JPH0717992B2 - Nb (bottom 3) Method for manufacturing Sn multicore superconducting wire - Google Patents

Nb (bottom 3) Method for manufacturing Sn multicore superconducting wire

Info

Publication number
JPH0717992B2
JPH0717992B2 JP60123344A JP12334485A JPH0717992B2 JP H0717992 B2 JPH0717992 B2 JP H0717992B2 JP 60123344 A JP60123344 A JP 60123344A JP 12334485 A JP12334485 A JP 12334485A JP H0717992 B2 JPH0717992 B2 JP H0717992B2
Authority
JP
Japan
Prior art keywords
composite
heat treatment
superconducting wire
wire
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60123344A
Other languages
Japanese (ja)
Other versions
JPS61279662A (en
Inventor
英元 鈴木
政光 市原
良昌 神定
青木  伸夫
智幸 熊野
Original Assignee
昭和電線電纜株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電線電纜株式会社 filed Critical 昭和電線電纜株式会社
Priority to JP60123344A priority Critical patent/JPH0717992B2/en
Publication of JPS61279662A publication Critical patent/JPS61279662A/en
Publication of JPH0717992B2 publication Critical patent/JPH0717992B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は超電導線の製造方法に係り、特に内部拡散法に
よる多芯構造のNb3Sn多芯超電導線の製造方法に関す
る。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for manufacturing a superconducting wire, and more particularly to a method for manufacturing a Nb 3 Sn multicore superconducting wire having a multicore structure by an internal diffusion method.

[発明の技術的背景] 従来、多芯構造のNb3Sn超電導線の製造方法として内部
拡散法によるものが知られている。この方法において
は、Cuマトリックス中に拡散源となるSnと多数のNb線が
配置され、加工後2段階の熱処理を施すことにより、Nb
線外周あるいは全体にNb3Sn層が形成される。通常は上
記のCuマトリックス外周に拡散障壁を介して安定化Cuが
配置される。
[Technical Background of the Invention] Conventionally, as a method for producing a Nb 3 Sn superconducting wire having a multi-core structure, an internal diffusion method is known. In this method, Sn serving as a diffusion source and a large number of Nb wires are arranged in a Cu matrix, and Nb is applied by performing a two-step heat treatment after processing.
A Nb 3 Sn layer is formed on the outer circumference or the entire line. Usually, stabilized Cu is arranged around the above Cu matrix through a diffusion barrier.

上記の熱処理は、(1)Cuマトリックス中にSnを拡散さ
せるための500℃未満の熱処理(第1段階の熱処理)
と、(2)Nb3Sn生成のための500℃以上、通常は700℃
前後の熱処理(第2段階の熱処理)により施されるが、
特に第1段階の熱処理は、通常Snの融点直上の温度から
Nb3Sn生成の反応温度未満の温度範囲で段階的に施さ
れ、その熱処理時間はNbフィラメントの径や配置にも依
存するが、数日から十数日を要する。このように長時間
の熱処理が必要とされる理由は、熱処理温度が低いこと
と、Snの拡散路が近接するNbフィラメント間隙のCuマト
リックスに限定されるためである。
The above heat treatment is (1) heat treatment at less than 500 ° C for diffusing Sn in the Cu matrix (first-stage heat treatment)
And (2) 500 ° C or higher, normally 700 ° C, for Nb 3 Sn formation
It is performed by the heat treatment before and after (heat treatment of the second stage),
Especially, the first stage heat treatment is usually performed from the temperature just above the melting point of Sn.
The heat treatment is performed stepwise within a temperature range below the reaction temperature for Nb 3 Sn formation, and the heat treatment time is several days to ten and several days, depending on the diameter and arrangement of the Nb filaments. The reason why such a long-time heat treatment is required is that the heat treatment temperature is low and that the Sn diffusion path is limited to the Cu matrix in the Nb filament gaps that are close to each other.

