JP2544096B2 - Nb (bottom 3) Method for manufacturing Sn superconducting wire - Google Patents

Nb (bottom 3) Method for manufacturing Sn superconducting wire

Info

Publication number
JP2544096B2
JP2544096B2 JP59210679A JP21067984A JP2544096B2 JP 2544096 B2 JP2544096 B2 JP 2544096B2 JP 59210679 A JP59210679 A JP 59210679A JP 21067984 A JP21067984 A JP 21067984A JP 2544096 B2 JP2544096 B2 JP 2544096B2
Authority
JP
Japan
Prior art keywords
based metal
superconducting wire
tube
manufacturing
metal tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59210679A
Other languages
Japanese (ja)
Other versions
JPS6188408A (en
Inventor
英元 鈴木
政光 市原
良昌 神定
青木  伸夫
智幸 熊野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP59210679A priority Critical patent/JP2544096B2/en
Publication of JPS6188408A publication Critical patent/JPS6188408A/en
Application granted granted Critical
Publication of JP2544096B2 publication Critical patent/JP2544096B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 [発明の技術分野] 本発明はNb3Sn多芯超電導線、特に拡散障壁を有するC
u安定化Nb3Sn超電導線の製造方法に関する。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to Nb 3 Sn multicore superconducting wires, particularly C having a diffusion barrier.
u A method of manufacturing a stabilized Nb 3 Sn superconducting wire.

[発明の技術的背景とその問題点] 従来、多芯構造のNb3Sn超電導線の製造方法として、S
nロッドの外周にCu管およびNb管を順に配置した複合素
線の複数本をCuマトリックス中に配置し、これを冷間加
工後熱処理を施す方法(以下パイプ法と称する)が知ら
れている(特開昭52−16997号公報)。
[Technical background of the invention and its problems] Conventionally, as a method for manufacturing a Nb 3 Sn superconducting wire having a multi-core structure, S
A method is known in which a plurality of composite strands, in which a Cu tube and an Nb tube are sequentially arranged on the outer periphery of an n rod, are arranged in a Cu matrix, and this is subjected to heat treatment after cold working (hereinafter referred to as a pipe method). (JP-A-52-16997).

しかして、上記のNb3Sn超電導線の製造方法において
は、Nb3Snを生成するための最終熱処理工程で内部から
拡散したSnにより外周のCu被覆が汚染された場合には、
安定化材としての機能を維持することが難しくなる。
Then, in the above-described method for manufacturing a Nb 3 Sn superconducting wire, when the Cu coating on the outer periphery is contaminated by Sn diffused from the inside in the final heat treatment step for producing Nb 3 Sn,
It becomes difficult to maintain the function as a stabilizer.

従って、通常はNb管がすべてNb3Snに反応せず、その
一部を管状に残した状態で熱処理を終了する必要があ
り、このためNb管内の(Cu+Sn)層中のSn濃度を制限せ
ねばならぬという難点があった。また、Nb管が加工中に
均一に変形せずに、その一部が破断しCuマトリックスが
汚染され、安定化材として機能しなくなるという問題が
あった。さらに超電導線を巻枠上に巻回固定してマグネ
ットを形成する場合に生ずる曲げ歪みによって、臨界電
流値が低下するという問題がある。
Therefore, the Nb tube usually does not react with Nb 3 Sn and it is necessary to finish the heat treatment while leaving a part of it in a tubular shape. Therefore, the Sn concentration in the (Cu + Sn) layer in the Nb tube must be limited. There was a difficulty that we had to do it. Further, there is a problem that the Nb tube is not uniformly deformed during processing, a part of the Nb tube is broken, the Cu matrix is contaminated, and the Nb tube does not function as a stabilizer. Further, there is a problem that the critical current value is lowered due to bending strain generated when the superconducting wire is wound and fixed on the winding frame to form the magnet.

[発明の目的] 本発明は上記の難点を解消するためになされたもの
で、パイプ法における熱処理条件の設定を容易にすると
ともに、Nb管内のSn濃度を高くすることにより、Nb3Sn
の生成量を増大させることができ、さらに曲げ歪みに対
しても臨界電流値の低下が小さいNb3Sn超電導線の製造
方法を提供することをその目的とする。
[Object of the Invention] The present invention has been made in order to solve the above-mentioned problems, and facilitates the setting of heat treatment conditions in the pipe method, and increases the Sn concentration in the Nb pipe to increase the Nb 3 Sn content.
It is an object of the present invention to provide a method for producing a Nb 3 Sn superconducting wire that can increase the amount of the generated Nb 3 and that has a small decrease in the critical current value with respect to bending strain.

