JPH03274612A - Manufacture of nb3 sn superconductive wire - Google Patents

Manufacture of nb3 sn superconductive wire

Info

Publication number
JPH03274612A
JPH03274612A JP2074620A JP7462090A JPH03274612A JP H03274612 A JPH03274612 A JP H03274612A JP 2074620 A JP2074620 A JP 2074620A JP 7462090 A JP7462090 A JP 7462090A JP H03274612 A JPH03274612 A JP H03274612A
Authority
JP
Japan
Prior art keywords
alloy
copper
tube
group metal
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2074620A
Other languages
Japanese (ja)
Inventor
Toshinari Ando
俊就 安藤
Masataka Nishi
正孝 西
Susumu Shimamoto
進 島本
Yoshikazu Takahashi
良和 高橋
Hidemoto Suzuki
鈴木 英元
Masamitsu Ichihara
市原 政光
Toshihisa Ogaki
大垣 俊久
Tomoyuki Kumano
智幸 熊野
Ichiro Noguchi
一朗 野口
Nobuo Aoki
伸夫 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
SWCC Corp
Original Assignee
Japan Atomic Energy Research Institute
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute, Showa Electric Wire and Cable Co filed Critical Japan Atomic Energy Research Institute
Priority to JP2074620A priority Critical patent/JPH03274612A/en
Publication of JPH03274612A publication Critical patent/JPH03274612A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To enable uniform deformation of an Nb group metal tube and improve its characteristic such as critical current density by arranging a copper alloy having big mechanical strength between the Nb group metal tube and a tin group metal in a central part. CONSTITUTION:A plurality of Nb group metal tubes are arranged in a copper or copper alloy matrix, and area reduction processing is applied to a complex body housing a tin group metal wire coated with a copper alloy having big mechanical strength inside said metal tube followed by heat treatment. An Nb radical alloy, to which pure Nb and Ti for improving workability, is used as the material of the Nb group metal tube to be arranged in the matrix. Heat treatment after area reduction is applied within a temperature range from 550 to 755 deg.C. As a copper alloy having big mechanical strength, Ti alloy including (0.1 to 2.0)wt.% of Cu, Sn alloy including (0.1 to 10)wt.% of Cu and Ni alloy including (1.0 to 40)wt. of Cu are used.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は超電導線の製造方法に係わり、特にチューブ法
によるNb3Sn超電導線の製造方法において、Nb系
金属管の均一な変形を可能にし、その臨界電流密度(」
C)等の特性を向上させることのできる製造方法の改良
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a superconducting wire, and in particular, in a method for manufacturing a Nb3Sn superconducting wire by a tube method, it enables uniform deformation of a Nb-based metal tube, and Critical current density (''
This invention relates to improvements in manufacturing methods that can improve properties such as C).

[従来の技術] Nb3 Sn超電導線の製造方法の一つとして、チュー
ブ法によるものが知られている。
[Prior Art] A tube method is known as one of the methods for manufacturing Nb3Sn superconducting wire.

この方法は、Snロッドの外周にCu管およびNb管を
順次被覆した複合線の複数本をCuマトリックス中に配
置して複合体を形成し、この複合体に冷間加工を施した
後、熱処理を施すことによりNb3 Snを生成させる
ものである(特公昭55−18547号公報)。
In this method, a plurality of composite wires in which the outer periphery of an Sn rod is sequentially coated with Cu tubes and Nb tubes is arranged in a Cu matrix to form a composite, and after cold working this composite, heat treatment is performed. (Japanese Patent Publication No. 55-18547).

上記の方法は、マトリックスにCu−Sn合金を用いる
ブロンズ法に比較して (イ)中間焼鈍を必要とせずに加工することが可能であ
る。
Compared to the bronze method using a Cu-Sn alloy as a matrix, the above method (a) allows processing without requiring intermediate annealing.

(ロ) Jc値が高い。(b) High Jc value.

(ハ)熱処理後にNb系金属管を残存させることにより
、マトリックスにCu (純銅)を用いた場合には安定
化銅を付与する必要がない。
(c) By allowing the Nb-based metal tube to remain after heat treatment, it is not necessary to add stabilizing copper when Cu (pure copper) is used for the matrix.

等の利点を有する。It has the following advantages.

[発明が解決しようとする課II] しかしながら、上記のチューブ法おいては、冷間加工度
が104を越えるような高加工度の場合にNb管の管壁
の破断や断線を生じ易く、熱処理の際1;Snがマトリ
ックス中に拡散して」Cの低下や冷却不安定化を招くと
いう問題を生ずる。
[Problem II to be Solved by the Invention] However, in the above-mentioned tube method, when the degree of cold working exceeds 104, breakage or disconnection of the tube wall of the Nb tube is likely to occur, and heat treatment is required. In this case, 1: Sn diffuses into the matrix, causing problems such as a decrease in C and destabilization of cooling.

