JPH0492316A - Manufacture of compound linear material - Google Patents

Manufacture of compound linear material

Info

Publication number
JPH0492316A
JPH0492316A JP2207738A JP20773890A JPH0492316A JP H0492316 A JPH0492316 A JP H0492316A JP 2207738 A JP2207738 A JP 2207738A JP 20773890 A JP20773890 A JP 20773890A JP H0492316 A JPH0492316 A JP H0492316A
Authority
JP
Japan
Prior art keywords
compound
metal
tubular body
rod
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2207738A
Other languages
Japanese (ja)
Other versions
JP3050576B2 (en
Inventor
Shoji Shiga
志賀 章二
Kiyoshi Yamada
清 山田
Hisaki Sakamoto
久樹 坂本
Takayuki Sano
隆行 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2207738A priority Critical patent/JP3050576B2/en
Publication of JPH0492316A publication Critical patent/JPH0492316A/en
Application granted granted Critical
Publication of JP3050576B2 publication Critical patent/JP3050576B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To improve performance of a compound wire rod by filling the inside of a metal substance consisting of B with a metal substance containing a component A, and arranging a metal substance consisting of C generating no compound with A and B, and applying a surface reduction process followed by heating above reaction temperature of A with B. CONSTITUTION:It is explained provided that A is Sn, B is Nb and C is Ta. An Nb block is an Nb tubular body 1 having a hollow part 2. The hollow part 2 is filled with an Sn tubular body 3 and a non-reactive metal rod 4. A Cu tubular body 5 reacting to Sn is placed in the middle of the Nb tubular body 1 and the Sn tubular body 3. the non-reactive metal actually generates no compound with Sn, Cu and Nb and remains as a metal or an alloy even in the final diffusion process. A surface reduction processing is performed by a normal method to have a prescribed size.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、脆弱な金属間化合物などの化合物の線状体の
製造方法に関し、実用上特に、高磁場マグ2ントの巻線
、電カケープルや磁気シールドに用いられるN b s
 S n 、 V z G aなどの超電導線材の製造
方法として有用である。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for producing a linear body of a compound such as a brittle intermetallic compound, and is particularly useful for practical applications such as windings of high magnetic field magnets and electric cables. N b s used for magnetic shielding and magnetic shielding
This method is useful as a method for manufacturing superconducting wires such as S n and V z Ga.

〔従来の技術〕[Conventional technology]

脆弱な化合物の線状体として顕著な例である超電導線材
を用いて以下に従来技術を説明する。
The prior art will be explained below using a superconducting wire, which is a notable example of a linear body of a brittle compound.

大電流を抵抗なしで流し、かつ、高磁場を発生させる事
が可能な超電導マグ矛ノドの巻線としてA−15型化合
物が有効である。その例としては、NbtSn、Nb5
S i、Nb1A1.、Nb1Ge、Nbz  (A!
Ge)、VsGa、Nb、Gaなどがある。これらは、
Cuをマトリックスとして線状体に成形して使用される
。実用性の高いNbzSnを例にとると、Nbのパイプ
中にSnまたはCu−3nを入れて加工し、必要に応し
て、これらをCu等の管状体に充填して再び加工するこ
とを繰返し、多芯化してから、最終的に加熱拡散反応を
施して、Nb、Snとする。拡散反応に必要なSnは、
Nbパイプの肉厚や径を調整することによって十分に供
給出来、大容量の超電導線が得られる。
The A-15 type compound is effective as a winding wire for a superconducting maggot that can flow a large current without resistance and generate a high magnetic field. Examples include NbtSn, Nb5
S i, Nb1A1. , Nb1Ge, Nbz (A!
Ge), VsGa, Nb, Ga, etc. these are,
It is used by forming it into a linear body using Cu as a matrix. Taking NbzSn, which is highly practical, as an example, Sn or Cu-3n is put into a Nb pipe and processed, and if necessary, these are filled into a tubular body made of Cu etc. and processed again. , after making it multi-core, it is finally subjected to a heating diffusion reaction to form Nb and Sn. Sn required for diffusion reaction is
By adjusting the thickness and diameter of the Nb pipe, a sufficient amount of Nb can be supplied and a large-capacity superconducting wire can be obtained.

