JP2005093235A - Nb3Sn SUPERCONDUCTING WIRE MATERIAL, AND MANUFACTURING METHOD OF THE SAME - Google Patents

Nb3Sn SUPERCONDUCTING WIRE MATERIAL, AND MANUFACTURING METHOD OF THE SAME Download PDF

Info

Publication number
JP2005093235A
JP2005093235A JP2003324929A JP2003324929A JP2005093235A JP 2005093235 A JP2005093235 A JP 2005093235A JP 2003324929 A JP2003324929 A JP 2003324929A JP 2003324929 A JP2003324929 A JP 2003324929A JP 2005093235 A JP2005093235 A JP 2005093235A
Authority
JP
Japan
Prior art keywords
tubular body
wire
powder
superconducting wire
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003324929A
Other languages
Japanese (ja)
Other versions
JP4727914B2 (en
Inventor
Takayoshi Miyazaki
隆好 宮崎
Hiroyuki Kato
弘之 加藤
Takashi Hase
隆司 長谷
Kyoji Tachikawa
恭治 太刀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University
Kobe Steel Ltd
Japan Science and Technology Agency
Original Assignee
Tokai University
Kobe Steel Ltd
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University, Kobe Steel Ltd, Japan Science and Technology Agency filed Critical Tokai University
Priority to JP2003324929A priority Critical patent/JP4727914B2/en
Publication of JP2005093235A publication Critical patent/JP2005093235A/en
Application granted granted Critical
Publication of JP4727914B2 publication Critical patent/JP4727914B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Nb<SB>3</SB>Sn superconducting wire material having sufficient strength, preventing cracks or wire breakages due to differences in deformation resistance of constituents, exhibiting superior superconducting characteristics as a material for superconducting magnet, and to provide a method useful for manufacturing the same. <P>SOLUTION: In the manufacturing method of the Nb<SB>3</SB>Sn superconducting wire material, forming a Nb<SB>3</SB>Sn layer on the inner surface of a tubular body by inserting (a) a rod-shaped member made of Sn or Sn alloy, or filling (b) alloy powder, intermetallic compound powder or mixed powder containing Sn as the main component, into the tubular body made of Nb or Nb alloy, and by applying a wire drawing work and heat treatment to a complex material formed by arranging one or a plurality of the tubular body in a stabilized copper mother material, a middle layer, composed of one or more than two kinds of metals selected from among a group of Ta, Ti, W, Mo, or alloy thereof is arranged at the outer periphery of the tubular body. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、チューブ法や粉末法によって製造されるNb3Sn超電導線材およびその製造方法に関するものであり、特に核磁気共鳴(NMR)分析装置、MRI診断装置、核融合炉、加速器等に用いられる超電導マグネットの構成素材として有用なNb3Sn超電導線材およびこうした超電導線材を製造するための方法に関するものである。 The present invention relates to a Nb 3 Sn superconducting wire manufactured by a tube method or a powder method and a method for manufacturing the same, and is particularly used for a nuclear magnetic resonance (NMR) analyzer, an MRI diagnostic apparatus, a fusion reactor, an accelerator, and the like. The present invention relates to a Nb 3 Sn superconducting wire useful as a constituent material of a superconducting magnet and a method for manufacturing such a superconducting wire.

超電導物質によって実現される永久電流現象を利用し、電力を消費せずに大電流を流し、超電導線材をコイル状にして磁場を発生させる超電導マグネットは、上記各種用途に適用されている。そして上記の様な超電導マグネットの構成素材としては、従来からNb3Sn超電導線材が代表的なものとして使用されている。 A superconducting magnet that uses a permanent current phenomenon realized by a superconducting material, allows a large current to flow without consuming electric power, and generates a magnetic field by forming a superconducting wire into a coil shape, has been applied to the various applications described above. As a constituent material of the superconducting magnet as described above, a Nb 3 Sn superconducting wire has been conventionally used as a representative material.

上記のようなNb3Sn超電導線材を製造する方法は、これまで様々提案されているが、最も代表的な方法としては、いわゆるブロンズ法と呼ばれる複合加工法である。このブロンズ法では、Cu−Sn基合金(ブロンズ)マトリックス中に複数のNb基合金芯材を埋設し、伸線加工することによって上記Nb基合金芯材をフィラメントとなし、このフィラメントを複数本束ねて線材群とし、この線材群を安定化のための銅(安定化銅)に埋設して伸線加工する。そして得られた線材を600〜800℃で熱処理(拡散熱処理)することにより、Nb基合金フィラメントとマトリックスとの界面にNb3Sn化合物相を生成する方法である。しかしながら、この方法では、ブロンズ中に固溶できるSn濃度には限界があり(Sn含有量で15.8質量%)、生成されるNb3Sn相の厚さを現状より更に厚くしてより高い磁場を実現することは困難な状況下にある。 Various methods for producing the Nb 3 Sn superconducting wire as described above have been proposed so far, and the most representative method is a so-called bronze method. In this bronze method, a plurality of Nb-based alloy core materials are embedded in a Cu—Sn-based alloy (bronze) matrix and wire-drawn to form the Nb-based alloy core material as a filament, and a plurality of filaments are bundled. A wire group is formed, and the wire group is embedded in copper for stabilization (stabilized copper) and drawn. And by the resulting wire is heat-treated (diffusion heat treatment) at 600 to 800 ° C., a method of generating a Nb 3 Sn compound phase at the interface between the Nb-based alloy filaments and the matrix. However, in this method, there is a limit to the Sn concentration that can be dissolved in the bronze (Sn content is 15.8% by mass), and the thickness of the Nb 3 Sn phase to be generated is higher than the current level and is higher. Realizing a magnetic field is a difficult situation.

Nb3Sn超電導線材を製造する方法としては、上記ブロンズ法の他に、チューブ法や粉末法も知られている。このうちチューブ法では、NbまたはNb基合金からなる管状体内にSnまたはSn基合金からなる棒状部材を挿入すると共に、この管状体の1本または複数本を安定化銅内に配置して複合部材を構成し、これを伸線加工および熱処理することによって、前記管状体(チューブ)の内面にNb3Sn相を形成するものである。 As a method for producing the Nb 3 Sn superconducting wire, a tube method and a powder method are known in addition to the bronze method. Of these, in the tube method, a rod-shaped member made of Sn or Sn-based alloy is inserted into a tubular body made of Nb or Nb-based alloy, and one or more of the tubular bodies are arranged in stabilized copper to form a composite member. And Nb 3 Sn phase is formed on the inner surface of the tubular body (tube) by wire drawing and heat treatment.