[発明の概要] 本発明のNb3Sn超電導線の製造方法は、Sn系金属より
なるロッドの外周にCu系金属管、Nb系金属管およびTa系
金属管を順に配置した複合素線の複数本をCuマトリック
ス中に配置し、これを断面減少加工後、拡散熱処理を施
して前記Ta系金属管の内部にNb3Sn層を生成せしめるこ
とを特徴としている。
[Summary of the Invention] A method for manufacturing an Nb 3 Sn superconducting wire according to the present invention comprises a plurality of composite strands in which a Cu-based metal tube, an Nb-based metal tube, and a Ta-based metal tube are sequentially arranged on the outer circumference of a rod made of an Sn-based metal. The book is arranged in a Cu matrix, which is characterized by subjecting it to cross-section reduction processing and then subjecting it to diffusion heat treatment to generate an Nb 3 Sn layer inside the Ta-based metal tube.

本発明におけるM系金属(MはSn、NbあるいはTa)は
純金属でもよいが、加工性あるいは超電導特性を改善す
る、例えばTi、Zr、Hf等の第3元素を含む合金を使用す
ることも可能である。
The M-based metal (M is Sn, Nb or Ta) in the present invention may be a pure metal, but it is also possible to use an alloy containing a third element such as Ti, Zr or Hf, which improves workability or superconductivity. It is possible.

本発明においては、各Nb系金属管の外周にSnと反応し
ないTa系金属管が配置されているため、NbをすべてNb3S
nに生成せしめることが可能であり、また外部応力によ
る臨界電流値の低下も防ぐことができる。
In the present invention, since Ta-based metal pipes that do not react with Sn are arranged around the outer periphery of each Nb-based metal pipe, all Nb is Nb 3 S.
It is possible to generate n, and it is possible to prevent a decrease in the critical current value due to external stress.

さらに本発明における熱処理は、所定の外径まで減面
加工した後に施されるが、その温度は600〜800℃の範囲
で線材の構造に対応して数十時間から百数十時間加熱さ
れる。
Further, the heat treatment in the present invention is performed after surface-reducing processing to a predetermined outer diameter, and the temperature is heated in the range of 600 to 800 ° C. for several tens hours to hundreds of tens hours depending on the structure of the wire. .

[発明の実施例] 以下本発明の実施例について説明する。[Examples of the Invention] Examples of the present invention will be described below.

実施例 Snロッドの外周に、Cu管、Nb管、Ta管およびCu管を順
次被覆した外径10.0mmφの複合体に冷間加工を施して、
平行面間距離2.0mmの断面正六角形の複合線を製造し
た。
Example The outer periphery of the Sn rod was subjected to cold working on a composite having an outer diameter of 10.0 mmφ in which Cu pipe, Nb pipe, Ta pipe and Cu pipe were sequentially coated,
A composite wire having a regular hexagonal cross section with a parallel plane distance of 2.0 mm was manufactured.

この複合線の301本を、外径48mmφ、内径40mmφのCu
管中に収容した後、中間焼鈍せずに冷間加工を施して外
径1.1mmφの線材を得た。
301 of this composite wire is made of Cu with an outer diameter of 48 mmφ and an inner diameter of 40 mmφ.
After being housed in the tube, cold working was performed without intermediate annealing to obtain a wire rod having an outer diameter of 1.1 mmφ.

このときのNb管の外径は50μmφ、内径は35μmφ、
Ta管の厚さは5μmであり、Nb管内部の(Cu+Sn)中の
Sn濃度は30%であった。
At this time, the outer diameter of the Nb pipe is 50 μmφ, the inner diameter is 35 μmφ,
The thickness of the Ta tube is 5 μm, and the (Cu + Sn) inside the Nb tube is
The Sn concentration was 30%.

このようにして得た線材に750℃で72時間の熱処理を
施した後、徐々に曲げ歪み(εB)を付加して臨界電流
値(Ic)を測定した結果を図に示す。
The wire material thus obtained is heat-treated at 750 ° C. for 72 hours, and then the bending current (ε B ) is gradually added to measure the critical current value (Ic).

なお、比較例として同図に示したものは、Ta管を用い
ず他は実施例と同様の方法で加工および熱処理を施した
線材についての測定結果を示したものである。
In addition, what is shown in the same figure as a comparative example shows the measurement result of the wire rod which was processed and heat-treated in the same manner as in the example except that the Ta tube was not used.

[発明の効果] 以上述べたように本発明によれば、曲げ歪みに対して
臨界電流値の低下が少なく、さらに熱処理も容易で、か
つ超電導特性に優れたNb3Sn超電導線を得ることができ
る。
[Effects of the Invention] As described above, according to the present invention, it is possible to obtain a Nb 3 Sn superconducting wire which has a small decrease in the critical current value with respect to bending strain, is easy to heat-treat, and has excellent superconducting properties. it can.

【図面の簡単な説明】[Brief description of drawings]

図は本発明の方法によって得られたNb3Sn超電導線の臨
界電流値(Ic)と曲げ歪み(εB)との関係を示すグラ
フである。
The figure is a graph showing the relationship between the critical current value (Ic) and bending strain (ε B ) of the Nb 3 Sn superconducting wire obtained by the method of the present invention.

フロントページの続き (72)発明者 青木 伸夫 川崎市川崎区小田栄2丁目1番1号 昭 和電線電纜株式会社内 (72)発明者 熊野 智幸 川崎市川崎区小田栄2丁目1番1号 昭 和電線電纜株式会社内 (56)参考文献 特開 昭50−38492(JP,A) 特開 昭52−135291(JP,A) 特開 昭52−16997(JP,A)Front page continued (72) Inventor Nobuo Aoki 2-1-1 Oda Sakae, Kawasaki-ku, Kawasaki-shi Awa Electric Cable Co., Ltd. (72) Inventor Tomoyuki Kumano 2-1-1 Oda Sakae, Kawasaki-ku, Kawasaki (56) References JP-A-50-38492 (JP, A) JP-A-52-135291 (JP, A) JP-A-52-16997 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Sn系金属よりなるロッドの外周にCu系金属
管、Nb系金属管およびTa系金属管を順に配置した複合素
線の複数本をCuマトリックス中に配置し、これを断面減
少加工後、拡散熱処理を施して前記Ta系金属管の内部に
Nb3Sn層を生成せしめることを特徴とするNb3Sn超電導線
の製造方法。
1. A plurality of composite wires in which a Cu-based metal tube, an Nb-based metal tube and a Ta-based metal tube are sequentially arranged on the outer circumference of a rod made of Sn-based metal are placed in a Cu matrix, and the cross-section is reduced. After processing, apply diffusion heat treatment to the inside of the Ta-based metal tube.
A method of manufacturing an Nb 3 Sn superconducting wire, which comprises forming an Nb 3 Sn layer.
JP59210679A 1984-10-08 1984-10-08 Nb (bottom 3) Method for manufacturing Sn superconducting wire Expired - Lifetime JP2544096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59210679A JP2544096B2 (en) 1984-10-08 1984-10-08 Nb (bottom 3) Method for manufacturing Sn superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59210679A JP2544096B2 (en) 1984-10-08 1984-10-08 Nb (bottom 3) Method for manufacturing Sn superconducting wire

Publications (2)

Publication Number Publication Date
JPS6188408A JPS6188408A (en) 1986-05-06
JP2544096B2 true JP2544096B2 (en) 1996-10-16

Family

ID=16593311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59210679A Expired - Lifetime JP2544096B2 (en) 1984-10-08 1984-10-08 Nb (bottom 3) Method for manufacturing Sn superconducting wire

Country Status (1)

Country Link
JP (1) JP2544096B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285810A (en) * 1987-05-18 1988-11-22 Toshiba Corp Manufacture of nb3sn type composite superconductor
JP4727914B2 (en) * 2003-09-17 2011-07-20 株式会社神戸製鋼所 Nb3Sn superconducting wire and method for manufacturing the same

Also Published As

Publication number Publication date
JPS6188408A (en) 1986-05-06

Similar Documents

Publication Publication Date Title
JPH0377608B2 (en)
JP2544096B2 (en) Nb (bottom 3) Method for manufacturing Sn superconducting wire
JPS5827605B2 (en) 100% of the population
JP2519035B2 (en) Nb (bottom 3) Method for manufacturing Sn superconducting wire
JP3059570B2 (en) Superconducting wire and its manufacturing method
JPS602728B2 (en) Method for manufacturing compound composite superconductor
JP2519034B2 (en) Nb (bottom 3) Method for manufacturing Sn superconducting wire
JP2683768B2 (en) Nb (bottom 3) Method for manufacturing Sn multi-core superconducting wire
JPH0815016B2 (en) Νb ▲ 3 ▼ Manufacturing method of Sn multi-core superconducting wire
JPS607014A (en) Method of producing nb3sn superconductive wire
JPS58189909A (en) Method of producing nb3sn superconductor
JP4476755B2 (en) Method for producing Nb3Sn superconducting wire and composite wire therefor
JP2700249B2 (en) Method of manufacturing Nb (3) Sn multi-core superconducting wire having high residual resistance ratio
JPH01312803A (en) Manufacture of nb3sn magnet
JPH0211732A (en) Manufacture of nb3sn multicore superconducting wire
JPS63213212A (en) Manufacture of internal diffusion type nb3 sn superconductive wire
JPS59209210A (en) Nb3sn compound superconductive wire and production thereof
JPS596004B2 (en) V3SI
JPS59191213A (en) Method of producing compound composite superconductive conductor
JPS63245826A (en) Manufacture of compound superconductive wire
JPH03283320A (en) Manufacture of nb3sn multicore superconductor
JPH03274612A (en) Manufacture of nb3 sn superconductive wire
JPS6358714A (en) Manufacture of nb3sn multi-core superconductor
JPS63271819A (en) Manufacture of nb3sn superconductive wire
JPS63285810A (en) Manufacture of nb3sn type composite superconductor