しかしながら、この方法は加工変形能の大幅に異なるN
bとSnを一緒に加工するため、これらの変形形態にア
ンバランスをきたし易く、線形状が不均一になり、断線
に至る場合もある。更に、最終工程の拡散熱処理におい
て、体積変化や拡散速度差による逆kirkendal
l効果などにより、内部にボイドやクラッタなどの欠陥
が発生し、化合物線フィラメントの機械的特性が劣化す
る。
However, this method has a significantly different machining deformability.
Since b and Sn are processed together, their deformation tends to be unbalanced, resulting in non-uniform line shapes and even wire breakage. Furthermore, in the final process of diffusion heat treatment, reverse kirkendal effects due to volume changes and differences in diffusion rates are observed.
Due to the L effect, defects such as voids and clutter occur inside the compound wire filament, and the mechanical properties of the compound wire filament deteriorate.

〔発明が解決しようとする課B] 従来の化合物線状体の製造方法には、工業的に次のよう
な問題点があった。即ち、上述のように、NbとSnの
変形形態にアンバランスをきたし易いため、化合物線の
形状が不均一になる。また、化合物線状体に欠陥が内包
されるため、この化合物線状体は、実用機器に紐み込む
ための成形加工における歪みや、機器の使用中に加わる
応力や歪みにより、損傷を受け、特性の劣化を示す。特
に、超電導線の場合には、マグネットを形成するコイル
化の工程、およびマグネット稼働中のローレンツ力によ
り、超電導線に大きな応力や歪が加わり、臨界電流密度
が低下する。
[Problem B to be Solved by the Invention] The conventional method for producing a linear compound has the following industrial problems. That is, as described above, the deformation forms of Nb and Sn tend to be unbalanced, and the shape of the compound wire becomes non-uniform. In addition, since defects are included in the compound linear body, the compound linear body can be damaged by distortion during the molding process to be incorporated into practical equipment, or by stress and distortion applied during the use of the equipment. Indicates deterioration of characteristics. In particular, in the case of superconducting wires, large stress and strain are applied to the superconducting wires due to the coiling process to form the magnet and the Lorentz force during magnet operation, resulting in a decrease in critical current density.

〔課題を解決するための手段と作用〕[Means and actions to solve the problem]

本発明は上記問題点を解決した化合物線状体の製造方法
を提供するもので、成分AとBからなる化合物線状体の
製造方法において、Bからなる金属体中に、成分Aを含
有する金属体を充填し、かつ、AおよびBと化合物を生
成しないCからなる金属体を、成分Aを含有する金属体
の内部、またはBからなる金属体の外部に配置し、次い
で、減面加工を施し、しかる後、AとBとの反応温度以
上に加熱することを第1発明とし、成分Aを含有する金
属は、金属Cと化合物を性成しない金属りと成分Aとの
合金、または、これらの混合物あるいは複合体であるこ
とを第2発明とし、AがSn、BがNb、CがTa、D
がCuであることを第3発明とするものでる。
The present invention provides a method for manufacturing a linear compound body that solves the above problems, and in the method for manufacturing a linear compound body consisting of components A and B, component A is contained in a metal body consisting of B. A metal body made of C that fills the metal body and does not form a compound with A and B is placed inside the metal body containing component A or outside of the metal body made of B, and then subjected to area reduction processing. The first invention provides that the metal containing component A is an alloy of component A and a metal that does not form a compound with metal C, or , the second invention is a mixture or composite of these, where A is Sn, B is Nb, C is Ta, and D
The third invention is that is Cu.

以下、AをSn、BをNb、CをTaとして説明する。Hereinafter, explanation will be given assuming that A is Sn, B is Nb, and C is Ta.

Nbブロックは、例えば第1図(a)および(b)に示
すように、中空部2を有するNb管状体1である。第1
図(a)の中空部2に、第2図(a)に示すように、S
n管状体3と非反応性金属棒4とを充填した。第2図(
b)はNb管状体1とSn管状体3との中間にSnと反
応するCu管状体5を置いた例である。第2図(a′)
は、第1図(a)の中空部2にSn棒3′を入れ、非反
応性金属管状体8を外方に置いた例である。
The Nb block is, for example, an Nb tubular body 1 having a hollow portion 2, as shown in FIGS. 1(a) and 1(b). 1st
In the hollow part 2 of Fig. 2(a), as shown in Fig. 2(a), S
n tubular body 3 and non-reactive metal rod 4 were filled. Figure 2 (
b) is an example in which a Cu tubular body 5 that reacts with Sn is placed between the Nb tubular body 1 and the Sn tubular body 3. Figure 2 (a')
This is an example in which an Sn rod 3' is placed in the hollow part 2 of FIG. 1(a), and a non-reactive metal tubular body 8 is placed outside.