このチューブ法では、Sn量に制約がないのでSn量をできるだけ多くすることができ、生成されるNb3Sn相も比較的厚くできるので、超電導特性を更に向上できることが期待できる。また、この方法によって得られる線材では、非超電導部分をできるだけ少なくすることができ、超電導部分の面積率を高くすることができるので、線材面積当たりの電流密度(臨界電流密度)を非常に高いものとすることができるという有用性がある。 In this tube method, since there is no restriction on the Sn amount, the Sn amount can be increased as much as possible, and the generated Nb 3 Sn phase can also be made relatively thick, so that it can be expected that the superconducting characteristics can be further improved. Moreover, in the wire obtained by this method, the non-superconducting portion can be reduced as much as possible, and the area ratio of the superconducting portion can be increased, so that the current density per critical area (critical current density) is very high. There is usefulness that can be.

一方、粉末法は、高い臨界電流密度を実現できる方法として知られている。この粉末法における一つの手法として、NbとSnの中間化合物粉末を芯材(コア粉末)としてNbまたはNb基合金製の管状体内に充填すると共に、この管状体を安定化銅内に配置して複合部材とし、これを伸線加工および熱処理を行なうことにより、芯材と管状体の界面にNb3Sn相を生成する、いわゆるECN法が知られている(例えば、非特許文献1参照)。 On the other hand, the powder method is known as a method capable of realizing a high critical current density. As one method in this powder method, an intermediate compound powder of Nb and Sn is filled as a core material (core powder) into a tubular body made of Nb or an Nb-based alloy, and this tubular body is placed in stabilized copper. A so-called ECN method is known in which a composite member is formed and subjected to wire drawing and heat treatment to generate an Nb 3 Sn phase at the interface between the core and the tubular body (see, for example, Non-Patent Document 1).

また、新しい粉末法として、TaとSnを高温で溶融拡散反応させそれを粉砕して作製したTa−Sn合金粉末を芯材とし、これをNbまたはNb基合金製の管体内に充填し、更にこれを安定化銅内に配置して細径化した後、熱処理することによって、粉末中のSnと管状体中のNbとを反応させてNb3Sn相を形成する方法(溶融拡散法)も知られている。この方法では、Sn量の制限がなく、上記ブロンズ法およびECN法よりも厚いNb3Sn相が生成可能であるため、高磁場特性が優れた超電導線材が得られることが示されている(例えば、特許文献1参照)。 In addition, as a new powder method, Ta-Sn alloy powder produced by melt-diffusion reaction of Ta and Sn at a high temperature and pulverizing it is used as a core material, and this is filled into a tube made of Nb or Nb-based alloy. There is also a method (melt diffusion method) in which the Nb 3 Sn phase is formed by reacting Sn in the powder and Nb in the tubular body by arranging this in the stabilized copper and reducing the diameter, followed by heat treatment. Are known. In this method, it is shown that a superconducting wire excellent in high magnetic field characteristics can be obtained because there is no limitation on the amount of Sn and a Nb 3 Sn phase thicker than the bronze method and the ECN method can be generated (for example, , See Patent Document 1).

上記のようにチューブ法、ECN法および溶融拡散法では、図1に示すようにNbまたはNb基合金からなる管状体1内に、Snを含む金属若しくは合金、或は粉末を芯材2として挿入若しくは充填すると共に、前記管状体1を安定化銅3内に配置して伸線加工および熱処理することによって、前記芯材から管状体1へのSnの供給を確保し、この管状体1の内面にNb3Sn相を生成させる方法であり、これによって高磁場電流密度の超電導線材を実現するものである。尚、安定化銅1は、Nb3Sn超電導線材の安定化材として配置されるものであり、例えば無酸素銅からなるものである。また、管状体1の素材としては、純Nbの他、0.5〜10質量%程度のTa,Ti,Hf,Zr等を含むNb基合金が用いられている。
W.L.Neijmeijer他、J.Less-common Metals,vol.160(1990)p.161 特開平11−250749号公報 特許請求の範囲等
As described above, in the tube method, the ECN method, and the melt diffusion method, a metal or alloy containing Sn or powder is inserted as the core material 2 into the tubular body 1 made of Nb or an Nb-based alloy as shown in FIG. Alternatively, while filling, the tubular body 1 is placed in the stabilized copper 3 and subjected to wire drawing and heat treatment, thereby ensuring the supply of Sn from the core material to the tubular body 1, and the inner surface of the tubular body 1. to a method to produce Nb 3 Sn phase, thereby realizes a superconducting wire of a high magnetic field current density. The stabilizing copper 1 is arranged as a stabilizing material for the Nb 3 Sn superconducting wire, and is made of oxygen-free copper, for example. As the material of the tubular body 1, an Nb-based alloy containing about 0.5 to 10% by mass of Ta, Ti, Hf, Zr, etc. is used in addition to pure Nb.
WLNeijmeijer et al., J. Less-common Metals, vol. 160 (1990) p. 161 Japanese Patent Application Laid-Open No. 11-250749

上記チューブ法、ECN法および溶融拡散法では、従来からのブロンズ法に比べて高い臨界電流密度が達成されているのであるが、これらの方法を実施するための構成素材は、Cu(安定化銅)、NbまたはNb基合金(管状体)、SnまたはSn基合金(棒状部材)、更にはSnを主成分として含む粉末(コア粉末)等が使用されており、これらの素材は変形抵抗差が非常に大きなものとなる。従って、これらの素材から構成される複合部材では、均一加工が非常に困難であり、加工途中で管状体が破れたり、線材の断線が生じたりすることがある。   The tube method, ECN method, and melt diffusion method achieve a higher critical current density than conventional bronze methods. However, the constituent material for carrying out these methods is Cu (stabilized copper). ), Nb or Nb-based alloy (tubular body), Sn or Sn-based alloy (rod-like member), and powder (core powder) containing Sn as a main component are used, and these materials have a difference in deformation resistance. It will be very big. Therefore, in the composite member composed of these materials, uniform processing is very difficult, and the tubular body may be broken during processing or the wire may be broken.

断線に至らずに線材が得られたとしても、管状体の厚みが均一でなく非常に薄くなったり、管状体の一部に亀裂が生じたりすることもある。このような状態で、Nb3Sn相生成のための熱処理を施すと、芯材中のSnの拡散によって管状体の厚さよりも厚いNb3Sn相が生成されてしまい、そこからSnが安定化銅に直接拡散して安定化銅が汚染されてしまうことになる。その結果、線材の熱的、電磁気的な安定化性が損なわれてしまうという問題がある。 Even if the wire is obtained without breaking, the thickness of the tubular body may not be uniform and may be very thin, or a part of the tubular body may be cracked. In this state, Nb 3 when Sn Aioi subjected to heat treatment for forming a thick Nb 3 Sn phase than the thickness of the tubular body by diffusion of Sn in the core material will be produced, Sn stabilization therefrom It will diffuse directly into the copper and contaminate the stabilized copper. As a result, there is a problem that the thermal and electromagnetic stability of the wire is impaired.