[背景技術の問題点] 以上述べた内部拡散性は、加工中に中間焼鈍を施す必要
がない利点を有するが、第1段階のSnの拡散熱処理に長
時間を要し、十分均質にSnが拡散していない場合には、
第2段階の熱処理においてNb3Snの生成が不十分とな
り、超電導特性が低下するという難点を有する。
[Problems of the Background Art] The internal diffusivity described above has an advantage that it is not necessary to perform intermediate annealing during processing, but it takes a long time to perform the diffusion heat treatment of Sn in the first step, and Sn is sufficiently homogeneous. If not,
In the heat treatment of the second stage, the formation of Nb 3 Sn becomes insufficient, and there is a drawback that the superconducting property is deteriorated.

[発明の目的] 本発明は、上記の難点を解消するためになされたもの
で、Nbフィラメント群をSnの拡散通路となるCuで複数に
分割することにより、第1段階の熱処理時間を短縮する
とともに、第2段階の熱処理後の超電導特性を向上させ
ることをその目的とする。
[Object of the Invention] The present invention has been made in order to solve the above-mentioned problems, and shortens the heat treatment time of the first step by dividing the Nb filament group into a plurality of Cu serving as Sn diffusion passages. At the same time, the purpose is to improve the superconducting properties after the second stage heat treatment.

[発明の概要] 本発明は、SnまたはSn合金ロッドの外周に、Cuマトリッ
クス中に多数本のNbフィラメントを配置した複合線の複
数本を集合し、これらを拡散障壁を介して安定化Cu管中
に収容した複合体に断面減少加工を施し、次いでSnの拡
散熱処理およびNb3Sn生成の熱処理を施すことにより超
電導線を製造する方法において、前記複合線は、拡散障
壁とSnまたはSn合金ロッドとの間をCuによって複数に分
割された空間内に配置されることを特徴としている。
[Summary of the Invention] The present invention assembles a plurality of composite wires in which a large number of Nb filaments are arranged in a Cu matrix on the outer periphery of a Sn or Sn alloy rod, and stabilizes them through a diffusion barrier. In a method for producing a superconducting wire by subjecting a composite housed therein to cross-section reduction processing, and then subjecting it to Sn diffusion heat treatment and Nb 3 Sn formation heat treatment, the composite wire comprises a diffusion barrier and a Sn or Sn alloy rod. It is characterized in that the space between and is arranged in a space divided into a plurality by Cu.

本発明における複合線は、Cu被覆Nbロッドを断面正六角
形に加工し、この多数本をCu管中に収容した後、さらに
断面正六角形に加工することにより得られる。
The composite wire in the present invention is obtained by processing a Cu-coated Nb rod into a regular hexagonal cross section, accommodating a large number of the rods in a Cu tube, and further processing into a regular hexagonal cross section.

一方、SnまたはSn合金ロッドはCu被覆されたロッドを用
いることができ、上記複合線と同断面形状とすることに
より、任意の集合体の外周に複合線の複数本を密接した
状態でCu管中に充填することができる。
On the other hand, Sn or Sn alloy rods can use Cu-coated rods, and by having the same cross-sectional shape as the above composite wire, the Cu pipe in the state where multiple composite wires are closely attached to the outer periphery of any assembly. Can be filled inside.

[発明の実施例] 以下、本発明の一実施例について説明する。[Embodiment of the Invention] An embodiment of the present invention will be described below.

[実施例] 第1図は本発明に用いられる複合体1の一部断面図、第
2図はこの複合体1に組込まれる複合線2の断面図、第
3図は複合体1に組込まれるCu被覆Snロッド3の断面図
を示したものであり、複合体1を以下に述べる方法によ
り製造した。
[Example] FIG. 1 is a partial sectional view of a composite 1 used in the present invention, FIG. 2 is a sectional view of a composite wire 2 incorporated in the composite 1, and FIG. 3 is incorporated in the composite 1. 1 is a sectional view of a Cu-coated Sn rod 3, and a composite 1 was manufactured by the method described below.