以上において、Sn管状体3およびSn棒3′は純Sn
以外に、5n−Pb、5n−Cu、SnAgなどの合金
や混合物でもよい、Cu管状体5は、純Cu以外に、C
u−Ag、Cu−Zr、Cu−Ti、、Cu−Znなど
でもよい。CuはSnと拡散反応を起し易く、Nbおよ
び非反応性金属棒4とは、本発明工程において実質的に
反応しない。非反応性金属棒4および管状体8は、Ta
、Zr、Hf、Mo、W、Crなどと、これらの合金、
SUS、Ta−Zr、Ni−Mo−Crなどからなる。
In the above, the Sn tubular body 3 and the Sn rod 3' are pure Sn.
In addition to pure Cu, the Cu tubular body 5 may also be made of an alloy or a mixture of 5n-Pb, 5n-Cu, SnAg, etc.
It may also be u-Ag, Cu-Zr, Cu-Ti, Cu-Zn, etc. Cu tends to cause a diffusion reaction with Sn, and does not substantially react with Nb and the non-reactive metal rod 4 in the process of the present invention. The non-reactive metal rod 4 and the tubular body 8 are made of Ta
, Zr, Hf, Mo, W, Cr, etc. and their alloys,
It is made of SUS, Ta-Zr, Ni-Mo-Cr, etc.

本発明工程条件で、これら非反応性金属は、Sn、Cu
およびNbと実質的に化合物を生成しなく、最終拡散工
程においても、金属または合金として残留する。
Under the process conditions of the present invention, these non-reactive metals include Sn, Cu
It does not substantially form a compound with Nb and remains as a metal or alloy even in the final diffusion step.

減面加工は常法により、圧延、押し出し、引き抜き、ス
ウエージングなどの方法で行い、所定のサイズにする。
The area reduction process is performed by conventional methods such as rolling, extrusion, drawing, swaging, etc., to obtain a predetermined size.

NbzSnのフィラメントを多芯化するためには、減面
された線状体を多数本束ねて、Cuなどの管状体に充填
して再び加工を繰り返す。必要に応して上記操作(スタ
、り)を繰り返し、最終の線状体に拡散加熱処理を施す
。第2図(a)の構造では、NbとSnが直接反応して
Nb5snを生しるので、最終的な形状は第3図(a)
に示すようになる。6はNbzSn層である。
In order to make NbzSn filaments multicore, a large number of linear bodies with reduced area are bundled, filled into a tubular body made of Cu or the like, and the processing is repeated again. The above-mentioned operations (staring, rolling) are repeated as necessary, and the final linear body is subjected to a diffusion heat treatment. In the structure shown in Figure 2(a), Nb and Sn react directly to produce Nb5sn, so the final shape is as shown in Figure 3(a).
It becomes as shown in . 6 is an NbzSn layer.

勿論、NbまたはSnの少なくとも一方が残留すること
はある。第3図(b)は第2図(b)に対応し、7はC
uまたはCu−5n層である。
Of course, at least one of Nb and Sn may remain. Figure 3(b) corresponds to Figure 2(b), 7 is C
u or Cu-5n layer.

本発明の実施上の改良例は、第2図(c)の如く、Nb
管状体lの外周に非反応性金属管状体8を配する。この
非反応性金属はSnおよびNbと化合物を形成しないも
ので、Ta、Zr、HE、Mo、W、Crなどと、これ
らの合金、SUS、TaZr、Ni−Mo−Cなどであ
る。これを加工、熱処理した後の断面は第3[1a(c
)のようになる。
An improved example of the implementation of the present invention is as shown in FIG. 2(c).
A non-reactive metal tubular body 8 is arranged around the outer periphery of the tubular body l. This non-reactive metal does not form a compound with Sn and Nb, and includes Ta, Zr, HE, Mo, W, Cr, alloys thereof, SUS, TaZr, Ni-Mo-C, and the like. The cross section after processing and heat treatment is the third [1a (c
)become that way.