また、均一加工ができた場合であっても、熱処理によって生成されるNb3Sn相を厚くし過ぎて、管状体の厚みを超えてしまうと、Snが安定化銅を汚染してしまうことがあった。 Even when uniform processing is possible, if the Nb 3 Sn phase generated by the heat treatment is too thick and exceeds the thickness of the tubular body, Sn may contaminate the stabilized copper. there were.

こうした事態を回避するために、従来では、管状体の厚みをできるだけ厚くして複合部材を構成するのが一般的に行なわれている。こうした構成を採用すれば、上記の様な安定化銅の汚染は回避できるのであるが、線材断面内での非超電導部分の割合が増加してしまい、線材の臨界電流密度を低下させてしまうことになる。また、管状体内部に配置する芯材として粉末を充填した場合には、この粉末充填部分には空隙ができることもあり、これが線材の強度を低下させることもある。   In order to avoid such a situation, conventionally, a composite member is generally formed by increasing the thickness of the tubular body as much as possible. If such a configuration is adopted, contamination of the stabilized copper as described above can be avoided, but the ratio of the non-superconducting portion in the wire cross section increases and the critical current density of the wire is reduced. become. In addition, when powder is filled as a core material arranged inside the tubular body, a void may be formed in the powder-filled portion, which may reduce the strength of the wire.

本発明はこうした従来技術における課題を解決する為になされたものであって、その目的は、構成素材の変形抵抗の違いに起因する割れや断線を防止し、超電導マグネットの素材としての良好な超電導特性を発揮し、強度的にも十分なNb3Sn超電導線材、およびそのような超電導線材を製造するための有用な方法を提供することにある。 The present invention has been made to solve such problems in the prior art, and its purpose is to prevent cracking and disconnection due to differences in the deformation resistance of the constituent materials, and to achieve good superconductivity as a superconducting magnet material. An object of the present invention is to provide a Nb 3 Sn superconducting wire exhibiting properties and sufficient strength, and a useful method for producing such a superconducting wire.

上記課題を解決することのできた本発明方法とは、(a)SnまたはSn基合金からなる棒状部材を挿入するか、または(b)Snを主成分として含む合金粉末、金属間化合物粉末または混合粉末を充填し、この管状体の1本または複数本を安定化銅母材中に配置した複合部材を、伸線加工および熱処理することによって、前記管状体の内面にNb3Sn相を形成するNb3Sn超電導線材の製造方法において、前記管状体の外周部に、Ta,Ti,W,MoおよびVよりなる群から選択される1種または2種以上の金属または合金からなる中間層を配置する点に要旨を有するものである。 The method of the present invention that has solved the above problems includes (a) inserting a rod-shaped member made of Sn or a Sn-based alloy, or (b) alloy powder containing Sn as a main component, intermetallic compound powder, or mixed A Nb 3 Sn phase is formed on the inner surface of the tubular body by drawing and heat-treating a composite member in which powder is filled and one or more of the tubular bodies are arranged in a stabilized copper base material. In the method for producing a Nb 3 Sn superconducting wire, an intermediate layer made of one or more metals or alloys selected from the group consisting of Ta, Ti, W, Mo and V is disposed on the outer periphery of the tubular body It has a gist in the point to do.

こうした方法を実施するに際して、伸線加工前の中間層の厚みをt、管状体の厚みをTとしたとき、これらが下記(1)式を満足するものであることが好ましい。   In carrying out such a method, it is preferable that when the thickness of the intermediate layer before wire drawing is t and the thickness of the tubular body is T, these satisfy the following formula (1).

0.05≦t/T≦0.5 ‥(1)
また前記安定化銅母材と中間層の間に、両者の密着性を高める金属からなるバッファー層を介在させることも有用であり、こうした構成を採用することによって、安定化銅母材による安定化効果をより向上させると共に、中間層を配置させることによる効果をより確実なものとすることができる。
0.05 ≦ t / T ≦ 0.5 (1)
It is also useful to interpose a buffer layer made of a metal that enhances the adhesion between the stabilized copper base material and the intermediate layer. By adopting such a configuration, stabilization by the stabilized copper base material is possible. While improving an effect more, the effect by arrange | positioning an intermediate | middle layer can be made more reliable.

上記方法によって、製造された超電導線材は、本発明の目的に適う特性を発揮するものとなる。   The superconducting wire produced by the above method exhibits characteristics suitable for the purpose of the present invention.

本発明は以上の様に構成されており、構成素材の変形抵抗の違いに起因する割れや断線を防止し、超電導マグネットの素材としての良好な超電導特性を発揮し、強度的にも十分なNb3Sn超電導線材が実現できた。 The present invention is configured as described above, prevents cracking and disconnection due to the difference in deformation resistance of constituent materials, exhibits good superconducting characteristics as a superconducting magnet material, and has sufficient Nb strength. 3 Sn superconducting wire was realized.

本発明者らは、上記目的を達成する為に様々な角度から検討した。その結果、管状体の外周部に、Ta,Ti,W,MoおよびVよりなる群から選択される1種または2種以上の金属または合金からなる中間層を配置する構成とすれば、上記目的が見事に達成されることを見出し、本発明を完成した。本発明の構成を図面に基づいて、更に詳細に説明する。   The present inventors have studied from various angles in order to achieve the above object. As a result, if the intermediate layer made of one or more metals or alloys selected from the group consisting of Ta, Ti, W, Mo and V is arranged on the outer peripheral portion of the tubular body, the above object is achieved. Was successfully achieved and the present invention was completed. The configuration of the present invention will be described in more detail based on the drawings.

図2は本発明を実施するために構成される複合部材の一構成例を示す断面図であり、その基本的な構成は前記図1と類似し、対応する部分には同一参照符号を付してある。図2に示した本発明の構成では、管状部1の外周部に、中間層4が形成されることになる。この中間層4は、Ta,Ti,W,MoおよびVよりなる群から選択される1種または2種以上の金属または合金からなるものである。   FIG. 2 is a cross-sectional view showing a structural example of a composite member configured to carry out the present invention. The basic structure is similar to that of FIG. 1, and corresponding parts are denoted by the same reference numerals. It is. In the configuration of the present invention shown in FIG. 2, the intermediate layer 4 is formed on the outer peripheral portion of the tubular portion 1. The intermediate layer 4 is made of one or more metals or alloys selected from the group consisting of Ta, Ti, W, Mo and V.