第2図に示すようにCuマトリックス2a中に931本のNbフ
ィラメント2bを配置した銅比1.0、平行面間距離2.13mm
の断面正六角形の複合線2、および第3図に示すよう
に、この複合線2と同一断面形状のSnロッド3aの外周に
Cu3bを被覆した15wt%Sn組成のCu被覆Snロッド3を冷間
加工により製造した。さらに複合線2と同一断面形状の
Cu線4を別途製造し、Cu被覆Snロッド3の127本を集合
した外周に複合線2の174本をCu線4により6分割され
るように配置し、これらを厚さ2mmのTaのパイプ5を介
して、外径58mmφ、内径46mmφのCuパイプ6中に収容し
て複合体1を構成した。
As shown in Fig. 2, 931 Nb filaments 2b are arranged in a Cu matrix 2a, the copper ratio is 1.0, and the distance between parallel planes is 2.13 mm.
The composite wire 2 having a regular hexagonal cross section and the Sn rod 3a having the same cross-sectional shape as the composite wire 2 as shown in FIG.
A Cu-coated Sn rod 3 of 15 wt% Sn composition coated with Cu3b was manufactured by cold working. Furthermore, it has the same cross-sectional shape as the composite wire 2.
A Cu wire 4 is manufactured separately, and 174 of the composite wire 2 are arranged so as to be divided into 6 parts by the Cu wire 4 on the outer periphery where 127 of the Cu-coated Sn rods 3 are gathered. Then, the composite 1 was formed by accommodating it in a Cu pipe 6 having an outer diameter of 58 mmφ and an inner diameter of 46 mmφ.

この複合体1にスウェージング、伸線加工等の断面減少
加工を施して、外径1.0mmφ、フィラメント径0.9μm
φ、フィラメント数14.43万本の線材とした後、300℃×
3日間および450℃×5日間のSnの拡散熱処理を施し、
次いで700℃×60時間のNb3Snの熱処理を施して多芯構造
のNb3Sn超電導線を製造した。この超電導線の臨界電流
値は9Tで60Aであった。
This composite 1 is subjected to cross-section reduction processing such as swaging and wire drawing to obtain an outer diameter of 1.0 mmφ and a filament diameter of 0.9 μm.
φ, the number of filaments is 1443,000, after making it into a wire rod, 300 ℃ ×
3 days and 450 ℃ × 5 days Sn diffusion heat treatment,
Then, the Nb 3 Sn superconducting wire having a multi-core structure was manufactured by subjecting Nb 3 Sn to a heat treatment at 700 ° C for 60 hours. The critical current value of this superconducting wire was 60A at 9T.

[比較例] 実施例における複合体1のパイプ内に配置されるCu線4
を複合線2で置換え、Cuの拡散路を設けない構造とした
第4図に示す複合体7に、実施例と同様の加工方法を施
して外径1.0mmφ、フィラメント径0.9μmφ、フィラメ
ント数16.095万本の線材を得た後、300℃×5日間およ
び45℃×10日間のSnの拡散熱処理を施し、次いで700℃
×60時間のNb3Sn生成の熱処理を施して多芯構造の超電
導線を製造した。この超電導線の臨界電流値は9Tで46A
であった。
[Comparative Example] Cu wire 4 arranged in the pipe of composite 1 in the example
Was replaced with a composite wire 2, and a composite body 7 shown in FIG. 4 having a structure in which a Cu diffusion path was not provided was subjected to the same processing method as in the example to obtain an outer diameter of 1.0 mmφ, a filament diameter of 0.9 μmφ, and a number of filaments of 16.095. After obtaining ten thousand wires, Sn diffusion heat treatment at 300 ℃ for 5 days and 45 ℃ for 10 days, then 700 ℃
A superconducting wire having a multi-core structure was manufactured by performing a heat treatment for Nb 3 Sn formation for 60 hours. The critical current value of this superconducting wire is 46A at 9T.
Met.

[発明の効果] 以上述べたように、本発明のNb3Sn超電導線の製造方法
によれば、熱処理前の最終線径とした線材内にCuよりな
るSnの拡散路が設けられているため、Snの拡散熱処理時
間を大巾に短縮し得るとともに、加工性にも優れ、さら
に熱処理後の超電導特性も向上するという利点を有す
る。
[Effects of the Invention] As described above, according to the method for manufacturing a Nb 3 Sn superconducting wire of the present invention, the Sn diffusion path made of Cu is provided in the wire having the final wire diameter before the heat treatment. , Sn diffusion heat treatment time can be greatly shortened, workability is excellent, and superconducting properties after heat treatment are improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の方法に用いられる複合体の一部断面
図、第2図および第3図は、それぞれこの複合体中に組
込まれる複合線およびCu被覆Snロッドの断面図、第4図
は比較例における複合体の一部断面図である。 1、7……複合体 2……複合線 3……Cu被覆Snロッド 4……Cu線 5……Taパイプ 6……Cuパイプ
FIG. 1 is a partial sectional view of a composite body used in the method of the present invention, and FIGS. 2 and 3 are sectional views of a composite wire and a Cu-coated Sn rod incorporated in the composite body, respectively. [FIG. 4] is a partial cross-sectional view of a composite body in a comparative example. 1, 7 ... Composite 2 ... Composite wire 3 ... Cu-coated Sn rod 4 ... Cu wire 5 ... Ta pipe 6 ... Cu pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 青木 伸夫 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内 (72)発明者 熊野 智幸 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Nobuo Aoki Inventor No. 1-1 Oda Sakae, Kawasaki-ku, Kawasaki-shi, Kanagawa 2-1-1, Showa Electric Cable Co., Ltd. (72) Tomoyuki Kumano 2 Sakae Oda, Kawasaki-ku, Kawasaki, Kanagawa No. 1-1 No. 1 Showa Electric Cable Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】SnまたはSn合金ロッドの外周に、Cuマトリ
ックス中に多数本のNbフィラメントを配置した複合線の
複数本を集合し、これらを拡散障壁を介して安定化Cu管
中に収容した複合体に断面減少加工を施し、次いでSnの
拡散熱処理およびNb3Sn生成の熱処理を施すことにより
超電導線を製造する方法において、前記複合線は、拡散
障壁とSnまたはSn合金ロッドとの間をCuによって複数に
分割された空間内に配置されることを特徴とするNb3Sn
多芯超電導線の製造方法。
1. A plurality of composite wires in which a large number of Nb filaments are arranged in a Cu matrix are gathered around the outer circumference of a Sn or Sn alloy rod, and these are housed in a stabilized Cu tube through a diffusion barrier. In the method for producing a superconducting wire by subjecting a composite to a cross-section reduction process, and then subjecting it to a diffusion heat treatment of Sn and a heat treatment of Nb 3 Sn generation, the composite wire comprises a diffusion barrier and a Sn or Sn alloy rod. Nb 3 Sn characterized by being arranged in a space divided into multiple parts by Cu
Manufacturing method of multifilamentary superconducting wire.
【請求項2】SnまたはSn合金ロッドは、Cu被覆ロッドで
ある特許請求の範囲第1項記載のNb3Sn多芯超電導線の
製造方法。
2. The method for producing an Nb 3 Sn multicore superconducting wire according to claim 1, wherein the Sn or Sn alloy rod is a Cu-coated rod.
【請求項3】SnまたはSn合金ロッドは、複数本集合され
て成る特許請求の範囲第1項あるいは第2項記載のNb3S
n多芯超電導線の製造方法。
3. Nb 3 S according to claim 1 or 2, wherein a plurality of Sn or Sn alloy rods are assembled.
n Multi-core superconducting wire manufacturing method.
【請求項4】拡散障壁は、NbあるいはTaより成る特許請
求の範囲第1項記載のNb3Sn多芯超電導線の製造方法。
4. The method for producing an Nb 3 Sn multi-core superconducting wire according to claim 1, wherein the diffusion barrier is made of Nb or Ta.
JP60123344A 1985-06-05 1985-06-05 Nb (bottom 3) Method for manufacturing Sn multicore superconducting wire Expired - Lifetime JPH0717992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60123344A JPH0717992B2 (en) 1985-06-05 1985-06-05 Nb (bottom 3) Method for manufacturing Sn multicore superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60123344A JPH0717992B2 (en) 1985-06-05 1985-06-05 Nb (bottom 3) Method for manufacturing Sn multicore superconducting wire

Publications (2)

Publication Number Publication Date
JPS61279662A JPS61279662A (en) 1986-12-10
JPH0717992B2 true JPH0717992B2 (en) 1995-03-01

Family

ID=14858239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60123344A Expired - Lifetime JPH0717992B2 (en) 1985-06-05 1985-06-05 Nb (bottom 3) Method for manufacturing Sn multicore superconducting wire

Country Status (1)

Country Link
JP (1) JPH0717992B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013062239A (en) * 2011-08-25 2013-04-04 Hitachi Cable Ltd Nb3Sn SUPERCONDUCTING WIRE AND METHOD FOR MANUFACTURING THE SAME
CN114694894B (en) * 2022-05-20 2023-10-03 西部超导材料科技股份有限公司 Short-range diffusion type Nb 3 Preparation method of Sn superconducting wire

Also Published As

Publication number Publication date
JPS61279662A (en) 1986-12-10

Similar Documents

Publication Publication Date Title
US4973365A (en) Process for producing monocore precursor Nb3 Sn superconductor wire
JPS61194155A (en) Production of nb3sn superconductive wire
JPH0717992B2 (en) Nb (bottom 3) Method for manufacturing Sn multicore superconducting wire
JP3063025B2 (en) Nb3Sn superconducting wire and method of manufacturing the same
JP2683768B2 (en) Nb (bottom 3) Method for manufacturing Sn multi-core superconducting wire
JP3058904B2 (en) Nb Lower 3 Method for Manufacturing Sn Multicore Superconducting Wire
JPH0815016B2 (en) Νb ▲ 3 ▼ Manufacturing method of Sn multi-core superconducting wire
JPS63271818A (en) Manufacture of nb3sn superconductive wire by external diffusion method
JP2544096B2 (en) Nb (bottom 3) Method for manufacturing Sn superconducting wire
JPH0796698B2 (en) Manufacturing method of multi-core superconducting conductor for alternating current
JP3059570B2 (en) Superconducting wire and its manufacturing method
RU96116402A (en) METHOD FOR PRODUCING COMPOSITE SUPERCONDUCTOR BASED ON NB3SN CONNECTION
JPS62240751A (en) Manufacture of nb3sn super conducting wire by internal diffusion method
JP2719155B2 (en) Superconducting stranded wire manufacturing method
JPS6358715A (en) Manufacture of nb3sn multi-core superconductor
JPS6113508A (en) Method of producing low copper ratio nb3sn superconductive wire
JPH0648606B2 (en) Manufacturing method of Sn superconducting wire of Nb under 3 by internal diffusion method
JPH01304617A (en) Manufacture of nb3 sn multi-superconductor wire
JPS6029165B2 (en) Superconducting compound wire and its manufacturing method
JPH07141938A (en) Manufacture of composite multiple core superconductive wire
JPS6358714A (en) Manufacture of nb3sn multi-core superconductor
JPH0982152A (en) Manufacture of superconducting wire, and superconducting wire
JPH0381247B2 (en)
JPH1079206A (en) Hct multi-conductor wire having deviated inner arrangement
JPH041446B2 (en)