また、第2図(a′)を加工、熱処理した後の断面は第
3図(a′)のようになる。
Further, the cross section of FIG. 2(a') after processing and heat treatment becomes as shown in FIG. 3(a').

本発明の化合物線状体の最終的断面を第4図(a)〜(
c)、(a′)に示す。即ち、金属マトリックス9の中
に第3図(a)〜(c)、(a′)に示した化合物フィ
ラメントが分散している。前述のように、Nb管状体は
潤滑性を有するCuなどで被覆されて加工されるので、
Cuをマトリックスとしてその中に線材を集合させるこ
とができる。また、A1、Sn、5n−Pb、Agなど
を押し出し、圧延、メツキ、溶射などで化合物フィラメ
ントに付着させて、同様に金属マトリックス中に集合さ
せることができる。
The final cross section of the compound linear body of the present invention is shown in FIGS.
c) and (a'). That is, the compound filaments shown in FIGS. 3(a) to 3(c) and (a') are dispersed in the metal matrix 9. As mentioned above, the Nb tubular body is coated with Cu, etc., which has lubricating properties, so
The wires can be gathered in Cu as a matrix. Alternatively, A1, Sn, 5n-Pb, Ag, etc. can be extruded and adhered to a compound filament by rolling, plating, thermal spraying, etc., and similarly aggregated in a metal matrix.

上述のように本発明では、Nb管状体の内部に、化合物
を生成しないで最終まで金属または合金として残留する
Taなとの非反応性金属体を充填するため、この非反応
性金属体が機械的な補強作用を行い、脆弱な化合物(N
bxSn)の機械的特性を改善する。また、本発明によ
れば、NbとSnとの変形能の大幅なアンバランスを改
善できるので、線材を均質に能率的に加工できる。従来
は、第5図に示すように、中心部lOにSnまたはCu
−3nが残留しているが、この中心部10は機械的補強
効果を殆ど示さない。第3図(b)に示すように、この
中心部に非反応性金属棒4を用いることによってのみ、
機械的補強効果は改善される。
As described above, in the present invention, the inside of the Nb tubular body is filled with a non-reactive metal body such as Ta, which does not form a compound and remains as a metal or alloy until the end, so that this non-reactive metal body is machined. It has a reinforcing effect on weak compounds (N
bxSn). Further, according to the present invention, it is possible to improve the large imbalance in deformability between Nb and Sn, so that the wire can be processed uniformly and efficiently. Conventionally, as shown in FIG.
-3n remains, but this central portion 10 exhibits almost no mechanical reinforcing effect. Only by using a non-reactive metal rod 4 in the center as shown in FIG. 3(b),
The mechanical reinforcement effect is improved.

本発明の第3図(c)は、脆弱なNb3Snを非反応性
金属で内外からサンドウィッチするため、機械的補強効
果は更に向上する。また、この構造では多芯化する際に
、内部のSnがマトリックスのCu材を汚染しないため
、Cuは高い熱・電気伝導性を保持でき、超電導線材と
してクエンチに対する安定性を良好に保持できる。
In FIG. 3(c) of the present invention, the brittle Nb3Sn is sandwiched with non-reactive metals from the inside and outside, so that the mechanical reinforcing effect is further improved. In addition, in this structure, when multi-core is formed, the Sn inside does not contaminate the Cu material of the matrix, so Cu can maintain high thermal and electrical conductivity, and can maintain good stability against quenching as a superconducting wire.

〔実施例〕〔Example〕

以下、実施例に基づいて本発明を説明する。 Hereinafter, the present invention will be explained based on Examples.

実施例1 内径16国φ、外径22mmφのNbパイプに、2.0
圓φのTapJを中心にして、厚さ4.5unnのSn
バイブ、厚さ2.5+11111のCuパイプを順次充
填した。
Example 1 A Nb pipe with an inner diameter of 16 mm and an outer diameter of 22 mm was
Sn with a thickness of 4.5 unn centered on TapJ of the circle φ
A vibrator and a Cu pipe with a thickness of 2.5+11111 were sequentially filled.