こうした金属からなる中間層4は、NbまたはNb基合金からなる管状体1よりも機械的強度が優れたものになって、伸線途中での加工性を向上させ、均一な加工を容易にできることになる。また、仮に伸線加工時に、管状体1が破損することがあっても、その外周に中間層4が存在することによって、それ以上の破壊の進行を防止することができる。しかも、この中間層4を配置することによって、反応後の線材の強度も高めることができることになる。   The intermediate layer 4 made of a metal has a mechanical strength superior to that of the tubular body 1 made of Nb or an Nb-based alloy, improves workability in the middle of wire drawing, and facilitates uniform processing. become. Further, even if the tubular body 1 is broken during the wire drawing process, the intermediate layer 4 is present on the outer periphery of the tubular body 1 so that further progress of destruction can be prevented. Moreover, by arranging this intermediate layer 4, the strength of the wire after the reaction can be increased.

中間層4として用いる成分のうち、特に好ましいのはTaであり、このTaはそれ自体の抵抗値も低く、また安定化材としての機能も発揮することになる。またTaはSn成分と反応することがないので、仮に管状体1の全てが反応したとしても、Snによる安定化銅の汚染を防止することができる。   Of the components used as the intermediate layer 4, Ta is particularly preferable, and this Ta has a low resistance value itself and also exhibits a function as a stabilizing material. Moreover, since Ta does not react with the Sn component, even if all of the tubular body 1 reacts, contamination of the stabilized copper by Sn can be prevented.

また、中間層4は上記のような作用を発揮するので、中間層4と安定化銅(安定化銅母材)3を合計した厚さを、従来の安定化銅3だけの厚さよりも薄くすることができるので、それだけ非超電導部分の割合を少なくすることができる。尚、中間層4は最終的に管状となればよく、例えば薄肉のシート状部材を重ね巻きしたり(後記実施例参照)、またそれらを溶接することによって管状にしたものを採用できる。   Further, since the intermediate layer 4 exhibits the above-described action, the total thickness of the intermediate layer 4 and the stabilized copper (stabilized copper base material) 3 is thinner than the thickness of the conventional stabilized copper 3 alone. Therefore, the proportion of the non-superconducting portion can be reduced accordingly. The intermediate layer 4 may be finally formed into a tubular shape, and for example, a thin sheet-like member may be rolled up (see the examples described later), or may be formed into a tubular shape by welding them.

図2に示した複合部材に対して伸線加工および拡散熱処理を行なうことによって希望する特性を発揮する超電導線材が得られるのであるが、複合部材における管状体1の数は1本に限らず、例えば、7本若しくはそれ以上で構成して多芯化することもできる。こうした多芯化に際しては、(1)図2に示した複合部材を伸線加工してから束ねて安定化銅3(例えば銅チューブ)内に配置し、或は(2)中間層までを形成した(即ち、図2に示した安定化銅3を成形せず)管状体を伸線加工してから束ねて安定化銅内に配置し、その後更に伸線加工および拡散熱処理を行なえばよい。   A superconducting wire exhibiting desired characteristics can be obtained by performing wire drawing and diffusion heat treatment on the composite member shown in FIG. 2, but the number of tubular bodies 1 in the composite member is not limited to one, For example, it can be configured with 7 or more cores. In such multi-core, (1) the composite member shown in FIG. 2 is drawn and then bundled and placed in the stabilized copper 3 (for example, copper tube), or (2) the intermediate layer is formed. 2 (ie, without forming the stabilized copper 3 shown in FIG. 2), the tubular body may be drawn, bundled and placed in the stabilized copper, and then further drawn and diffusion heat treated.

本発明の線材(複合部材)においては、中間層4の厚みをt、管状体1の厚みをTとしたとき(いずれも伸線加工前)、これらが上記(1)式を満足するものであることが好ましい。t/Tが0.05未満になると、中間層4の線材全体に対する強度への貢献度が少なくなって、目的とする効果が有効に発揮されない。また、t/Tが0.5を超えると、非超電導部分が多くなり過ぎて、超電導線材における臨界電流密度が低下してしまうことになる。   In the wire (composite member) of the present invention, when the thickness of the intermediate layer 4 is t and the thickness of the tubular body 1 is T (both before wire drawing), these satisfy the above formula (1). Preferably there is. When t / T is less than 0.05, the contribution of the intermediate layer 4 to the strength of the entire wire is reduced, and the intended effect is not exhibited effectively. On the other hand, when t / T exceeds 0.5, the number of non-superconducting portions increases so that the critical current density in the superconducting wire is lowered.

ところで、前記中間層4を構成する金属のうち、Ta,WおよびMoは、NbまたはNb基合金からなる管状体1よりも安定化銅3との密着性に劣り、銅による安定化効果を減少させることがある。こうした不都合を回避する手段として、例えば図3(基本的な構成は前記図2に同じ)に示すように、安定化銅3と中間層4の間に、両者の密着性を高める金属からなるバッファー層5を介在させることも有用である。このバッファー層5は、加工工程或はNb3Sn層を生成する熱処理において安定化銅および中間層4と反応して両者の密着性を向上させる。その結果として、安定化銅3による安定化効果をより向上させると共に、中間層4を配置させることによる効果をより確実なものとすることができる。 By the way, among the metals constituting the intermediate layer 4, Ta, W and Mo are inferior in adhesion to the stabilized copper 3 than the tubular body 1 made of Nb or Nb-based alloy, and decrease the stabilizing effect by copper. There are things to do. As a means for avoiding such inconvenience, for example, as shown in FIG. 3 (the basic configuration is the same as in FIG. 2), a buffer made of a metal that enhances the adhesion between the stabilized copper 3 and the intermediate layer 4. It is also useful to intervene layer 5. The buffer layer 5 reacts with the stabilized copper and the intermediate layer 4 in the processing step or the heat treatment for forming the Nb 3 Sn layer to improve the adhesion between them. As a result, the stabilizing effect by the stabilizing copper 3 can be further improved, and the effect by arranging the intermediate layer 4 can be made more reliable.

こうしたバッファー層5を構成する金属としては、RhやNi等が挙げられる。またバッファー層5よる上記効果を発揮させるためには、伸線加工前の厚さが1μm以上であることが好ましいが、厚過ぎると被覆に長時間を要するので、10μm程度までとするのが良い。   Examples of the metal constituting the buffer layer 5 include Rh and Ni. In order to exert the above-described effect by the buffer layer 5, it is preferable that the thickness before wire drawing is 1 μm or more. However, if it is too thick, it takes a long time for coating, so it is preferable that the thickness be about 10 μm. .