また、Nb管の平均径が80μm程度以上に加工される
と、未反応のNb部分の残存量が多くなりJcを低下さ
せるという問題がある。
Further, when the Nb tube is processed to have an average diameter of about 80 μm or more, there is a problem that the remaining amount of unreacted Nb portion increases and Jc decreases.

上記の問題は、高加工度の成形によりNb管の変形が均
一に行われなくなり、中心部分と周辺部分のNb管の形
状に著しい差を生ずることに起因する。
The above problem is caused by the fact that the Nb tube is not deformed uniformly due to the highly processed molding, resulting in a significant difference in the shape of the Nb tube between the central portion and the peripheral portion.

第3図は熱処理後のフィラメントの断面例を示したもの
で、同図(a)に示す中心部付近のフィラメントにおい
てはCu−Sn合金1の周囲にNb3 Sn層2が均一
に生成され、その外側の残存Nb管3の厚みもほぼ均一
であるが、同図(b)に示す周辺部分のフィラメントに
おいては全体に変形が不均一で、特にNb管3aの厚み
の差が著しい。なお、1aはCu−Sn合金、2aはN
b管3aの内側に生成されたNbHSn層を示す。
Figure 3 shows an example of a cross section of a filament after heat treatment. In the filament near the center shown in Figure (a), an Nb3Sn layer 2 is uniformly generated around the Cu-Sn alloy 1, and Although the thickness of the remaining Nb tube 3 on the outside is almost uniform, the deformation of the filament in the peripheral part shown in FIG. Note that 1a is a Cu-Sn alloy, and 2a is N
b shows the NbHSn layer formed inside the tube 3a.

本発明は上記の問題点を解決するためになされたもので
、Nb系金属管の均一な変形を可能にするとともに、熱
処理後の残存Nb量を減少させ、臨界電流密度(」C)
等の特性を向上させることのできるNb3 Sn超電導
線の製造方法を提供することをその目的とする。
The present invention was made to solve the above problems, and it enables uniform deformation of Nb-based metal tubes, reduces the amount of Nb remaining after heat treatment, and reduces the critical current density ('C).
It is an object of the present invention to provide a method for manufacturing a Nb3Sn superconducting wire that can improve properties such as the following.

[課題を解決するための手段] 本発明のNb3 Sn超電導線の製造方法は、銅または
銅合金マトリックス中に複数のNb系金属管を配置し、
前記金属管内に機械的強度の大きい銅合金で被覆された
錫系金属線を収容した複合体に減面加工を施した後、5
50〜755℃の温度で熱処理を施すことにより上記目
的を達成するものである。
[Means for Solving the Problems] The method for manufacturing an Nb3Sn superconducting wire of the present invention includes arranging a plurality of Nb-based metal tubes in a copper or copper alloy matrix,
After subjecting the composite body containing a tin-based metal wire coated with a copper alloy with high mechanical strength in the metal tube to reduce its area, 5
The above object is achieved by performing heat treatment at a temperature of 50 to 755°C.

本発明におけるマトリックス材としては、銅または銅合
金が用いられるが、マトリックスを安定化材として機能
させる場合には無酸素銅が適する。
Copper or a copper alloy is used as the matrix material in the present invention, but oxygen-free copper is suitable when the matrix is to function as a stabilizing material.

上記マトリックス中に配置されるNb系金属管の材料と
しては、純Nbや加工性を改善するためにTI等を添加
したNb基合金が用いられる。
As the material for the Nb-based metal tube disposed in the matrix, pure Nb or an Nb-based alloy to which TI or the like is added to improve workability is used.

また減面加工後の熱処理は550〜755℃の温度で施
されるが、これは上記の温度範囲外ではJc等の特性が
低下するためである。この熱処理においてはSnのマト
リックス中への拡散を防止するため、Nb管の一部が残
存するような条件を選択することが好ましい。
Further, the heat treatment after the area reduction processing is carried out at a temperature of 550 to 755°C, because properties such as Jc deteriorate outside the above temperature range. In this heat treatment, in order to prevent Sn from diffusing into the matrix, it is preferable to select conditions such that a portion of the Nb tube remains.