このNbバイブを、内径22.5+nmφ、外径26肝
φの純Cuバイブに入れ、真空封止してから静水圧押し
出しにより9mmφとした。これをIIφまで伸線して
から、内径22.5mmφのCuパイプに充填し、CI
P処理してから同様に加工して0.5amφよした。こ
の線材に620°CX4日の熱処理を施した。
This Nb vibrator was placed in a pure Cu vibe with an inner diameter of 22.5 nmφ and an outer diameter of 26 nmφ, and the vibrator was vacuum-sealed and then made into a diameter of 9 mm by hydrostatic extrusion. After drawing this to IIφ, it is filled into a Cu pipe with an inner diameter of 22.5 mmφ, and CI
After P treatment, it was processed in the same way to obtain a diameter of 0.5 am. This wire was heat treated at 620°C for 4 days.

実施例2 実施例1において、外径22圓φのNbパイプに0.2
5m厚さのTa箔を2回巻いてから、内径23am+φ
の純Cuパイプに入れ、以降同様の加工を施した。
Example 2 In Example 1, 0.2
After wrapping a 5m thick Ta foil twice, the inner diameter is 23am + φ.
It was placed in a pure Cu pipe, and the same processing was performed thereafter.

実施例3 実施例2において、中心のTa棒及びその周囲のSnパ
イプの代わりに、11+w+φのSn棒を厚さ2.5m
のCuパイプに挿入したものをNbバイブに入れ、以降
同様の加工を施した。
Example 3 In Example 2, instead of the central Ta rod and the Sn pipe around it, an 11+w+φ Sn rod with a thickness of 2.5 m was used.
The material inserted into the Cu pipe was placed in a Nb vibe, and the same processing was performed thereafter.

実施例4 実施例1において、Snバイブの厚さを3.0−1Cu
パイプの厚さを4,0睡とした。
Example 4 In Example 1, the thickness of the Sn vibe was changed to 3.0-1 Cu.
The thickness of the pipe was 4.0 mm.

実施例5 実施例2において、Snパイプの厚さを3.0閣、Cu
パイプの厚さを4.0鵬とした。
Example 5 In Example 2, the thickness of the Sn pipe was 3.0 mm, and the thickness of the Cu pipe was
The thickness of the pipe was set to 4.0 mm.

実施例6 実施例3において、Sn棒の外径を8. OIQrnφ
、Cuパイプの厚さを4.Otmnとした。
Example 6 In Example 3, the outer diameter of the Sn rod was set to 8. OIQrnφ
, the thickness of the Cu pipe is 4. It was set as Otmn.

比較例1 実施例1において、中心のTa棒及びその周囲のSnパ
イプの代わりに、11mmφのSn棒を厚さ2.50の
Cuパイプに挿入したものをNbバイブに入れ、以降同
様の加工を施した。
Comparative Example 1 In Example 1, instead of the central Ta rod and the Sn pipe around it, an 11 mmφ Sn rod inserted into a 2.50 mm thick Cu pipe was placed in a Nb vibe, and the same processing was performed thereafter. provided.

比較例2 実施例4において、中心のTa棒及びその周囲のSnバ
イブの代わりに、8mφのSn棒を厚さ4.0 mのC
uパイプに挿入したものをNbパイプに入れ、以降同様
の加工を施した。
Comparative Example 2 In Example 4, instead of the Ta rod at the center and the Sn vibe around it, an 8 mφ Sn rod was replaced with a 4.0 m thick C
The material inserted into the U-pipe was put into the Nb-pipe, and the same processing was performed thereafter.

以上の線材について、4.2K、13Tの磁場における
臨界電流密度J、を、歪み0%、および0.3%の場合
について測定した。その結果を表−1に示す。
For the above wire, the critical current density J in a magnetic field of 4.2 K and 13 T was measured in the cases of 0% strain and 0.3% strain. The results are shown in Table-1.

表−1 以上の結果より、本実施例は歪みの有無にかかわらず、
いずれも比較例よりも大きいJCを示した。実施例1〜
3はSnが実施例4〜6に比べて過剰であり、歪0での
Jcは大きいが、歪みを加えると両者のJ、の差は低減
した。Taを超電導体層の内外面に用いる実施例2.5
は歪みに対して安定している。
Table 1 From the above results, this example shows that regardless of the presence or absence of distortion,
All showed larger JC than the comparative example. Example 1~
In No. 3, Sn was excessive compared to Examples 4 to 6, and Jc was large at zero strain, but when strain was added, the difference in J between the two was reduced. Example 2.5 using Ta on the inner and outer surfaces of the superconductor layer
is stable against distortion.

なお、以上の説明では、典型的な例としてN b sS
n[電導線を用いたが、前述の如く他の化合物超電導線
はもとより、他の金属間化合物線材、例えば、強度、耐
摩耗性、耐食性に優れ、形状記憶効果のあるNbTi、
高性能磁性材料のSmCo5、Sm2Co、、、耐熱性
の優れたNbAl、TiAlなどにも適用できる。
In addition, in the above explanation, as a typical example, N b sS
n [Although the conductive wire was used, as mentioned above, not only other compound superconducting wires but also other intermetallic compound wires such as NbTi, which has excellent strength, wear resistance, and corrosion resistance, and has a shape memory effect,
It can also be applied to high-performance magnetic materials such as SmCo5, Sm2Co, NbAl and TiAl, which have excellent heat resistance.

〔発明の効果] 以上説明したように本発明によれば、成分AとBからな
る化合物線状体の製造方法において、Bからなる金属体
中に、成分Aを含有する金属体を充填し、かつ、Aおよ
びBと化合物を性成しないCからなる金属体を、成分A
を含有する金属体の内部、またはBからなる金属体の外
部に配置し、次いで減面加工を施し、しかる後、AとB
との反応温度以上に加熱するため、生産性が向上すると
ともに、得られた化合物線材の性能も向上するという優
れた効果がある。
[Effects of the Invention] As explained above, according to the present invention, in the method for manufacturing a compound linear body consisting of components A and B, a metal body containing component A is filled into a metal body consisting of B, and a metal body consisting of C that does not form a compound with A and B, as component A.
is placed inside a metal body containing A or outside a metal body consisting of B, then subjected to surface reduction processing, and then
Since the heating is performed to a temperature higher than the reaction temperature with the compound wire, productivity is improved and the performance of the obtained compound wire rod is also improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)は本発明の説明に用いたNb管状
体の断面図、第2図(a)〜(c)、(a′)は上記N
b管状体の中空部にSn棒などを充填した状態の断面図
、第3図(a)〜(c)、(a′)は上記中空部にSn
棒などを充填したNb管状体を減面加工、拡散熱処理し
た化合物線状体の断面図、第4図(a)〜(c)、(a
′)は上記拡散熱処理した化合物線状体を多芯化した化
合物線状体の断面図、第5図は従来の化合物線状体の断
面図である。 1・・・Nb管状体、 2・・・中空部、 3・・・S
n管状体、 3′・・・Sn棒、 4・・・非反応性金
属棒、5・・・Cu管状体、 6・・・Nb3Sn層、
 7・・・CuまたはCu−3n層、 計・・非反応性
金属管状体、  9・・・金属マトリンクス、 10・
・・中心部。 (a) (b) 第1図 (a) (b) (C)
Figures 1 (a) and (b) are cross-sectional views of the Nb tubular body used to explain the present invention, and Figures 2 (a) to (c) and (a') are
b A cross-sectional view of the hollow part of the tubular body filled with Sn rods, etc., and Figures 3 (a) to (c) and (a') are
Cross-sectional views of compound linear bodies obtained by surface reduction processing and diffusion heat treatment of Nb tubular bodies filled with rods, etc., Fig. 4 (a) to (c), (a
') is a sectional view of a multi-core compound linear body which has been subjected to the diffusion heat treatment, and FIG. 5 is a sectional view of a conventional compound linear body. DESCRIPTION OF SYMBOLS 1...Nb tubular body, 2...Hollow part, 3...S
n tubular body, 3'...Sn rod, 4...non-reactive metal rod, 5...Cu tubular body, 6...Nb3Sn layer,
7...Cu or Cu-3n layer, total...non-reactive metal tubular body, 9...metal matrix, 10.
··Central part. (a) (b) Figure 1 (a) (b) (C)

Claims (1)

【特許請求の範囲】 1)成分AとBからなる化合物線状体の製造方法におい
て、Bからなる金属体中に、成分Aを含有する金属体を
充填し、かつ、AおよびBと化合物を生成しないCから
なる金属体を、成分Aを含有する金属体の内部、または
Bからなる金属体の外部に配置し、次いで減面加工を施
し、しかる後、AとBとの反応温度以上に加熱すること
を特徴とする化合物線状体の製造方法。 2)成分Aを含有する金属は、金属Cと化合物を生成し
ない金属Dと成分Aとの合金、または、これらの混合物
或いは複合体であることを特徴とする請求項1記載の化
合物線状体の製造方法。 3)AがSn、BがNb、CがTa、DがCuであるこ
とを特徴とする請求項2記載の化合物線状体の製造方法
[Claims] 1) A method for producing a compound linear body consisting of components A and B, in which a metal body containing component A is filled in a metal body consisting of B, and A and B and the compound are filled. A metal body made of ungenerated C is placed inside a metal body containing component A or outside a metal body made of B, and then subjected to surface reduction processing, and then heated to a temperature higher than the reaction temperature of A and B. A method for producing a linear compound, the method comprising heating. 2) The compound linear body according to claim 1, wherein the metal containing component A is an alloy of metal D and component A that does not form a compound with metal C, or a mixture or composite thereof. manufacturing method. 3) The method for producing a linear compound according to claim 2, wherein A is Sn, B is Nb, C is Ta, and D is Cu.
JP2207738A 1990-08-06 1990-08-06 Method for producing compound linear body Expired - Lifetime JP3050576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2207738A JP3050576B2 (en) 1990-08-06 1990-08-06 Method for producing compound linear body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2207738A JP3050576B2 (en) 1990-08-06 1990-08-06 Method for producing compound linear body

Publications (2)

Publication Number Publication Date
JPH0492316A true JPH0492316A (en) 1992-03-25
JP3050576B2 JP3050576B2 (en) 2000-06-12

Family

ID=16544721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2207738A Expired - Lifetime JP3050576B2 (en) 1990-08-06 1990-08-06 Method for producing compound linear body

Country Status (1)

Country Link
JP (1) JP3050576B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093235A (en) * 2003-09-17 2005-04-07 Kobe Steel Ltd Nb3Sn SUPERCONDUCTING WIRE MATERIAL, AND MANUFACTURING METHOD OF THE SAME
KR100662900B1 (en) * 2006-01-25 2007-01-02 창원특수강주식회사 Multi layer metal rod and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6042222B2 (en) * 2013-02-12 2016-12-14 株式会社リッチェル L-shaped toilet for pets

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093235A (en) * 2003-09-17 2005-04-07 Kobe Steel Ltd Nb3Sn SUPERCONDUCTING WIRE MATERIAL, AND MANUFACTURING METHOD OF THE SAME
KR100662900B1 (en) * 2006-01-25 2007-01-02 창원특수강주식회사 Multi layer metal rod and method for manufacturing the same

Also Published As

Publication number Publication date
JP3050576B2 (en) 2000-06-12

Similar Documents

Publication Publication Date Title
US4078299A (en) Method of manufacturing flexible superconducting composite compound wires
US4161062A (en) Method for producing hollow superconducting cables
US3570118A (en) Method of producing copper clad superconductors
US3930903A (en) Stabilized superconductive wires
US3502789A (en) Superconductor cable
JPS61194155A (en) Production of nb3sn superconductive wire
US3778894A (en) PROCESS FOR MAKING A V{11 Ga SUPERCONDUCTIVE COMPOSITE STRUCTURE
JPS6215967B2 (en)
US10128428B2 (en) Ternary molybdenum chalcogenide superconducting wire and manufacturing thereof
JPH0492316A (en) Manufacture of compound linear material
EP3961658A1 (en) Blank for producing a long nb3 sn-based superconducting wire
US3763553A (en) Method of fabricating intermetallic type superconductors
US4860431A (en) Fabrication of multifilament intermetallic superconductor using strengthened tin
US4215465A (en) Method of making V3 Ga superconductors
JPH04277416A (en) Manufacture of nb3sn superconducting wire
JP3428771B2 (en) Nb3Sn compound superconducting wire
JP3257703B2 (en) Pulse or AC current lead and method for connecting A15 type compound superconducting stranded wire to said current lead
JPH01140521A (en) Manufacture of nb3al compound superconductive wire rod
JPS5933653B2 (en) Method for producing stabilized superconductor
JPH04277409A (en) Compound superconducting wire and manufacture thereof
JPH04132120A (en) Manufacture of nb3x multi-core superconducting wire
JPH05242742A (en) Superconducting wire and its manufacture
JPH04155714A (en) Manufacture of nb3 sn type superconducting wire material
JPS63102115A (en) Manufacture of superconductive alloy wire material
JPH0495316A (en) Manufacture of compound linear body

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080331

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 11