こうしたバッファー層5を安定化銅3と中間層4の間に介在させる構成としては、例えば図3に示したような単芯線の場合には、安定化銅3の内面または中間層4の外周面に、電気めっきや蒸着法によってバッファー層5を形成すればよいが、多芯線の場合には、安定化銅3の内面にバッファー層5を形成すれば良い。   As a configuration in which such a buffer layer 5 is interposed between the stabilizing copper 3 and the intermediate layer 4, for example, in the case of a single core wire as shown in FIG. 3, the inner surface of the stabilizing copper 3 or the outer peripheral surface of the intermediate layer 4. In addition, the buffer layer 5 may be formed by electroplating or vapor deposition, but in the case of a multi-core wire, the buffer layer 5 may be formed on the inner surface of the stabilized copper 3.

尚、前記図2に示した構成において、芯材としては、SnまたはSn基合金からなる棒状部材、或はSnを主成分として含む合金粉末、金属間化合物粉末または混合粉末のいずれも採用できるが、このうち棒状部材として用いるSn基合金としては、Sn含有量が80質量%以上のSn基合金であることが好ましい。このSn含有量が80質量%未満となると、Sn量が少ないために生成されるNb3Snの結晶性が悪くなって臨界電流密度(Jc)が低下する。また、こうしたSn合金において、含まれることのある他の成分としては、Ti,Ta,Hf,Zr等が挙げられる。 In the configuration shown in FIG. 2, any of a rod-shaped member made of Sn or a Sn-based alloy, an alloy powder containing Sn as a main component, an intermetallic compound powder, or a mixed powder can be used as the core material. Of these, the Sn-based alloy used as the rod-shaped member is preferably a Sn-based alloy having a Sn content of 80% by mass or more. When the Sn content is less than 80% by mass, the crystallinity of Nb 3 Sn produced due to the small amount of Sn is deteriorated and the critical current density (Jc) is lowered. Moreover, Ti, Ta, Hf, Zr etc. are mentioned as another component which may be contained in such Sn alloy.

一方、芯材として用いる粉末(コア粉末)としては、従来から用いられているNb−Sn金属間化合物粉末(ECN法)や、Ta−Sn合金粉末(溶融拡散法)を用いることができるが、Ta,NbおよびTiのうちの少なくとも1種の金属とSnとを成分として含むものであれば、その形態が合金粉末、金属間化合粉末または混合粉末のいずれでも用いることができる。この粉末中に含まれる成分のうち主成分となるSnは、周囲に配置されるNbやNb基合金(管状体1)と反応してNb3Sn相を形成することになるが、Ta,NbおよびTi等の成分は、Nb3Sn相の形成を促進し、或はそれ自体がSnと反応して、超電導体となるという作用を発揮する。 On the other hand, as the powder (core powder) used as the core material, conventionally used Nb—Sn intermetallic compound powder (ECN method) and Ta—Sn alloy powder (melt diffusion method) can be used. Any form of alloy powder, intermetallic compound powder, or mixed powder can be used as long as it contains at least one metal selected from Ta, Nb, and Ti and Sn as components. Of the components contained in this powder, Sn, which is the main component, reacts with Nb or an Nb-based alloy (tubular body 1) arranged around it to form an Nb 3 Sn phase, but Ta, Nb Components such as Ti and Ti promote the formation of the Nb 3 Sn phase, or react themselves with Sn to produce a superconductor.

こうしたコア粉末中のSn成分の含有量は、10〜98質量%程度であることが好ましく、Sn含有量が10質量%未満なるとNb3Sn相が薄くなり、超電導特性が劣化し、98質量%を超えると相対的に添加元素が少なくあり、Nb3Snの特性が劣化する。またこのコア粉末には、必要によって0.5〜20質量%程度のCu成分を含有させることも有効である。このCu成分は、拡散熱処理温度を低減する作用を発揮する。即ち、従来の粉末法における最適反応温度(拡散熱処理温度)は、900〜925℃であるが、900℃以上で熱処理するとNb3Sn相の結晶粒が大きくなり過ぎて、超電導特性が劣化することがあるが、コア粉末中にCu成分を含有させることによって、最適熱処理温度を下げることができ、その結果、結晶粒が微細化され、Nb3Sn超電導線材における高特性が実現できる。 The content of the Sn component in the core powder is preferably about 10 to 98% by mass. When the Sn content is less than 10% by mass, the Nb 3 Sn phase becomes thin, the superconducting properties deteriorate, and 98% by mass. If it exceeds N, the amount of additive elements is relatively small, and the characteristics of Nb 3 Sn deteriorate. Moreover, it is also effective to contain about 0.5-20 mass% Cu component in this core powder as needed. This Cu component exhibits the effect of reducing the diffusion heat treatment temperature. That is, the optimum reaction temperature (diffusion heat treatment temperature) in the conventional powder method is 900 to 925 ° C., but if the heat treatment is performed at 900 ° C. or higher, the crystal grains of the Nb 3 Sn phase become too large and the superconducting properties deteriorate. However, by including the Cu component in the core powder, the optimum heat treatment temperature can be lowered. As a result, the crystal grains are refined, and high characteristics in the Nb 3 Sn superconducting wire can be realized.

以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に徴して設計変更することはいずれも本発明の技術的範囲に含まれるものである。   Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples are not intended to limit the present invention, and any design changes in accordance with the gist of the preceding and following descriptions are technical aspects of the present invention. It is included in the range.

Ta粉末:Sn粉末=6:5(モル比)で混合した混合粉末中に、2質量%のCu粉末を添加したものを、950℃で10時間熱処理して粉砕し、更に同様の熱処理および粉砕した粉末をコア粉末として調製した。   Ta powder: Sn powder = 6: 5 (molar ratio) mixed powder added with 2% by mass Cu powder was pulverized by heat treatment at 950 ° C. for 10 hours, and the same heat treatment and pulverization The prepared powder was prepared as a core powder.

下記表1に示す各外径を持ち、内径:30mm、長さ:100mmのNb−7.5質量%Ta合金からなる各種円筒(管状体)中に、上記で調製したコア粉末を充填し、その外周部に厚さ:0.2mmのTaシートを下記表1に示す回数巻いて、夫々内径:58mm、外径:65mmの銅ビレット中に挿入した。このビレットを静水圧押出し装置で押出し伸線した後、引抜き加工によって、対辺長:12mmの六角材に加工した。この六角材の19本を、内径:61mm、外径:68mmの銅ビレット(安定化銅)中に配置し、再び静水圧押出し、減面加工によって線径:1mmまで伸線し、引き続き、750℃にて100時間熱処理(拡散熱処理)して超電導線材とした。尚、下記表1には、管状体の厚さTおよびTaシート(中間層)の厚さt、並びにこれらの比(t/T)についても示した。   Each of the cylinders (tubular bodies) having an outer diameter shown in Table 1 below, made of an Nb-7.5 mass% Ta alloy having an inner diameter of 30 mm and a length of 100 mm, is filled with the core powder prepared above. A Ta sheet having a thickness of 0.2 mm was wound around the outer periphery thereof as shown in Table 1 below, and inserted into a copper billet having an inner diameter of 58 mm and an outer diameter of 65 mm. This billet was extruded and drawn with a hydrostatic pressure extrusion apparatus, and then processed into a hexagonal material having an opposite side length of 12 mm by drawing. 19 pieces of this hexagonal material were placed in a copper billet (stabilized copper) having an inner diameter of 61 mm and an outer diameter of 68 mm, extruded again with hydrostatic pressure, drawn to a diameter of 1 mm by surface reduction, and subsequently 750 Heat treatment (diffusion heat treatment) was performed at 100 ° C. for 100 hours to obtain a superconducting wire. Table 1 below also shows the thickness T of the tubular body, the thickness t of the Ta sheet (intermediate layer), and the ratio (t / T) thereof.

