径50mmφ、内径38.3mmφのCu管中に外径
38.1市φのN b−1,1wt%Ti合金ロッドを
収容し、これに減面加工を施して平行面間距離1.94
mmの断面六角形の線材を製造した。次いでこの409
本を稠密に集合して外径49mmφ、厚さ4mmのCu
管中に収容して同様に減面加工を施し、歪取焼鈍を施し
て平行面間型@2.13mmの断面六角形のCU被覆N
b合金線を製造した。この180本を外径22.8mm
φのCu被覆Snロッドの外周に集合し、その外側に外
径45mmφ、厚さ2mmのTa管および外径58mm
φ、厚さ6mmのCu管を順に配置して複合体を製作し
た。この複合体に減面加工を施してNo、 1の試料を
製造した。 一方、外径18.9mmφのCu被覆Sn
ロッドの外周に、No、 1の試料の製造に用いたCu
被覆Nb合金線の216本を集合し、同様にTa管、C
tl管を順に配置Cた複合体に減面加工を施してNO1
2の試料を製造した。No、 1およびNO,2の試料
の諸元を下表に示す′、−ここで3n濃度はTa管内の
Nb−Ti合金フィラメントを除外したマトリックス中
の濃度を示す。
(Example) A Nb-1,1 wt% Ti alloy rod with an outer diameter of 38.1 mm is housed in a Cu tube with an outer diameter of 50 mm and an inner diameter of 38.3 mm. Distance 1.94
A wire rod with a hexagonal cross section of mm was manufactured. Then this 409
Books are densely assembled to form an outer diameter of 49mmφ and a thickness of 4mm.
It was placed in a pipe, subjected to surface reduction processing in the same way, and subjected to strain relief annealing to form a CU coated N with a hexagonal cross section of parallel plane type @ 2.13 mm.
B alloy wire was manufactured. These 180 pieces have an outer diameter of 22.8 mm.
A Ta tube with an outer diameter of 45 mm and a thickness of 2 mm and an outer diameter of 58 mm are assembled on the outer periphery of a Cu-coated Sn rod of φ.
A composite was fabricated by sequentially arranging Cu tubes with a diameter of 6 mm and a thickness of 6 mm. This composite was subjected to surface reduction processing to produce sample No. 1. On the other hand, Cu-coated Sn with an outer diameter of 18.9 mmφ
On the outer periphery of the rod, the Cu used in the production of sample No. 1 was placed.
216 coated Nb alloy wires were collected, and Ta tubes and C
No. 1 is achieved by reducing the surface area of a composite body in which tl tubes are arranged in order.
Two samples were produced. The specifications of samples No. 1 and No. 2 are shown in the table below', where the 3n concentration indicates the concentration in the matrix excluding the Nb--Ti alloy filament in the Ta tube.

第1図はこれらの試料を725〜650 ’Cの温度範
囲で1〜6日間の熱処理を施した超電導線の外部磁界に
対する臨界電流密度の値を示したものである。
FIG. 1 shows the critical current density values of superconducting wires subjected to heat treatment in the temperature range of 725 to 650'C for 1 to 6 days with respect to an external magnetic field.

この結果から725〜750 ’Cの温度では良好な特
性を示すが、800°C以上では臨界電流密度の値は低
くなる。第2図はNo、 1の試料を650〜750℃
の温度範囲で1〜8日間の熱処理を施した場合を示した
もので、650〜725°Cでは高い臨界電流密度の値
を示すが、一方750℃では第1図の場合に比較して著
しく低下する。これらの試料の断面を顕微鏡観察した結
果、臨界電流密度の低い試料はマトリックスの溶融のた
めフィラメントが凝集しているのが認められた。しかし
ながら725℃以下で熱処理を施した試料ではフィラメ
ントの凝集は認められなかった。750 ’Cで熱処理
を施した第1図の試料ではフィラメントの凝集は認めら
れなかったが、第2図の試料ではフィラメントの著しい
凝集が認められた。この結果から750℃の熱処理温度
では安定に所定の特性を1qることはできない。
From this result, it shows good characteristics at a temperature of 725 to 750'C, but the value of critical current density becomes low at a temperature of 800C or higher. Figure 2 shows sample No. 1 at 650-750℃.
Figure 1 shows the case where heat treatment is performed for 1 to 8 days in the temperature range of 650 to 725°C. descend. As a result of microscopic observation of the cross-sections of these samples, it was observed that the filaments of the samples with low critical current density were aggregated due to melting of the matrix. However, no aggregation of filaments was observed in the samples heat-treated at temperatures below 725°C. No agglomeration of filaments was observed in the sample shown in FIG. 1 which was heat treated at 750'C, but significant aggregation of filaments was observed in the sample shown in FIG. From this result, it is not possible to stably achieve 1q of predetermined characteristics at a heat treatment temperature of 750°C.

[発明の効果] 以上述べたように本発明によれば、内部拡散法により多
心構造の超電導線を製造する場合に、その熱処理温度を
所定範囲内に設定することにより、マトリックスの溶融
を防止することができ、したがって高い臨界電流密度を
有する線材を製造することができる。
[Effects of the Invention] As described above, according to the present invention, melting of the matrix can be prevented by setting the heat treatment temperature within a predetermined range when manufacturing a superconducting wire with a multicore structure by the internal diffusion method. Therefore, it is possible to produce a wire having a high critical current density.

本発明の方法はマトリックスの溶融温度が低下し易い高
濃度のSniを用いた構造の線材に好適する。
The method of the present invention is suitable for a wire having a structure using a high concentration of Sni in which the melting temperature of the matrix tends to decrease.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、それぞれ本発明の方法によって
製造された超電導線と他の方法によって製造された超電
導線の臨界電流密度と外部磁界の関係を示すグラフであ
る。 出願人      昭和電線電纜株式会社代理人 弁理
士  須 山 佐 − (ほか1名) 第 12 9F−艶1&J (T) ア2T
FIG. 1 and FIG. 2 are graphs showing the relationship between critical current density and external magnetic field of a superconducting wire manufactured by the method of the present invention and a superconducting wire manufactured by another method, respectively. Applicant Showa Cable and Wire Co., Ltd. Agent Patent Attorney Sa Suyama - (1 other person) No. 12 9F - Tsuya 1&J (T) A2T

Claims (3)

【特許請求の範囲】[Claims] (1)内側に拡散障壁を配置したCu複合管の内部に、
CuまたはCu合金で被覆されたSnまたはSn合金ロ
ッドを中心として、その外側にCuまたはCu合金で被
覆されたNbまたはNb合金線の多数本を配置し、これ
に減面加工を施して最終形状に成形した後、650〜7
30℃の温度範囲で熱処理することによりNb_3Sn
を生成せしめることを特徴とする内部拡散型Nb_3S
n超電導線の製造方法。
(1) Inside the Cu composite tube with a diffusion barrier placed inside,
Centering around a Sn or Sn alloy rod coated with Cu or Cu alloy, a large number of Nb or Nb alloy wires coated with Cu or Cu alloy are arranged on the outside, and the area is reduced to form the final shape. After molding to 650-7
Nb_3Sn by heat treatment in the temperature range of 30℃
Internal diffusion type Nb_3S characterized by generating
A method for manufacturing an n-superconducting wire.
(2)NbまたはNb合金線は、断面六角形状である特
許請求の範囲第1項記載の内部拡散型Nb_3Sn超電
導線の製造方法。
(2) The method for manufacturing an internally diffused Nb_3Sn superconducting wire according to claim 1, wherein the Nb or Nb alloy wire has a hexagonal cross section.
(3)拡散障壁内のSn量は、Nbを除外した全量中の
20〜35wt%である特許請求の範囲第1項あるいは
第2項記載の内部拡散型Nb_3Sn超電導線の製造方
法。
(3) The method for manufacturing an internally diffused Nb_3Sn superconducting wire according to claim 1 or 2, wherein the amount of Sn in the diffusion barrier is 20 to 35 wt% of the total amount excluding Nb.
JP62044628A 1987-02-27 1987-02-27 Manufacture of internal diffusion type nb3 sn superconductive wire Pending JPS63213212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62044628A JPS63213212A (en) 1987-02-27 1987-02-27 Manufacture of internal diffusion type nb3 sn superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62044628A JPS63213212A (en) 1987-02-27 1987-02-27 Manufacture of internal diffusion type nb3 sn superconductive wire

Publications (1)

Publication Number Publication Date
JPS63213212A true JPS63213212A (en) 1988-09-06

Family

ID=12696688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62044628A Pending JPS63213212A (en) 1987-02-27 1987-02-27 Manufacture of internal diffusion type nb3 sn superconductive wire

Country Status (1)

Country Link
JP (1) JPS63213212A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165152A (en) * 2005-12-14 2007-06-28 Hitachi Cable Ltd CORE WIRE FOR Nb3Sn SUPERCONDUCTIVE WIRE, Nb3Sn SUPERCONDUCTIVE WIRE, AND METHOD OF MANUFACTURING SAME

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165152A (en) * 2005-12-14 2007-06-28 Hitachi Cable Ltd CORE WIRE FOR Nb3Sn SUPERCONDUCTIVE WIRE, Nb3Sn SUPERCONDUCTIVE WIRE, AND METHOD OF MANUFACTURING SAME
JP4687438B2 (en) * 2005-12-14 2011-05-25 日立電線株式会社 Core wire for Nb3Sn superconducting wire, Nb3Sn superconducting wire, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPS6097514A (en) Method of producing composite superconductive conductor
JPS61194155A (en) Production of nb3sn superconductive wire
JPS63213212A (en) Manufacture of internal diffusion type nb3 sn superconductive wire
JP2544096B2 (en) Nb (bottom 3) Method for manufacturing Sn superconducting wire
JP3050580B2 (en) Method for producing Nb-Ti alloy superconducting wire
JPH04277416A (en) Manufacture of nb3sn superconducting wire
JPS6357750A (en) Manufacture of nb3sn superconducting wire
JPS61279662A (en) Production of nb3sn multi-cored superconductive wire
JPH04277409A (en) Compound superconducting wire and manufacture thereof
JPH03274612A (en) Manufacture of nb3 sn superconductive wire
JPH04147521A (en) Manufacture of alloy group superconducting wire material
JPH04137411A (en) Manufacture of nb3 sn multicore superconducting wire
JPS62240751A (en) Manufacture of nb3sn super conducting wire by internal diffusion method
JPH01304615A (en) Manufacture of nb-ti alloy superconductive wire
JPH08167336A (en) Manufacture of nb3sn superconducting wire
JPS6333534A (en) Superconducting nb-ti alloy and its production
JPS61115613A (en) Production of nb-ti multicore superconductive wire
JPH04132115A (en) Manufacture of nb3x multi-core superconducting wire
JPH0579408B2 (en)
JPH03283320A (en) Manufacture of nb3sn multicore superconductor
JPS61227310A (en) Manufacture of nb3 sn by internal diffusion
JPS6079612A (en) Method of producing nb3sn superconductive wire
JPS5858765B2 (en) Gokuhosotashin Fukugouchiyoudendousen
JPH03274613A (en) Manufacture of nb3 sn superconductive wire
JPH01304616A (en) Manufacture of nb3 sn multi-superconductor wire