本発明において、多芯構造の超電導線を製造する場合に
は、例えば、Snロッドの外周に機械的強度の大きい銅
合金よりなる金属管、Nb管およびCu管を順次被覆し
て断面六角形に成形した複合線の複数本を、その側面を
当接してCu管中に充填して形成した複合体を用いるこ
とが好ましい。
In the present invention, when manufacturing a superconducting wire with a multicore structure, for example, a metal tube made of a copper alloy with high mechanical strength, a Nb tube, and a Cu tube are sequentially coated on the outer periphery of an Sn rod to form a hexagonal cross-section. It is preferable to use a composite formed by filling a plurality of molded composite wires into a Cu tube with their sides in contact.

上記の機械的強度の大きい銅合金としては、Cu−(0
,1〜2.0)wt%TI合金、Cu−(0,1〜10
)wt%sn合金、Cu−(1,0〜40)wt%N1
合金を用いることが好ましい。TI、Sns Nlの添
加量が、上記の範囲、未満であるとNb系金属管との強
度差が大きくなってNb系金属管の変形が不均一になり
、一方、上記の範囲を越えると加工性が低下し中間焼鈍
が必要となる。以上の添加元素の他、BeやCr等を添
加した銅合金の使用も可能である。
The above-mentioned copper alloy with high mechanical strength includes Cu-(0
,1~2.0) wt% TI alloy, Cu-(0,1~10
)wt%sn alloy, Cu-(1,0-40)wt%N1
Preferably, alloys are used. If the added amount of TI, Sns Nl is less than the above range, the difference in strength with the Nb metal tube will become large and the deformation of the Nb metal tube will become uneven.On the other hand, if it exceeds the above range, processing will be difficult. The properties of the steel decrease and intermediate annealing becomes necessary. In addition to the above additive elements, it is also possible to use a copper alloy to which Be, Cr, etc. are added.

さらに、上記の銅合金の他、0.1〜0.2vt%程度
のAl2O3を含むアルミナ分散銅を用いることもでき
る。この場合には、熱処理後にアルミナの分散化によっ
てNb内のブロンズ部分の機械的強度も上昇する。
Furthermore, in addition to the above-mentioned copper alloys, alumina-dispersed copper containing about 0.1 to 0.2 vt% of Al2O3 can also be used. In this case, the mechanical strength of the bronze portion within Nb also increases due to the dispersion of alumina after heat treatment.

[作用] 本発明においては、Nb系金属管と中心部の錫系金属と
の間に機械的強度の大きい銅合金を配置したことにより
、Nb系金属管との強度差か小さくなりNb系金属管の
著しい不均一な変形を防止することができ、Jc等の特
性を向上させることができる。
[Function] In the present invention, by disposing a copper alloy with high mechanical strength between the Nb-based metal tube and the tin-based metal in the center, the difference in strength between the Nb-based metal tube and the Nb-based metal tube is reduced. Significant non-uniform deformation of the tube can be prevented, and characteristics such as Jc can be improved.

即ち、第3図(b)に示すようにNb管の厚さが不均一
になると、厚さが大きい部分では熱処理後もNb3Sn
が生成されないため、残留Nb量が増加して」Cが低下
する。このことはNb3Snの生成量がNb厚みの薄い
部分によって律速されることを意味する。
That is, if the thickness of the Nb tube becomes uneven as shown in FIG.
is not generated, the amount of residual Nb increases and the C value decreases. This means that the amount of Nb3Sn produced is rate-determined by the thinner Nb portion.

[実施例コ 以下本発明の一実施例および比較例について説明する。[Example code] An example of the present invention and a comparative example will be described below.

実施例 外径8.0m*φ、内径5.6+u+φのNb−1vt
%Ti合金管の内部にCu−0,3vt%Ti合金で被
覆したSnロッドを収容し、さらにこのNb−Ti合金
管の外側に外径10.3mg+φ、内径8.1amφの
Cu管を配置して冷間加工を施し、対辺間距離2.52
mg+の断面六角形の複合線を製造した。上記のNb−
Ti合金管内部のCuとSnはCu−30wt%Snの
組成となるように配合した。
Nb-1vt with exception diameter 8.0m*φ, inner diameter 5.6+u+φ
A Sn rod coated with Cu-0.3vt%Ti alloy was housed inside the Nb-Ti alloy tube, and a Cu tube with an outer diameter of 10.3 mg + φ and an inner diameter of 8.1 amφ was placed outside the Nb-Ti alloy tube. The distance between opposite sides is 2.52.
A composite wire with a hexagonal cross section of mg+ was manufactured. The above Nb-
Cu and Sn inside the Ti alloy tube were mixed to have a composition of Cu-30wt%Sn.

次いで、上記の複合線の7本を外径1O33■−φ、内
径8.1amφのCu管中に収容して複合体を形威し、
この複合体に伸線加工を施して外径0.51■φの線材
を製造した。この線材の銅比(銅/弁銅)は1.98で
あり、またフィラメント径(円換算)は109μmであ
る。
Next, seven of the above composite wires were housed in a Cu tube with an outer diameter of 1033 mm and an inner diameter of 8.1 am to form a composite.
This composite was subjected to wire drawing to produce a wire rod with an outer diameter of 0.51 mm. The copper ratio (copper/valve copper) of this wire is 1.98, and the filament diameter (in terms of yen) is 109 μm.

このようにして得られた線材に、725℃で、72時間
の熱処理を施して超電導線を製造した。この超電導線の
弁銅のJcを測定した結果、15Tで600A/as 
2の値が得られた。
The thus obtained wire was heat treated at 725° C. for 72 hours to produce a superconducting wire. As a result of measuring the Jc of the valve copper of this superconducting wire, it was 600A/as at 15T.
A value of 2 was obtained.

上記の超電導線の熱処理前の断面構造を第1図に示す。FIG. 1 shows the cross-sectional structure of the above superconducting wire before heat treatment.

同図においてNb−1νt%TI合金管10はCuマト
リックス11中に7本配置され、このNb−Ti合金管
10の内部にCu−0,3vt%Ti合金12で被覆さ
れたSn線13が収容されている。
In the same figure, seven Nb-1vt% TI alloy tubes 10 are arranged in a Cu matrix 11, and Sn wires 13 coated with Cu-0,3vt% Ti alloy 12 are housed inside these Nb-Ti alloy tubes 10. has been done.

比較例 上記の実施例におけるCu−0,3vt%Ti合金12
の代わりに同一寸法のCu管を用い、他は実施例と同様
にして複合体を形成し伸線加工および熱処理を施した。
Comparative Example Cu-0,3vt%Ti alloy 12 in the above example
A composite body was formed in the same manner as in the example except that a Cu tube of the same size was used in place of the composite body, and subjected to wire drawing and heat treatment.

このようにして得られた超電導線の弁銅のJcを測定し
た結果、15Tで550A/帥2の値が得られた。
As a result of measuring the Jc of the valve copper of the superconducting wire thus obtained, a value of 550 A/cm2 was obtained at 15T.

上記の超電導線の熱処理前の断面構造を第2図に示す。FIG. 2 shows the cross-sectional structure of the above superconducting wire before heat treatment.

同図においてNb−1wt%T1合金管10aはCuマ
トリックス11a中に7本配置され、このNb−Ti合
金管10aの内部にCu12aで被覆されたSn線13
aが収容されており、第1図に比較して周辺部のNb−
T1合金管の厚さが著しく不均一であることが明らかで
ある。
In the figure, seven Nb-1wt%T1 alloy tubes 10a are arranged in a Cu matrix 11a, and inside these Nb-Ti alloy tubes 10a are Sn wires 13 coated with Cu12a.
a is accommodated, and compared to FIG. 1, Nb-
It is clear that the thickness of the T1 alloy tube is significantly non-uniform.

[発明の効果] 以上述べたように本発明によれば、Nb系金属管と中心
部の錫系金属との間に機械的強度の大きい銅合金を配置
したことにより、Nb系金属管の著しい不均一変形を防
止することができ、その結果、熱処理後の超電導線の特
性を向上させることができる。
[Effects of the Invention] As described above, according to the present invention, by disposing a copper alloy having high mechanical strength between the Nb-based metal tube and the tin-based metal in the center, the Nb-based metal tube has a remarkable Non-uniform deformation can be prevented, and as a result, the characteristics of the superconducting wire after heat treatment can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のチューブ法による超電導線の熱処理前
の構造の一実施例を示す断面図、第2図は従来のチュー
ブ法による超電導線の熱処理前の構造を示す断面図、第
3図(a)および(b)は、それぞれ従来の方法による
超電導線の中心部および周辺部における熱処理後のフィ
ラメントの形状を示す断面図である。 1、l a−Cu−Sn合金 2・・・・・・・・・Nb3 Sn層 2a・・・・・・Nb3 Sn層 3.3a・・・残存Nb管 10、10 a ・Nb −1vt%Ti合金管11.
11a・・・Cuマトリックス 12−−−−−− Cu−0,3wt%Ti合金12a
・・・・・・Cu 13 Sl 3 a =・Sn線 第1− 562図 69− (6) j13 (1))
FIG. 1 is a cross-sectional view showing an example of the structure of a superconducting wire before heat treatment using the tube method of the present invention, FIG. 2 is a cross-sectional view showing the structure of a superconducting wire before heat treatment using the conventional tube method, and FIG. (a) and (b) are cross-sectional views showing the shape of a filament after heat treatment at the center and periphery of a superconducting wire by a conventional method, respectively. 1, l a-Cu-Sn alloy 2...Nb3 Sn layer 2a...Nb3 Sn layer 3.3a...Remaining Nb tube 10, 10 a ・Nb -1vt% Ti alloy tube 11.
11a...Cu matrix 12-----Cu-0,3 wt% Ti alloy 12a
...Cu 13 Sl 3 a = Sn line 1-562 Figure 69- (6) j13 (1))