Figure 2005093235
Figure 2005093235

得られた各超電導線材について、温度:4.2K、外部磁場17Tにおける臨界電流を線材の横断面で除して得られる臨界電流密度(Jc)、4.2Kにおける座残留抵抗比(RRR)および0.2%耐力(YS)の測定を行なった。このとき、中間層を設けない以外は、上記と同様にして作製した超電導線材(上記表1のNo.8)の上記各特性についても調査した。測定された各特性と前記比(t/T)の関係を、図4〜6に夫々示す。   For each superconducting wire obtained, the critical current density (Jc) obtained by dividing the critical current in the external magnetic field 17T by the cross section of the wire at a temperature of 4.2K, the seating residual resistance ratio (RRR) at 4.2K, and The 0.2% proof stress (YS) was measured. At this time, each characteristic of the superconducting wire (No. 8 in Table 1) produced in the same manner as described above was also investigated except that no intermediate layer was provided. The relationship between the measured characteristics and the ratio (t / T) is shown in FIGS.

これらの結果から、次のように考察できる。まずNo.1のものでは、t/Tの値が大きくなって非超電導部の割合が増大しているので、臨界電流密度(Jc)が300A/mm2程度に減少している(図4)。また、No.7,8においては、臨界電流密度(Jc)が500A/mm2に近いものもあるが、100A/mm2や200A/mm2と低いものもある等、特性上のばらつきが大きいことが分かる(図4)。 From these results, it can be considered as follows. First, no. In the case of 1, the value of t / T is increased and the ratio of the non-superconducting portion is increased, so that the critical current density (Jc) is reduced to about 300 A / mm 2 (FIG. 4). No. In 7,8, but critical current density (Jc) is also close to 500A / mm 2, 100A / mm 2 and 200A / mm 2 and less Some like, it can be seen the variation of the characteristics is large ( FIG. 4).

No.1,8のものでは、臨界電流密度(Jc)が低いものが相対的に座残留抵抗値RRRも低くなっており(図4、5)、安定化銅部のEDX成分分析結果から、Snによる汚染が認められた。また、t/Tが0.014であるNo.7のものでも、その頻度はNo.1,7のものに比べて少なく改善が認められたが、やはりSnによる安定化銅の汚染が認められた。   No. 1 and 8, the critical current density (Jc) is relatively low, and the residual resistance value RRR is relatively low (FIGS. 4 and 5). Contamination was observed. In addition, No. with t / T being 0.014. No. 7 also has a frequency of No. 7. Although little improvement was observed compared to those of 1,7, contamination of stabilized copper by Sn was also observed.

これらに対し、No.2〜7のものでは、座残留抵抗比RRRは、いずれも300以上となっており(図5)、Snによる安定化銅の汚染も認められず、正常に加工されていることが確認できた。また、0.2%耐力(YS)は、いずれも200MPaを超えており、線材自体の機械的特性が著しく改善されていることが分かる(図6)。   In contrast, no. In the case of 2-7, the seat residual resistance ratio RRR was all 300 or more (FIG. 5), and the contamination of the stabilized copper by Sn was not recognized, and it was confirmed that it was processed normally. . Moreover, 0.2% yield strength (YS) is over 200 MPa in all cases, and it can be seen that the mechanical properties of the wire itself are remarkably improved (FIG. 6).

これらの結果から明らかなように、管状体の外周部に中間層を設けると共に、中間層の厚みtと安定化銅の厚みTの比(t/T)の値を適切に制御することによって(特にt/Tの値を0.1以上にすることによって)、より確実にRRRやYSを改善できることが分かる。また、臨界電流密度(Jc)に関しては、t/Tの増加と共に減少する傾向があるが(図4)、t/Tが0.5であっても減少率は30%程度であり、0.3になると20%程度に抑えられていることが分かる。   As is apparent from these results, an intermediate layer is provided on the outer peripheral portion of the tubular body, and the value of the ratio (t / T) between the thickness t of the intermediate layer and the thickness T of the stabilized copper (t / T) is appropriately controlled ( It can be seen that RRR and YS can be improved more reliably by setting the value of t / T to 0.1 or more. The critical current density (Jc) tends to decrease as t / T increases (FIG. 4), but the decrease rate is about 30% even when t / T is 0.5. 3 shows that it is suppressed to about 20%.

下記表2に示す各外径を持ち、内径:30mm、長さ:100mmのNbからなる各種円筒(管状体)中に、外径:29.5mm、内径:26mm、長さ:100mmの銅パイプを挿入し、更にその内側に直径:25.5mm、長さ:100mmのSn−0.2質量%Ti棒を挿入し、前記管状体の外周部に厚さ:0.2mmのTaシートを下記表2に示す回数巻いて、内面に厚さ5μmのRhを電気めっき法により被覆した内径:58mm、外径:65mmの銅ビレット中に挿入した。このビレットを静水圧押出し装置で押出し伸線した後、引抜き加工によって、対辺長:12mmの六角材に加工した。この六角材の19本を、内径:61mm、外径:68mmの銅ビレット(安定化銅)中に配置し、再び押出し、伸線により線径:1mmまで加工した。この線材に、300℃×48時間と700℃×100時間の熱処理を施して超電導線材とした。尚、下記表2には、管状体の厚さTおよびTaシート(中間層)の厚さt、並びにこれらの比(t/T)についても示した。   Copper pipes having outer diameters shown in Table 2 below, outer diameters: 29.5 mm, inner diameters: 26 mm, and lengths: 100 mm in various cylinders (tubular bodies) made of Nb having an inner diameter of 30 mm and a length of 100 mm. And a Sn-0.2 mass% Ti rod having a diameter of 25.5 mm and a length of 100 mm is inserted inside, and a Ta sheet having a thickness of 0.2 mm is provided on the outer periphery of the tubular body as follows. The coil was wound a number of times as shown in Table 2, and inserted into a copper billet having an inner diameter of 58 mm and an outer diameter of 65 mm whose inner surface was coated with Rh having a thickness of 5 μm by electroplating. This billet was extruded and drawn with a hydrostatic pressure extrusion apparatus, and then processed into a hexagonal material having an opposite side length of 12 mm by drawing. 19 pieces of this hexagonal material were placed in a copper billet (stabilized copper) having an inner diameter of 61 mm and an outer diameter of 68 mm, extruded again, and processed to a wire diameter of 1 mm by wire drawing. This wire was heat-treated at 300 ° C. for 48 hours and 700 ° C. for 100 hours to obtain a superconducting wire. Table 2 below also shows the thickness T of the tubular body, the thickness t of the Ta sheet (intermediate layer), and the ratio (t / T) thereof.

