JPS6044914A - Method of producing nb3sn multicore superconductive wire - Google Patents

Method of producing nb3sn multicore superconductive wire

Info

Publication number
JPS6044914A
JPS6044914A JP58152861A JP15286183A JPS6044914A JP S6044914 A JPS6044914 A JP S6044914A JP 58152861 A JP58152861 A JP 58152861A JP 15286183 A JP15286183 A JP 15286183A JP S6044914 A JPS6044914 A JP S6044914A
Authority
JP
Japan
Prior art keywords
heat treatment
nb3sn
wire
pipe
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58152861A
Other languages
Japanese (ja)
Other versions
JPH0815016B2 (en
Inventor
鈴木 英元
市原 政光
神定 良昌
伸夫 青木
智幸 熊野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP58152861A priority Critical patent/JPH0815016B2/en
Publication of JPS6044914A publication Critical patent/JPS6044914A/en
Publication of JPH0815016B2 publication Critical patent/JPH0815016B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、多心構造のNb3Sn超電導線、特に最終熱
処理前の冷間加工中に中間焼鈍を必要としないパイプ構
造法において、CuとSnとの拡散熱処理時間を著しく
短縮可能なNb3Sn多心超電導線の製造方法に関する
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a multicore structure Nb3Sn superconducting wire, particularly in a pipe construction method that does not require intermediate annealing during cold working before final heat treatment. The present invention relates to a method for manufacturing a Nb3Sn multicore superconducting wire that can significantly shorten the diffusion heat treatment time.

[発明の技術的背景] 従来Nb3Sn多心超電導線の製造方法として、Snロ
ッドの外周にCuおよびNbを順次同心状に配置し、こ
の外周にざらにCuを接触させた複合体に断面減少加工
を施し、次いで低温でCuとSn拡散熱処狸を施した後
、高温でNb3Sn生成の熱処理を施す方法かパイプ構
造法として知られCいる(特公昭55−16547号公
報)。
[Technical background of the invention] As a conventional method for manufacturing Nb3Sn multicore superconducting wires, Cu and Nb are successively arranged concentrically around the outer periphery of an Sn rod, and a cross-section reduction process is applied to a composite body in which Cu is brought into rough contact with the outer periphery. There is a method known as the pipe structure method in which Cu and Sn diffusion heat treatment is performed at a low temperature, followed by a heat treatment to generate Nb3Sn at a high temperature (Japanese Patent Publication No. 16547/1983).

[背景技術の問題点] しかjながら、上記の方法においては、低温での拡散熱
処理により均一なCu−Sn合金を生成さlる必要があ
るが、例えば外径1〜2mmφの多心線材に対して30
0℃で6時間以上の熱処理を必要とし、その熱処理時間
の短縮か望まれてい)こ。
[Problems in the Background Art] However, in the above method, it is necessary to produce a uniform Cu-Sn alloy by diffusion heat treatment at low temperatures, but it is difficult to produce a uniform Cu-Sn alloy by, for example, a multi-core wire with an outer diameter of 1 to 2 mmφ. against 30
This requires heat treatment at 0°C for 6 hours or more, and it is desired to shorten the heat treatment time.

[発明の目的] 本発明はかかる従来の難点を解消すべくなさhたものC
で、パイプ構造法におfJるCu−Sn合金生成の拡散
熱処理時間を著しく短縮可能なNb3Sn多心超電導線
の製造法を提供J−ることを目的とする。
[Object of the Invention] The present invention has been made to solve these conventional difficulties.C
It is an object of the present invention to provide a method for manufacturing a Nb3Sn multicore superconducting wire that can significantly shorten the time required for diffusion heat treatment to form a Cu-Sn alloy in a pipe structure method.

[発明の概要] すなわち本発明のNb3Sn多心超電導線の製造方法は
、Cuマトリックス中に多数のNb系金属よりなる管を
配置し、前記Nb管中にCuおよびSnを収容してなる
複合線に第1段目の熱処理を施して前記Nb管中のCu
およびSnを拡散させてCu−Sn合金とじ、次いで第
2段目の熱処理を施して前記Nb管内側にNb3Sn化
合物層を生成させる方法において、前記Nb管中にCu
被覆Sn線の多数本を収容するとともに、第1段目の熱
処理を250〜350℃の温度で0.5〜1.5時間施
すことを特徴としている。
[Summary of the Invention] That is, the method for manufacturing an Nb3Sn multi-core superconducting wire of the present invention is a composite wire in which a large number of tubes made of Nb-based metal are arranged in a Cu matrix, and Cu and Sn are accommodated in the Nb tube. A first stage heat treatment is applied to the Cu in the Nb tube.
In the method of forming a Cu-Sn alloy by diffusing and Sn, and then performing a second heat treatment to generate an Nb3Sn compound layer inside the Nb tube, Cu is deposited in the Nb tube.
It is characterized by accommodating a large number of coated Sn wires and performing the first stage heat treatment at a temperature of 250 to 350° C. for 0.5 to 1.5 hours.

本発明において、Nb管中に収容されるCu被覆Sn線
の本数は多い程その熱処理時間が短くなるが、熱処理前
の加工および組込み工程が複雑となるため少イjくとも
7本以上とすることが好ましい。
In the present invention, the greater the number of Cu-coated Sn wires accommodated in the Nb tube, the shorter the heat treatment time, but since the processing and assembly steps before heat treatment become complicated, the number of Cu-coated Sn wires is at least 7 or more. It is preferable.

また、第1段目の熱処理は、250〜350℃で0.5
〜1.5時間施されるが、この範囲に限定した理由は温
度が250℃未満では拡散時間が艮<なり、まlこ35
0℃を越えると溶媒Snが線材の両端末から溶け出して
Nb3Sn生成に寄与するSnが減少して最終的な超電
導特性を低下させるためであり、一方、この温度範囲で
は0.5時間未届ではCuとSnは十分に均一に拡散せ
ず、また1.5時間以上で完全に均一な状態を得ること
かできるためである。さらに第2段目の熱処理は、通常
のNb3Sn生成の条件である650〜850℃で10
〜170時間で施される。
In addition, the first stage heat treatment was performed at 250 to 350°C with a temperature of 0.5
It is applied for ~1.5 hours, but the reason for limiting it to this range is that if the temperature is less than 250°C, the diffusion time will be shortened.
This is because when the temperature exceeds 0°C, the Sn solvent dissolves from both ends of the wire, reducing the amount of Sn that contributes to Nb3Sn formation and deteriorating the final superconducting properties. This is because Cu and Sn do not diffuse sufficiently uniformly, and a completely uniform state cannot be obtained in 1.5 hours or more. Furthermore, the second stage heat treatment was performed at 650 to 850°C for 10
Applied in ~170 hours.

[発明の実施例] 以下、本発明の実施例おJひ比較例について説明する。[Embodiments of the invention] Examples of the present invention and comparative examples will be described below.

実施例 外径13mmφ、内径8mmφのCuパイプ中【こ、S
nロツドを配直し、これに冷間加工を施して断面正六角
形に成形した複合線の37本をさらに外径46mmφ、
内径41mmφのCuパイプ中に充填した後、5.5m
mφまで伸線加工した。この線材の外周に外径8mmφ
、内径5、6mmφのNbパイプおよひ外径9.7mm
φ、内径8.1mmφのCuパイノを順に配置し、次い
で伸線加工を施して平行面間の距離2.14mmの断面
正六角形の線材とした後、この264本を外径46mm
φ、内径41mmφのCuパイプ中に充填し、次いで冷
間加工を施して1.4mmφの線材を製造した。なお以
上の加工工程において中間焼鈍は一度も施さなかった。
Cu pipe with an exception diameter of 13 mmφ and an inner diameter of 8 mmφ [this, S
N rods were rearranged and then cold-worked to form a regular hexagonal cross section. 37 composite wires with an outer diameter of 46 mmφ,
After filling a Cu pipe with an inner diameter of 41 mmφ, 5.5 m
The wire was drawn to mφ. The outer diameter of this wire is 8mmφ.
, Nb pipe with an inner diameter of 5 or 6 mmφ and an outer diameter of 9.7 mm.
φ, inner diameter 8.1 mm φ were arranged in order, and then wire drawing was performed to make wire rods with a regular hexagonal cross section with a distance between parallel surfaces of 2.14 mm, and these 264 wires were made into wire rods with an outer diameter of 46 mm.
It was filled into a Cu pipe with an inner diameter of 41 mm and then subjected to cold working to produce a wire rod with a diameter of 1.4 mm. Note that intermediate annealing was never performed in the above processing steps.

このようにして得た線材に300℃×1時間の熱処理を
施したところ、各Nbパイプ内に均一なCu−Sn合金
が生成された。
When the wire obtained in this way was heat treated at 300° C. for 1 hour, a uniform Cu-Sn alloy was formed in each Nb pipe.

さらに725℃×10時間の熱処理ヲ施しくNbパイプ
内側にNb3Sn相を生成さけた。この超電導線の臨界
電流値は7Tで1300Aであった。
Furthermore, a heat treatment was performed at 725° C. for 10 hours to avoid forming an Nb3Sn phase inside the Nb pipe. The critical current value of this superconducting wire was 7T and 1300A.

比較例 実施例で用いたNbパイプ内にCu被覆Snの単一線を
配置し、他は実施例と同様の方法により1.4mmφの
線材を製造しだ。なおこの場合、Nbパイプ内のCu/
Sn比は実施例と同一とした。
Comparative Example A single Cu-coated Sn wire was placed inside the Nb pipe used in the Example, and a wire rod with a diameter of 1.4 mm was manufactured in the same manner as in the Example except for the following. In this case, Cu/in the Nb pipe
The Sn ratio was the same as in the example.

この線材に300℃て熱処理を施したところ、Nbパイ
プ内のCuとSnを均一に拡散させるのに約6時間を要
した。
When this wire was heat treated at 300° C., it took about 6 hours to uniformly diffuse Cu and Sn in the Nb pipe.

[発明の効果] 以上述べたように本発明によれば、拡散源となるSnが
Cu層を介してNb管内(J多数本配置され(いるため
、第1段目の熱処理におけるCu−Sn合金生成の拡散
時間箸しく短縮することができ、Nb3Sn多心超電導
線の生産効率を向上さぜるととかできる。
[Effects of the Invention] As described above, according to the present invention, Sn serving as a diffusion source is disposed in a large number of Nb tubes through a Cu layer. The generation diffusion time can be significantly shortened, and the production efficiency of Nb3Sn multi-core superconducting wires can be improved.

代理人弁理士 須 山 佐 一 くほか1名) 自1頁の続き 多発 明 者 熊 野 智 幸 川崎市川崎区小田栄2
丁目社内 1番1号 昭和電線電纜株式会
(Representative Patent Attorney Kazuyoshi Suyama and 1 other person) Many continuations of my own 1 page Akira Tomoyuki Kumano 2, Oda Sakae, Kawasaki-ku, Kawasaki City
Chome In-house No. 1-1 Showa Electric Wire & Cable Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] Cuマトリツクス中に多数のNb系金属よりなる管を配
置し、前記Nb管中にCuおよびSnを取容してなる複
合線に第1段目の熱処理を施して前記Nb管中のCuお
よびSnを拡散さuてCu−Sn合金とし、次いで第2
段目の熱処理を施して前記Nb管内側にNb3Sn化合
物層を生成させる方法において、前記Nb管中にCu被
覆Sn線の多数本を収容するととbに、第1段目の熱処
理を250〜350℃の温度で0.5〜1.5時間施す
ことを特徴とづるNb3Sn多心超電導線の製造方法。
A large number of tubes made of Nb-based metals are arranged in a Cu matrix, and a first stage heat treatment is performed on a composite wire made of Cu and Sn contained in the Nb tubes to remove Cu and Sn in the Nb tubes. is diffused to form a Cu-Sn alloy, and then a second
In the method of generating a Nb3Sn compound layer inside the Nb tube by performing a heat treatment in the first stage, when a large number of Cu-coated Sn wires are accommodated in the Nb tube, the heat treatment in the first stage is performed at 250-350 °C. A method for producing a Nb3Sn multi-core superconducting wire, characterized in that the process is carried out at a temperature of 0.5 to 1.5 hours.
JP58152861A 1983-08-22 1983-08-22 Νb ▲ 3 ▼ Manufacturing method of Sn multi-core superconducting wire Expired - Lifetime JPH0815016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58152861A JPH0815016B2 (en) 1983-08-22 1983-08-22 Νb ▲ 3 ▼ Manufacturing method of Sn multi-core superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58152861A JPH0815016B2 (en) 1983-08-22 1983-08-22 Νb ▲ 3 ▼ Manufacturing method of Sn multi-core superconducting wire

Publications (2)

Publication Number Publication Date
JPS6044914A true JPS6044914A (en) 1985-03-11
JPH0815016B2 JPH0815016B2 (en) 1996-02-14

Family

ID=15549721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58152861A Expired - Lifetime JPH0815016B2 (en) 1983-08-22 1983-08-22 Νb ▲ 3 ▼ Manufacturing method of Sn multi-core superconducting wire

Country Status (1)

Country Link
JP (1) JPH0815016B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH034755A (en) * 1989-06-02 1991-01-10 Nisshin Flour Milling Co Ltd Ang-khak-containing noodle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH034755A (en) * 1989-06-02 1991-01-10 Nisshin Flour Milling Co Ltd Ang-khak-containing noodle

Also Published As

Publication number Publication date
JPH0815016B2 (en) 1996-02-14

Similar Documents

Publication Publication Date Title
GB1435459A (en) Manufacture of a composite electrical conductor including a superconductive conductor
JPS6044914A (en) Method of producing nb3sn multicore superconductive wire
JPH0211733A (en) Manufacture of nb3 sn superconducting wire by internal diffusing method
JP3058904B2 (en) Nb Lower 3 Method for Manufacturing Sn Multicore Superconducting Wire
JP2544096B2 (en) Nb (bottom 3) Method for manufacturing Sn superconducting wire
JPS58189909A (en) Method of producing nb3sn superconductor
JPS61279662A (en) Production of nb3sn multi-cored superconductive wire
JP3059570B2 (en) Superconducting wire and its manufacturing method
JPH03283322A (en) Manufacture of nb3al superconductor
JPS63271818A (en) Manufacture of nb3sn superconductive wire by external diffusion method
JPH03283320A (en) Manufacture of nb3sn multicore superconductor
JPH0211732A (en) Manufacture of nb3sn multicore superconducting wire
JPH0266814A (en) Manufacture of nb3sn superconducting wire
JPS6358714A (en) Manufacture of nb3sn multi-core superconductor
JPS62240751A (en) Manufacture of nb3sn super conducting wire by internal diffusion method
JPH01304617A (en) Manufacture of nb3 sn multi-superconductor wire
JPS6113508A (en) Method of producing low copper ratio nb3sn superconductive wire
JPH01312803A (en) Manufacture of nb3sn magnet
JPS60130010A (en) Method of producing compound superconductive wire
JPS60253113A (en) Method of producing nb3al superconductive wire
JPS596004B2 (en) V3SI
JPS6267156A (en) Production of multicore superconductor for alternating current
JPH0676662A (en) Manufacture of nb3sn superconducting wire
JPH05334929A (en) Manufacture of nb3sn superconductor
JPS61115613A (en) Production of nb-ti multicore superconductive wire