Claims (2)

【特許請求の範囲】[Claims] (1)銅または銅合金マトリックス中に複数のNb系金
属管を配置し、前記金属管内に機械的強度の大きい銅合
金で被覆された錫系金属線を収容した複合体に減面加工
を施した後、550〜755℃の温度で熱処理を施すこ
とを特徴とするNb_3Sn超電導線の製造方法。
(1) A composite body in which a plurality of Nb-based metal tubes are arranged in a copper or copper alloy matrix and a tin-based metal wire coated with a copper alloy with high mechanical strength is housed inside the metal tube is subjected to area reduction processing. A method for producing a Nb_3Sn superconducting wire, which comprises performing heat treatment at a temperature of 550 to 755°C.
(2)機械的強度の大きい銅合金は、Cu−(0.1〜
2.0)wt%Ti合金、Cu−(0.1〜10)wt
%Sn合金またはCu−(1.0〜40)wt%Ni合
金のいずれか一種である請求項1記載のNb_3Sn超
電導線の製造方法。
(2) Copper alloys with high mechanical strength are Cu-(0.1~
2.0)wt%Ti alloy, Cu-(0.1-10)wt
The method for producing a Nb_3Sn superconducting wire according to claim 1, wherein the Nb_3Sn superconducting wire is one of a %Sn alloy and a Cu-(1.0-40)wt%Ni alloy.
JP2074620A 1990-03-23 1990-03-23 Manufacture of nb3 sn superconductive wire Pending JPH03274612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2074620A JPH03274612A (en) 1990-03-23 1990-03-23 Manufacture of nb3 sn superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2074620A JPH03274612A (en) 1990-03-23 1990-03-23 Manufacture of nb3 sn superconductive wire

Publications (1)

Publication Number Publication Date
JPH03274612A true JPH03274612A (en) 1991-12-05

Family

ID=13552408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2074620A Pending JPH03274612A (en) 1990-03-23 1990-03-23 Manufacture of nb3 sn superconductive wire

Country Status (1)

Country Link
JP (1) JPH03274612A (en)

Similar Documents

Publication Publication Date Title
US4224735A (en) Method of production multifilamentary intermetallic superconductors
JPH0768605B2 (en) Nb (bottom 3) Method for manufacturing Sn-based superconducting wire
JPS6215967B2 (en)
JPH03274612A (en) Manufacture of nb3 sn superconductive wire
JPH0211733A (en) Manufacture of nb3 sn superconducting wire by internal diffusing method
JPH04277416A (en) Manufacture of nb3sn superconducting wire
JP2683768B2 (en) Nb (bottom 3) Method for manufacturing Sn multi-core superconducting wire
JPH05342933A (en) Manufacture of nb3sn compound superconductive wire
JP3124448B2 (en) Method for manufacturing Nb (3) Sn superconducting wire
JPH03274613A (en) Manufacture of nb3 sn superconductive wire
JP2544096B2 (en) Nb (bottom 3) Method for manufacturing Sn superconducting wire
JPH08138467A (en) Manufacture of a3b type compound superconductive wire
JPH04138630A (en) Manufacture of nb3sn superconducting wire
JPH0492316A (en) Manufacture of compound linear material
JPS63213212A (en) Manufacture of internal diffusion type nb3 sn superconductive wire
JP2519035B2 (en) Nb (bottom 3) Method for manufacturing Sn superconducting wire
JPS6366889B2 (en)
JP2519034B2 (en) Nb (bottom 3) Method for manufacturing Sn superconducting wire
JPH04137411A (en) Manufacture of nb3 sn multicore superconducting wire
JPS63271819A (en) Manufacture of nb3sn superconductive wire
JPH0211732A (en) Manufacture of nb3sn multicore superconducting wire
JPH0982152A (en) Manufacture of superconducting wire, and superconducting wire
JPS6357750A (en) Manufacture of nb3sn superconducting wire
JPH06309968A (en) Manufacture of nb3sn superconducting wire for ac
JPH08167336A (en) Manufacture of nb3sn superconducting wire