Figure 2005093235
Figure 2005093235

得られた各超電導線材について、実施例1と同様にして臨界電流密度(Jc)、座残留抵抗比(RRR)および0.2%耐力(YS)の測定を行なった。このとき、中間層を設けない以外は、上記と同様にして作製した超電導線材(上記表2のNo.16)の上記各特性についても調査した。測定された各特性と前記比(t/T)の関係を、図7〜9に夫々示す。   About each obtained superconducting wire, it carried out similarly to Example 1, and measured critical current density (Jc), seat residual resistance ratio (RRR), and 0.2% yield strength (YS). At this time, each characteristic of the superconducting wire (No. 16 in Table 2) produced in the same manner as described above was also investigated except that no intermediate layer was provided. The relationship between the measured characteristics and the ratio (t / T) is shown in FIGS.

これらの結果から明らかなように、本発明をチューブ法に適用した場合においても、実施例1の場合と同様の効果が発揮されていることが分かる。   As is apparent from these results, it can be seen that the same effect as in Example 1 is exhibited even when the present invention is applied to the tube method.

従来のチューブ法および粉末法の構成を示す概略説明である。It is schematic description which shows the structure of the conventional tube method and a powder method. 本発明を実施するための一構成例を示す概略説明図である。It is a schematic explanatory drawing which shows one structural example for implementing this invention. 本発明を実施するための他の構成例を示す概略説明図である。It is a schematic explanatory drawing which shows the other structural example for implementing this invention. 実施例1で得られた超電導線材におけるt/Tと臨界電流密度(Jc)との関係を示すグラフである。4 is a graph showing the relationship between t / T and critical current density (Jc) in the superconducting wire obtained in Example 1. 実施例1で得られた超電導線材におけるt/Tと座残留抵抗比(RRR)との関係を示すグラフである。4 is a graph showing a relationship between t / T and a seat residual resistance ratio (RRR) in the superconducting wire obtained in Example 1. 実施例1で得られた超電導線材におけるt/Tと臨界電流密度0.2%耐力(YS)との関係を示すグラフである。It is a graph which shows the relationship between t / T and the critical current density 0.2% yield strength (YS) in the superconducting wire obtained in Example 1. 実施例2で得られた超電導線材におけるt/Tと臨界電流密度(Jc)との関係を示すグラフである。It is a graph which shows the relationship between t / T and critical current density (Jc) in the superconducting wire obtained in Example 2. 実施例2で得られた超電導線材におけるt/Tと座残留抵抗比(RRR)との関係を示すグラフである。It is a graph which shows the relationship between t / T and seat residual resistance ratio (RRR) in the superconducting wire obtained in Example 2. 実施例2で得られた超電導線材におけるt/Tと臨界電流密度0.2%耐力(YS)との関係を示すグラフである。It is a graph which shows the relationship between t / T and critical current density 0.2% yield strength (YS) in the superconducting wire obtained in Example 2.

符号の説明Explanation of symbols

1 管状体
2 芯材
3 安定化銅
4 中間層
5 バッファー層
1 Tubular body 2 Core material 3 Stabilized copper 4 Intermediate layer 5 Buffer layer

Claims (4)

NbまたはNb基合金からなる管状体中に、(a)SnまたはSn基合金からなる棒状部材を挿入するか、または(b)Snを主成分として含む合金粉末、金属間化合物粉末または混合粉末を充填し、この管状体の1本または複数本を安定化銅母材中に配置した複合部材を、伸線加工および熱処理することによって、前記管状体の内面にNb3Sn相を形成するNb3Sn超電導線材の製造方法において、前記管状体の外周部に、Ta,Ti,W,MoおよびVよりなる群から選択される1種または2種以上の金属または合金からなる中間層を配置することを特徴とするNb3Sn超電導線材の製造方法。 (A) A rod-shaped member made of Sn or an Sn-based alloy is inserted into a tubular body made of Nb or an Nb-based alloy, or (b) an alloy powder, intermetallic compound powder or mixed powder containing Sn as a main component. Nb 3 which forms an Nb 3 Sn phase on the inner surface of the tubular body by filling and heat-treating a composite member in which one or more of the tubular bodies are arranged in a stabilized copper base material In the method for producing a Sn superconducting wire, an intermediate layer made of one or more metals or alloys selected from the group consisting of Ta, Ti, W, Mo and V is disposed on the outer periphery of the tubular body. Nb 3 Sn method of manufacturing a superconducting wire according to claim. 伸線加工前における中間層の厚みをt、管状体の厚みをTとしたとき、これらが下記(1)式を満足するものである請求項1に記載の製造方法。
0.05≦t/T≦0.5 ‥(1)
The production method according to claim 1, wherein when the thickness of the intermediate layer before wire drawing is t and the thickness of the tubular body is T, these satisfy the following formula (1).
0.05 ≦ t / T ≦ 0.5 (1)
前記安定化銅母材と中間層の間に、両者の密着性を高める金属からなるバッファー層を介在させる請求項1または2に記載の製造方法。   The manufacturing method of Claim 1 or 2 which interposes the buffer layer which consists of a metal which improves both adhesiveness between the said stabilization copper base material and an intermediate | middle layer. 請求項1〜3のいずれかに記載の方法によって製造されたものであるNb3Sn超電導線材。 Nb 3 Sn superconducting wire are those prepared by the method according to any of claims 1 to 3.
JP2003324929A 2003-09-17 2003-09-17 Nb3Sn superconducting wire and method for manufacturing the same Expired - Fee Related JP4727914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003324929A JP4727914B2 (en) 2003-09-17 2003-09-17 Nb3Sn superconducting wire and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003324929A JP4727914B2 (en) 2003-09-17 2003-09-17 Nb3Sn superconducting wire and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2005093235A true JP2005093235A (en) 2005-04-07
JP4727914B2 JP4727914B2 (en) 2011-07-20

