JPH04137411A - Manufacture of nb3 sn multicore superconducting wire - Google Patents
Manufacture of nb3 sn multicore superconducting wireInfo
- Publication number
- JPH04137411A JPH04137411A JP2259476A JP25947690A JPH04137411A JP H04137411 A JPH04137411 A JP H04137411A JP 2259476 A JP2259476 A JP 2259476A JP 25947690 A JP25947690 A JP 25947690A JP H04137411 A JPH04137411 A JP H04137411A
- Authority
- JP
- Japan
- Prior art keywords
- based metal
- composite
- wire
- metal tube
- tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000002184 metal Substances 0.000 claims abstract description 43
- 229910052751 metal Inorganic materials 0.000 claims abstract description 43
- 239000011159 matrix material Substances 0.000 claims abstract description 15
- 239000002131 composite material Substances 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 claims 1
- 125000004433 nitrogen atom Chemical group N* 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 4
- 230000001373 regressive effect Effects 0.000 abstract 2
- 239000010949 copper Substances 0.000 description 20
- 229910000657 niobium-tin Inorganic materials 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 229910017755 Cu-Sn Inorganic materials 0.000 description 1
- 229910017927 Cu—Sn Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Wire Processing (AREA)
- Metal Extraction Processes (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は超電導線の製造方法に係わり、特に複合加工法
による多芯構造のNb3 Sn超電導線の製造方法の改
良に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a superconducting wire, and more particularly to an improvement in the method for manufacturing a multicore Nb3Sn superconducting wire using a composite processing method.
[従来の技術]
Nb3Sn超電導線の製造方法の一つとして複合加工法
(チューブ法)によるものが知られている。[Prior Art] A composite processing method (tube method) is known as one of the methods for manufacturing Nb3Sn superconducting wires.
この方法は、Snロッドの外周にCu管およびNb管を
順次被覆した複合線の複数本をCuマトリックス中に配
置して複合体を形成し、この複合体に冷間加工を施した
後、熱処理を施すことによりNb3Snを生成させるも
のである。(特公昭55−18547号公報)。In this method, a plurality of composite wires in which the outer periphery of an Sn rod is sequentially coated with Cu tubes and Nb tubes is arranged in a Cu matrix to form a composite, and after cold working this composite, heat treatment is performed. By applying this, Nb3Sn is generated. (Special Publication No. 55-18547).
上記の方法は、マトリックスにCu−Sn合金を井いる
ブロンズ法に比較して、
(イ)中間焼鈍を必要とせずに加工することが亘能であ
る、
(ロ)臨界電流密度(J c)の値が高い、(ハ)熱処
理後にNb系金属管を残存させることにより、マトリッ
クスにCu(純銅)を用いた場合には安定化銅を付与す
る必要かない等の利点を有する。Compared to the bronze method in which a Cu-Sn alloy is injected into the matrix, the above method has the following advantages: (a) processing is possible without the need for intermediate annealing; and (b) critical current density (J c). (iii) By leaving the Nb-based metal tube after heat treatment, there are advantages such as no need to add stabilizing copper when Cu (pure copper) is used for the matrix.
[発明が解決しようとする課題]
しかしながら、上記のチューブ法においては、Nb管内
部のSn濃度を大きくすることにより、Jc値は向上す
るものの、伸線性が低下してフィラメントを極細化する
ことができないため、Jc値の上昇には限度があり、一
方Nb管内部のSn濃度を小さくすることにより、伸線
性が向上してフィラメントを極細化することができるが
、Jc値が低下するという問題があった。[Problems to be Solved by the Invention] However, in the above tube method, although the Jc value is improved by increasing the Sn concentration inside the Nb tube, the drawability decreases and it is difficult to make the filament ultra-thin. Therefore, there is a limit to the increase in the Jc value.On the other hand, by reducing the Sn concentration inside the Nb tube, the drawability can be improved and the filament can be made extremely fine, but there is a problem that the Jc value decreases. there were.
即ちNb管内部のSn濃度[Snx 100/ (Sn
+Cu) ]が22wt%以下では、フィラメントの外
径をφlOμm以下まで加工可能であるが、Jc値は1
8Tの外部磁界中で200〜250A/12程度であり
、一方Nb管内部のSn濃度が30〜90vt%になる
と、Jc値は18Tで40OA/am2に達するものの
、フィラメント外径のφ40〜100μmが加工限界で
ある。この限界値以上の加工を施すと、Nbフィラメン
トが破断してマトリックスか汚染されるとともに、断線
を生ずる。That is, the Sn concentration inside the Nb tube [Snx 100/(Sn
+Cu)] is 22wt% or less, it is possible to process the outer diameter of the filament to φlOμm or less, but the Jc value is 1
In an external magnetic field of 8T, it is about 200-250A/12, and on the other hand, when the Sn concentration inside the Nb tube becomes 30-90vt%, the Jc value reaches 40OA/am2 at 18T, but the filament outer diameter of φ40-100μm This is the processing limit. If the processing exceeds this limit value, the Nb filament will break, the matrix will be contaminated, and wire breakage will occur.
本発明は上記の問題点を解決するためになされたもので
、フィラメントの極細化を可能し、同時に高いJc値を
有する多芯構造のNb3 Sn超電導線を製造する方法
を提供することをその目的とする。The present invention has been made in order to solve the above problems, and its purpose is to provide a method for manufacturing a multi-core Nb3Sn superconducting wire that enables ultra-fine filaments and at the same time has a high Jc value. shall be.
[課題を解決するための手段]
上記目的を達成するために、本願第1の発明は、Cuま
たはCu合金マトリックス中に複数本のNb系金属管を
配置し、このNb系金属管内にCu系金属を被覆したS
n系金属線を収容した複合体に減面加工を施した後、N
b3Sn生成の熱処理を施す方法において、前記Nb系
金属管内部のSn濃度を20wt%以下とするとともに
、前記マトリックス内に複数本のSn系金属線を配置し
、減面加工により前記Nb系金属管の外径をφ10μm
以下に成形するものである。[Means for Solving the Problems] In order to achieve the above object, the first invention of the present application arranges a plurality of Nb-based metal tubes in a Cu or Cu alloy matrix, and in this Nb-based metal tube, Cu-based S coated with metal
After reducing the area of the composite containing the N-based metal wire, the N
b3 In the method of performing heat treatment for Sn generation, the Sn concentration inside the Nb-based metal tube is set to 20 wt% or less, a plurality of Sn-based metal wires are arranged in the matrix, and the Nb-based metal tube is processed by area reduction processing. The outer diameter of
It is molded as follows.
上記発明において、複数本のNb系金属管およびSn系
金属線は、それぞれ外側にCu系金属を配置して断面六
角形に成形した複合線を、Sn系金属線を中心としてC
u系金属管内に充填することによりマトリックス内に配
置することが好ましい。これは本願第2の発明として次
のように記述される。In the above invention, the plurality of Nb-based metal tubes and Sn-based metal wires each have a composite wire formed into a hexagonal cross section with a Cu-based metal placed on the outside, and a C
It is preferable to arrange it in a matrix by filling it into a U-based metal tube. This is described as the second invention of the present application as follows.
Sn系金属線の外側にCu系金属を配置した断面六角形
の複合線(A)と、Nb系金属管の外側にCu系金属を
配置するとともに、このNb系金属管の内部に20vt
%以下のSn濃度のCu系金属で被覆したSn系金属線
を収容し、前記複合線(A)と同一断面積を有する断面
六角形の複合線(B)とを、前記複合線(A)の複数本
の周囲に前記複合線(B)の複数本を、その側面を当接
して集合し、次いでこの集合体をCu系金属管内に充填
して複合体を形成した後、この複合体に減面加工を施し
て前記Nb系金属管の外径をφlOμm以下に成形し、
次いでNb3 Sn生成の熱処理を施すものである。A composite wire (A) with a hexagonal cross section in which a Cu-based metal is placed on the outside of a Sn-based metal wire, a Cu-based metal is placed on the outside of an Nb-based metal tube, and a 20vt wire is placed inside this Nb-based metal tube.
The composite wire (A) contains a Sn-based metal wire coated with a Cu-based metal with an Sn concentration of % or less, and has a hexagonal cross-section and a composite wire (B) having the same cross-sectional area as the composite wire (A). A plurality of composite wires (B) are assembled around the plurality of composite wires (B) with their sides in contact with each other, and then this assembly is filled into a Cu-based metal tube to form a composite. Applying surface reduction processing to form the outer diameter of the Nb-based metal tube to φlOμm or less,
Next, heat treatment is performed to generate Nb3Sn.
本発明におけるマトリックス材としては、銅または銅合
金が用いられるが、マトリックスを安定化材として機能
させる場合には無酸素銅が適する。Copper or a copper alloy is used as the matrix material in the present invention, but oxygen-free copper is suitable when the matrix is to function as a stabilizing material.
上記のマトリックス中に配置されるNb系金属管の材料
としては、純Nbや加工性を改善するためにTi等を添
加したNb基合金が用いられる。As the material for the Nb-based metal tube arranged in the matrix, pure Nb or an Nb-based alloy to which Ti or the like is added to improve workability is used.
このNb系金属管内部のSn濃度は20wt%以下に限
定する必要あるが、この濃度はNb系金属管内部の構成
材料中のSn濃度を意味する。The Sn concentration inside this Nb-based metal tube needs to be limited to 20 wt% or less, and this concentration means the Sn concentration in the constituent material inside the Nb-based metal tube.
また減面加工後の熱処理は550〜755℃の温度で施
されるが、これは上記の温度範囲外ではNb。Further, the heat treatment after the area reduction process is performed at a temperature of 550 to 755°C, but this is outside the above temperature range.
Snの生成量の低下や異相の生成等によりJc等の特性
が低下するためである。This is because characteristics such as Jc are degraded due to a decrease in the amount of Sn produced, the production of different phases, and the like.
[作用]
本発明においては、Nb系金属管内のSn濃度を所定範
囲内に限定したことにより、伸線性を向上させてNbフ
ィラメントの外径を数μm程度に極細化することができ
、かつマトリックス内に拡散源となるSn系金属を配置
したことにより、 Jc値を向上させることができる。[Function] In the present invention, by limiting the Sn concentration within the Nb-based metal tube within a predetermined range, the drawability can be improved and the outer diameter of the Nb filament can be made extremely thin to about several μm. The Jc value can be improved by arranging an Sn-based metal that serves as a diffusion source within the structure.
[実施例コ 以下本発明の一実施例について説明する。[Example code] An embodiment of the present invention will be described below.
外径φg、Omm s内径φ4.OmmのNb管の内部
に、外径φ3,8■のCu被覆Sn線を収容し、さらに
このNb管の外側に外径φlO,3mm、内径φ8.1
1のCu管を配置して冷間加工を施し、対辺間距離2.
27IImの断面六角形の複合線(B)を製造した。Outer diameter φg, Omm s Inner diameter φ4. A Cu-coated Sn wire with an outer diameter of φ3.8mm is housed inside a Nb tube of 0.0 mm, and a wire with an outer diameter of φlO of 3 mm and an inner diameter of φ8.1 is placed outside the Nb tube.
1 Cu tubes are placed and cold worked, and the distance between opposite sides is 2.
A composite wire (B) with a hexagonal cross section of 27 IIm was manufactured.
この時のNb管内部のSn濃度は19.8νt%であっ
た。At this time, the Sn concentration inside the Nb tube was 19.8 νt%.
一方、外径φ9.1mm 、内径φ8.1+amのCu
管の内部にSnロッドを収容し、これに冷間加工を施し
て対辺間距離2.27a+mの断面六角形の複合線(A
)を製造した。このCu被覆Sn線のSn濃度は 72
.3wt%であった。On the other hand, Cu with outer diameter φ9.1mm and inner diameter φ8.1+am
A Sn rod is housed inside the tube, and it is cold-worked to produce a composite wire (A
) was manufactured. The Sn concentration of this Cu-coated Sn wire is 72
.. It was 3wt%.
次いで、上記の複合線(A)の43本をその側面を当接
して集合し、この外側に複合線(B)の258本を同様
に集合した後、この集合体を外径φ45am、内径φ4
3.5mmのTa管の内部に収容し、その外側に外径φ
52a+s、内径φ4BmmCu管を配置して複合体を
形成した
上記の複合体に静水圧押出加工および冷間伸線加工を施
して外径φL、103au+に成形した後、700℃の
温度で熱処理を施し、超電導線を製造した。Next, the 43 composite wires (A) were assembled with their sides touching, and the 258 composite wires (B) were similarly assembled on the outside, and this assembly was made into a shape with an outer diameter of φ45 am and an inner diameter of φ4.
It is housed inside a 3.5 mm Ta tube, and the outside diameter is φ.
52a+s, inner diameter φ4Bmm Cu tubes were arranged to form a composite.The above composite was subjected to isostatic extrusion and cold wire drawing to form an outer diameter φL, 103au+, and then heat treated at a temperature of 700°C. , produced superconducting wire.
この超電導線のNbフィラメント径(換算)はφ3.7
μm、また臨界電流値(Ic)およびJc値は18Tで
それぞれ3.3Aおよび503A/ ■2であった。The Nb filament diameter (converted) of this superconducting wire is φ3.7
μm, and the critical current value (Ic) and Jc value were 3.3A and 503A/2, respectively, at 18T.
[発明の効果]
以上述べたように本発明によれば、チューブ法による〜
b3sn多芯超電導線の製造において、フィラメントを
極細化できるとともに、高い臨界電流密度を有する線材
を得ることか可能となる。[Effects of the Invention] As described above, according to the present invention, ~
In manufacturing the b3sn multicore superconducting wire, it is possible to make the filament extremely thin and to obtain a wire having a high critical current density.
Claims (2)
b系金属管を配置し、このNb系金属管内にCu系金属
を被覆したSn系金属線を収容した複合体に減面加工を
施した後、Nb_3Sn生成の熱処理を施す方法におい
て、前記Nb系金属管内部のSn濃度を20wt%以下
とするとともに、前記マトリックス内に複数本のSn系
金属線を配置し、減面加工により前記Nb系金属管の外
径をφ10μm以下に成形することを特徴とするNb_
3Sn多芯超電導線の製造方法。(1) Multiple N atoms in Cu or Cu alloy matrix
In the method of arranging a b-based metal tube, reducing the area of a composite body containing a Sn-based metal wire coated with a Cu-based metal in the Nb-based metal tube, and then performing heat treatment to generate Nb_3Sn, the Nb-based metal tube is The Sn concentration inside the metal tube is set to 20 wt% or less, a plurality of Sn-based metal wires are arranged in the matrix, and the outer diameter of the Nb-based metal tube is formed to be φ10 μm or less by surface reduction processing. Nb_
A method for manufacturing a 3Sn multicore superconducting wire.
角形の複合線(A)と、Nb系金属管の外側にCu系金
属を配置するとともに、このNb系金属管の内部に20
wt%以下のSn濃度を有するCu系金属で被覆したS
n系金属線を収容し、前記複合線(A)と同一断面積を
有する断面六角形の複合線(B)とを、その側面を当接
して前記複合線(A)の複数本の周囲に前記複合線(B
)の複数本をCu系金属管内に充填して複合体を形成し
、この複合体に減面加工を施した後、前記Nb系金属管
の外径をφ10μm以下に成形し、次いでNb_3Sn
生成の熱処理を施すことを特徴とするNb_3Sn多芯
超電導線の製造方法(2) A composite wire (A) with a hexagonal cross section in which a Cu-based metal is placed outside a Sn-based metal, a Cu-based metal is placed outside an Nb-based metal tube, and a
S coated with Cu-based metal having Sn concentration below wt%
A composite wire (B) containing an n-based metal wire and having a hexagonal cross section and having the same cross-sectional area as the composite wire (A) is placed around the multiple composite wires (A) by abutting the side surfaces of the composite wire (B). The compound line (B
) is filled into a Cu-based metal tube to form a composite, and after surface reduction processing is performed on this composite, the outer diameter of the Nb-based metal tube is formed to φ10 μm or less, and then Nb_3Sn
A method for producing a Nb_3Sn multicore superconducting wire, characterized by performing heat treatment for formation
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2259476A JP3058904B2 (en) | 1990-09-28 | 1990-09-28 | Nb Lower 3 Method for Manufacturing Sn Multicore Superconducting Wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2259476A JP3058904B2 (en) | 1990-09-28 | 1990-09-28 | Nb Lower 3 Method for Manufacturing Sn Multicore Superconducting Wire |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04137411A true JPH04137411A (en) | 1992-05-12 |
JP3058904B2 JP3058904B2 (en) | 2000-07-04 |
Family
ID=17334610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2259476A Expired - Lifetime JP3058904B2 (en) | 1990-09-28 | 1990-09-28 | Nb Lower 3 Method for Manufacturing Sn Multicore Superconducting Wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3058904B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101533426B1 (en) | 2013-05-20 | 2015-07-02 | 홍종국 | The precast concrete wall structure for a building |
KR102321984B1 (en) * | 2020-04-16 | 2021-11-04 | (주)센벡스 | Rebar connector without eccentricity |
-
1990
- 1990-09-28 JP JP2259476A patent/JP3058904B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP3058904B2 (en) | 2000-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB1435459A (en) | Manufacture of a composite electrical conductor including a superconductive conductor | |
JPH0768605B2 (en) | Nb (bottom 3) Method for manufacturing Sn-based superconducting wire | |
JPS5823110A (en) | Method of producing nb3sn superconductive wire material | |
JPS60423B2 (en) | Manufacturing method of Nb↓3Sn composite material | |
JPH04137411A (en) | Manufacture of nb3 sn multicore superconducting wire | |
JPH0211733A (en) | Manufacture of nb3 sn superconducting wire by internal diffusing method | |
JPH04277416A (en) | Manufacture of nb3sn superconducting wire | |
JPH0528860A (en) | Manufacture of superconductive wire of nb3sn type | |
JPH03283322A (en) | Manufacture of nb3al superconductor | |
JPS61279662A (en) | Production of nb3sn multi-cored superconductive wire | |
JPS62240751A (en) | Manufacture of nb3sn super conducting wire by internal diffusion method | |
JPH01140521A (en) | Manufacture of nb3al compound superconductive wire rod | |
JPS61264164A (en) | Manufacture of superconductive wire containing nb3sn | |
JPH0492316A (en) | Manufacture of compound linear material | |
JPH04138630A (en) | Manufacture of nb3sn superconducting wire | |
JPH05242742A (en) | Superconducting wire and its manufacture | |
JPS6079612A (en) | Method of producing nb3sn superconductive wire | |
JPS6113508A (en) | Method of producing low copper ratio nb3sn superconductive wire | |
JPH05325680A (en) | Manufacture of nb3sn type superconductive wire rod | |
JPS6044914A (en) | Method of producing nb3sn multicore superconductive wire | |
JPS63271819A (en) | Manufacture of nb3sn superconductive wire | |
JPH04155714A (en) | Manufacture of nb3 sn type superconducting wire material | |
JPS6357750A (en) | Manufacture of nb3sn superconducting wire | |
JPH06333449A (en) | Manufacture of superconductive wire | |
JPH01304617A (en) | Manufacture of nb3 sn multi-superconductor wire |