Family

ID=34455536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003324929A Expired - Fee Related JP4727914B2 (en) 2003-09-17 2003-09-17 Nb3Sn superconducting wire and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4727914B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006010364A1 (en) * 2004-07-23 2006-02-02 European Advanced Superconductors Gmbh & Co. Kg Superconducting conductor element with reinforcement
KR100596998B1 (en) 2004-09-16 2006-07-06 케이. 에이. 티. (주) Sn based alloy for the precursor of Nb3Sn superconducting wire, and the manufacturing method of the same
EP1763091A2 (en) * 2005-09-13 2007-03-14 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method of manufacturing for Nb3Sn superconducting wire rod by means of powder method and precursor therefor
EP4039390A4 (en) * 2019-10-03 2023-11-15 K. A. T. Co., Ltd Sn-ti alloy powder for superconducting wire rod, method for preparing same, and method for manufacturing superconducting wire rod using same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6188408A (en) * 1984-10-08 1986-05-06 昭和電線電纜株式会社 Manufacture of nb3sn superconducting wire
JPS63285810A (en) * 1987-05-18 1988-11-22 Toshiba Corp Manufacture of nb3sn type composite superconductor
JPH0492316A (en) * 1990-08-06 1992-03-25 Furukawa Electric Co Ltd:The Manufacture of compound linear material
JPH04277416A (en) * 1991-03-05 1992-10-02 Showa Electric Wire & Cable Co Ltd Manufacture of nb3sn superconducting wire
JP2000243158A (en) * 1999-02-18 2000-09-08 Hitachi Cable Ltd Nb3A1 SUPERCONDUCTOR AND ITS MANUFACTURE
JP2003187654A (en) * 2001-12-14 2003-07-04 Kobe Steel Ltd MANUFACTURING METHOD OF Nb3Sn SUPERCONDUCTING WIRE MATERIAL

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6188408A (en) * 1984-10-08 1986-05-06 昭和電線電纜株式会社 Manufacture of nb3sn superconducting wire
JPS63285810A (en) * 1987-05-18 1988-11-22 Toshiba Corp Manufacture of nb3sn type composite superconductor
JPH0492316A (en) * 1990-08-06 1992-03-25 Furukawa Electric Co Ltd:The Manufacture of compound linear material
JPH04277416A (en) * 1991-03-05 1992-10-02 Showa Electric Wire & Cable Co Ltd Manufacture of nb3sn superconducting wire
JP2000243158A (en) * 1999-02-18 2000-09-08 Hitachi Cable Ltd Nb3A1 SUPERCONDUCTOR AND ITS MANUFACTURE
JP2003187654A (en) * 2001-12-14 2003-07-04 Kobe Steel Ltd MANUFACTURING METHOD OF Nb3Sn SUPERCONDUCTING WIRE MATERIAL

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006010364A1 (en) * 2004-07-23 2006-02-02 European Advanced Superconductors Gmbh & Co. Kg Superconducting conductor element with reinforcement
KR100596998B1 (en) 2004-09-16 2006-07-06 케이. 에이. 티. (주) Sn based alloy for the precursor of Nb3Sn superconducting wire, and the manufacturing method of the same
EP1763091A2 (en) * 2005-09-13 2007-03-14 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method of manufacturing for Nb3Sn superconducting wire rod by means of powder method and precursor therefor
EP1763091A3 (en) * 2005-09-13 2007-12-19 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method of manufacturing for Nb3Sn superconducting wire rod by means of powder method and precursor therefor
EP4039390A4 (en) * 2019-10-03 2023-11-15 K. A. T. Co., Ltd Sn-ti alloy powder for superconducting wire rod, method for preparing same, and method for manufacturing superconducting wire rod using same

Also Published As

Publication number Publication date
JP4727914B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
JP4523861B2 (en) Method for producing Nb3Sn superconducting wire
EP3107879B1 (en) Superconducting wires and methods of making thereof
US7566414B2 (en) Method for manufacturing power-metallurgy processed Nb3Sn superconducting wire, precursor to powder-metallurgy processed Nb3Sn superconducting wire
JP4034802B2 (en) Nb or Nb-based alloy rod for production of superconducting wire and method for producing Nb3Sn superconducting wire
EP3355373A1 (en) Improving strand critical current density in nb3sn superconducting strands via a novel heat treatment
JP2007214002A (en) Method of manufacturing nb3sn superconductive wire rod and precursor for it
JP2004035940A (en) BRONZE MATERIAL FOR NB3Sn BASED SUPERCONDUCTING WIRE ROD, COMPOSITE MATERIAL FOR SUPERCONDUCTING WIRE ROD USING THE MATERIAL, AND SUPERCONDUCTING WIRE ROD
JP4163719B2 (en) Powder method Nb3Sn superconducting wire precursor and manufacturing method
JPS6117325B2 (en)
JP4727914B2 (en) Nb3Sn superconducting wire and method for manufacturing the same
WO2006030744A1 (en) METHOD FOR PRODUCING Nb3Sn SUPERCONDUCTIVE WIRE MATERIAL THROUGH POWDER METHOD
JP2010244745A (en) Nb3Al SUPERCONDUCTING WIRE ROD AND METHOD FOR MANUFACTURING Nb3Al SUPERCONDUCTING WIRE ROD
JP4723306B2 (en) Manufacturing method of Nb3Al-based superconducting wire, primary composite material for manufacturing Nb3Al-based superconducting wire and manufacturing method thereof, and multi-core composite material for manufacturing Nb3Al-based superconducting wire
JP2006260854A (en) Manufacturing method of superconductive wire rod
JP4791346B2 (en) Nb3Sn superconducting wire, precursor therefor, and Nb composite single core wire for precursor
JP4652938B2 (en) Powder method Nb3Sn superconducting wire manufacturing method
JP2003297162A (en) METHOD FOR MANUFACTURING Nb3Ga EXTRAFINE MULTI-CORE WIRE ROD
JP3866969B2 (en) Manufacturing method of Nb (3) Sn superconducting wire
JP3757141B2 (en) Manufacturing method of Nb (3) Sn superconducting wire
JP4214200B2 (en) Powder method Nb3Sn superconducting wire
JP4009167B2 (en) Powder method Nb (3) Sn superconducting wire
JP4723327B2 (en) Powder process Nb3Sn superconducting wire manufacturing method and precursor therefor
JP2005032631A (en) Powder method nb3sn superconducting wire rod
JP3716309B2 (en) Manufacturing method of Nb3Sn wire
JP2007220493A (en) MANUFACTURING METHOD OF Nb3Sn SUPERCONDUCTING WIRE ROD AND PRECURSOR FOR THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110414

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4727914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees