JPS62243745A - Manufacture of superconductive electric wire containing dispersed fiber - Google Patents

Manufacture of superconductive electric wire containing dispersed fiber

Info

Publication number
JPS62243745A
JPS62243745A JP61087284A JP8728486A JPS62243745A JP S62243745 A JPS62243745 A JP S62243745A JP 61087284 A JP61087284 A JP 61087284A JP 8728486 A JP8728486 A JP 8728486A JP S62243745 A JPS62243745 A JP S62243745A
Authority
JP
Japan
Prior art keywords
wire
superconducting
pipe
situ
superconducting wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61087284A
Other languages
Japanese (ja)
Other versions
JPH0735560B2 (en
Inventor
Masaru Sugimoto
優 杉本
Tsukasa Kono
河野 宰
Yoshimitsu Ikeno
池野 義光
Nobuyuki Sadakata
伸行 定方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP61087284A priority Critical patent/JPH0735560B2/en
Publication of JPS62243745A publication Critical patent/JPS62243745A/en
Publication of JPH0735560B2 publication Critical patent/JPH0735560B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain a superconductive electric wire having a structure in which little strain is produced by mechanical stress by putting plated composite electric wires in a pipe, drawing down the pipe to the desired diameter and subjecting it to diffusion heat treatment. CONSTITUTION:An in situ rod 20 contg. many Nb fibers 21 dispersed and arranged closely in a matrix 22 is prepd. The rod 20 is drawn down under process annealing to form an in situ wire 20' and an Sn layer 23 is formed on the surface of the wire 20' by tinning to form a tinned composite wire 24. Several such wires 24 are assembled and put in a Cu pipe 25. This pipe 25 is covered with an Nb or Ta pipe 26 as a diffusion barrier and the pipe 26 is covered with a stabilizing pipe 27 of Cu or Al to form a composite pipe 28. This pipe 28 is drawn down and the resulting superconductive rough wire 29 is subjected to diffusion treatment to obtain a superconductive wire T.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、核融合炉用トロイダルマグネット、粒子加速
器用マグネット、超電導発電機用マグネット等に利用さ
れる繊維分散型超電導線の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method for manufacturing a fiber-dispersed superconducting wire used in toroidal magnets for nuclear fusion reactors, magnets for particle accelerators, magnets for superconducting generators, and the like.

「従来の技術」 所定成分のCu−Nb−8na元合金を溶製した場合、
銅合金基地内にNbのデンドライトが分散した組織を有
し、しかも加工性が高いインゴットを得ることができる
。そしてこのインゴットに線引加工等を施して強加工す
るとNbの繊維が多数密接して銅合金基地内に分散配列
したインザイチュロツドを得ろことができ、この製法は
、従来、いわゆるインサイチュ(In−situ)法と
して知られている。そして、前記インザイチュロツドに
拡散熱処理を施すことにより内部のSnとNbを反応さ
せてNb*Sn超電導金属間化合物を生成させ、繊維分
散型超電導線部製造することがなされている。
"Prior art" When a Cu-Nb-8na base alloy with a predetermined composition is melted,
It is possible to obtain an ingot which has a structure in which Nb dendrites are dispersed within a copper alloy matrix and which has high workability. If this ingot is subjected to strong processing such as wire drawing, it is possible to obtain in-situ rods in which a large number of Nb fibers are closely arranged and dispersed within the copper alloy base. -situ) method. Then, by subjecting the in-situ rod to diffusion heat treatment, the internal Sn and Nb are reacted to form a Nb*Sn superconducting intermetallic compound, thereby producing a fiber-dispersed superconducting wire portion.

ところで、前述のように構成された超電導線は単独では
電流容量ら小さく“、しかも別途に安定化材を必要とす
るために、従来、実用的には第2図(A)〜(E)に示
すように加工を施し、安定化材を付設してプレイド化す
ることによりプレイド型超電導線とすることがなされて
いる。
By the way, the superconducting wire configured as described above has a small current capacity when used alone and requires a separate stabilizing material. A plaid type superconducting wire is produced by processing the wire as shown, attaching a stabilizing material, and making it plaid.

即ち、第2図(A)に示すインサイチュロッドlを用い
て第2図(E)に示すプレイド型超電導線Bを製造する
するには、まず、インサイチュロッドIを第2図(B)
に示すように所望の直径まで縮径してインシチュ線2を
作製し、更に、その外面にSnメッキ層3を形成して第
2図(C)に示すメッキ複合線4を作製する。次いでこ
のメッキ複合線4に拡散熱処理を施すことによってイン
サイチュロッドlの内部に繊維状のNb、Snm電導金
属間化合物を生成させ、繊維分散型Nb+Sn超電導線
5を製造する。そしてこの超電導線5を安定化材となる
Cu製あるいはAI製の安定化ロッド6の周囲に複数配
置してはんだで固定し、第2図(E)に示すプレイド型
超電導線Bを製造するのである。
That is, in order to manufacture the plaid superconducting wire B shown in FIG. 2(E) using the in-situ rod I shown in FIG. 2(A), first, the in-situ rod I shown in FIG.
As shown in FIG. 2C, an in-situ wire 2 is produced by reducing the diameter to a desired diameter, and a Sn plating layer 3 is further formed on the outer surface of the in-situ wire 2 to produce a plated composite wire 4 shown in FIG. 2(C). Next, this plated composite wire 4 is subjected to diffusion heat treatment to generate a fibrous Nb, Snm conductive intermetallic compound inside the in-situ rod 1, thereby producing a fiber-dispersed Nb+Sn superconducting wire 5. Then, a plurality of superconducting wires 5 are arranged around stabilizing rods 6 made of Cu or AI, which serve as stabilizing materials, and fixed with solder to produce plaid-type superconducting wire B shown in FIG. 2(E). be.

一方、従来、多心化した超電導線として第3図に示すよ
うに、Snからなるコアー材8をインサイチュロッド9
の内部に複合して複合線IOを作製し、この複合線lO
を安定化材11の内部に複数複合して製造された超電導
線12、あるいは、第3図に示すように、Snからなる
芯材13の周囲にインサイチュロッド14を配し、これ
らを安定化材15め内部に複合してなる超電導線16が
知られている。
On the other hand, conventionally, as shown in FIG.
Create a composite line IO by combining inside
As shown in FIG. 3, an in-situ rod 14 is arranged around a core material 13 made of Sn, and these are combined into a stabilizing material 11. A superconducting wire 16 is known in which the superconducting wire 16 is made of a composite material inside the 15th wire.

「発明が解決しようとする問題点」 ところが、第2図(E)に示す構造のプレイド型超電導
線を製造する場合には、加工性の悪いNb3Snを生成
させて超電導線5を製造した後にこれらを集合し、はん
だで固定してプレイド化ずろ必要があるために、プレイ
ド加工する際に機械的応力を受けて各超電導線5に歪を
生じ、この歪によって各超電導線5の超電導特性が劣化
する問題があった。
"Problems to be Solved by the Invention" However, when manufacturing a plaid superconducting wire having the structure shown in FIG. Because it is necessary to assemble the wires, fix them with solder, and form them into plaid, each superconducting wire 5 is subjected to mechanical stress during the plaiding process, causing strain in each superconducting wire 5, and this strain deteriorates the superconducting properties of each superconducting wire 5. There was a problem.

また、安定化ロッド6の周囲に超電導線5を配してプレ
イド化する場合、安定化ロッド6の周囲に配しうる超電
導線5の数に制限があるために、大容量化に限界がある
といった問題があった。
In addition, when superconducting wires 5 are arranged around the stabilizing rod 6 to form a plaid, there is a limit to the increase in capacity because there is a limit to the number of superconducting wires 5 that can be arranged around the stabilizing rod 6. There was such a problem.

ところで、第2図(C)に示すメッキ複合線4に拡散熱
処理を施す場合、Snメッキ層3の溶は落ちを防止する
必要がある。このため従来、前記拡散熱処理時には、S
nメッキ層3のSnがイノシチュ線2の内部に拡散する
まで低温度で熱処理を施し、その後に高温度でNb5S
n生成用の拡散熱処理を施す必要があり、熱処理時間が
長くなる問題を有していた。
By the way, when performing diffusion heat treatment on the plated composite wire 4 shown in FIG. 2(C), it is necessary to prevent the Sn plating layer 3 from melting down. For this reason, conventionally, during the diffusion heat treatment, S
Heat treatment is performed at a low temperature until Sn in the n-plated layer 3 diffuses into the ino-situ wire 2, and then Nb5S is applied at a high temperature.
It is necessary to perform diffusion heat treatment for n generation, which poses a problem that the heat treatment time becomes long.

一方、第3図と第4図に示す構造の超電導線12.16
にあっては、線材の断面積に対してSnからなる芯材8
.10の断面積割合が大きく、超電導金属間化合物生成
用の拡散熱処理時に芯材8゜13の表面にボイドを生じ
易いために、後に施す機械加工の際に、外力に対する特
性劣化を生じ易い問題があった。
On the other hand, the superconducting wire 12.16 with the structure shown in FIGS. 3 and 4
In this case, the core material 8 made of Sn is larger than the cross-sectional area of the wire.
.. Since the cross-sectional area ratio of 10 is large and voids are likely to be formed on the surface of the core material 8゜13 during diffusion heat treatment for producing superconducting intermetallic compounds, there is a problem that properties tend to deteriorate due to external forces during later machining. there were.

本発明は、前記問題に鑑みてなされたもので、インサイ
チュロッドを用いた多心゛超電導線を製造する場合、縮
径時の機械的応力により従来生じていた超電導特性の劣
化を防止でき、電流容量の高い超電導線を製造できると
ともに、拡散熱処理の処理時間の短縮化をなしえ、更に
拡散熱処理時に内部にボイドを生じさせることのない繊
維分散型超電導線の製造方法を提供することを目的とす
る。
The present invention has been made in view of the above problem, and when manufacturing multi-core superconducting wires using in-situ rods, it is possible to prevent deterioration of superconducting properties that conventionally occurs due to mechanical stress during diameter reduction, and The purpose of the present invention is to provide a method for manufacturing a fiber-dispersed superconducting wire that can manufacture a superconducting wire with high capacity, shorten the processing time for diffusion heat treatment, and not create internal voids during the diffusion heat treatment. do.

「問題点を解決するだめの手段」 本発明は前記問題点を解消するために、超電導金属間化
合物を構成する2F!以上の金属元素の内、少なくとも
1つの元素からなる極細繊維を基地の内部に形成してな
るインサイチュロッドを用意し、前記インサイチュロッ
ドの表面に、前記金属間化合物を構成する2種以上の金
属元素の内、残りの元素からなるメッキ層を形成してメ
ッキ複合線を作製し、次に、前記メッキ調合線を複数本
集合し、これらを前記超電導金属間化合物を構成する元
素の拡散を防止する元素からなる管体に挿入した後に、
この管体の外側に安定化パイプを披せ、更に、縮径加工
を施して所望の直径の超電導素線を作製し、次いでこの
超電導素線に拡散熱処理を施し、メッキ層を構成する元
素を拡散させて前記極細繊椎を構成する元素と反応させ
、超電導金属間化合物を生成させるものである。
"Means for Solving the Problems" In order to solve the above-mentioned problems, the present invention provides 2F! which constitutes a superconducting intermetallic compound! An in-situ rod is prepared in which ultrafine fibers made of at least one of the above metal elements are formed inside a base, and two or more metal elements constituting the intermetallic compound are coated on the surface of the in-situ rod. A plated composite wire is produced by forming a plated layer consisting of the remaining elements, and then a plurality of the plated composite wires are assembled to prevent diffusion of the elements constituting the superconducting intermetallic compound. After being inserted into a tube made of elements,
A stabilizing pipe is placed on the outside of this tubular body, and a diameter reduction process is performed to produce a superconducting strand of the desired diameter.Then, this superconducting strand is subjected to diffusion heat treatment to remove the elements constituting the plating layer. It diffuses and reacts with the elements constituting the ultrafine filaments to generate a superconducting intermetallic compound.

「作用 」 管体の内部に複数のメッキ複合線を挿入した後に拡散熱
処理を施すために、メッキ層の溶は落ちを防止する低温
の熱処理を行うことなく拡散熱処理を施すことができ、
熱処理時間の短縮化をなしえるととらに、縮径加工によ
って所望の直径に加工した後に拡散熱処理を施してNb
5Snを生成させるために、超電導線に機械的応力によ
る歪を付加ずろことなく多心化でき、縮径時には良好な
加工性を維持することができるとともに、管体に収納す
るメッキ複合線の本数を増加することにより大容量の超
電導線を容易に製造できろ。
``Operation'' Because diffusion heat treatment is performed after inserting multiple plated composite wires inside the tube, diffusion heat treatment can be performed without performing low-temperature heat treatment to prevent melting of the plating layer.
In addition to shortening the heat treatment time, the Nb
In order to generate 5Sn, it is possible to increase the number of cores without applying strain due to mechanical stress to the superconducting wire, maintain good workability when reducing the diameter, and increase the number of plated composite wires that can be housed in the tube. It is possible to easily manufacture large-capacity superconducting wires by increasing the

「実施例」 第1図(A)〜(G)は、Nb3Sn超電導線の製造に
適用した本発明の一実施例を示すもので、第1図(A)
〜(G)に示す加工を施すことにより第1図(G)に示
す繊維分散型Nb5Sn超電導線Tを製造することがで
きる。
"Example" Figures 1 (A) to (G) show an example of the present invention applied to the production of Nb3Sn superconducting wire.
By performing the processing shown in ~(G), the fiber-dispersed Nb5Sn superconducting wire T shown in FIG. 1(G) can be manufactured.

l)り記繊維分散型N bq S n超7u導線Tを製
造するには、まず、第1図(A)に示すインサイチュロ
ッド20を作製する。このインサイチュロッド20を作
製するには、銅合金基地あるいは銅基地内にNbのデン
ドライトが分散した組織を何するCu−Nb−Sn3元
合金あるいはCu−Sn合金インゴットを溶製し、この
インゴットに線引加工を施してNbデンドライトを繊維
状に密接させることにより製造する。このインサイチュ
ロッド20はNbの繊#C21が多数密接して基地22
内に分散配列した構造をaずろ公知のものである。
l) In order to manufacture the fiber-dispersed N bq S n super 7u conducting wire T, first, the in-situ rod 20 shown in FIG. 1(A) is manufactured. To manufacture this in-situ rod 20, a copper alloy base or a Cu-Nb-Sn ternary alloy or Cu-Sn alloy ingot having a structure in which Nb dendrites are dispersed in the copper base is melted, and a wire is attached to the ingot. It is manufactured by subjecting Nb dendrites to close contact in the form of fibers through drawing processing. This in-situ rod 20 has a large number of Nb fibers #C21 closely connected to the base 22.
This structure is well known in the art.

次に、前記インサイチュロッド20に中間焼鈍処理を施
しつつ第1図(B)に示すように縮径してインノヂュ線
20°を作製し、更にその表面に電気メツキ法によって
Snメッキ層23を形成して第1図(C)に示すメッキ
複合線24を作製ずろ。
Next, while subjecting the in-situ rod 20 to an intermediate annealing treatment, the diameter is reduced to form an in-duration wire of 20° as shown in FIG. Then, a plated composite wire 24 shown in FIG. 1(C) was manufactured.

次に、前記メッキ複合線24を曳敗本集合し、更に、低
濃度のSnを含有したCu−Sn合金から、または、C
uからなるパイプ25に第1図(D)に示すように挿入
し、更に、このパイプ25に第1図(E)に示すように
NbまたはTaからなる拡散ノ(リア用の管体26を被
せ1.更に管体26にCuまたはA1からなる安定化パ
イプ27を被せて複合線28を作製する。
Next, the plated composite wire 24 is pulled together and then made of Cu-Sn alloy containing a low concentration of Sn or C
1 (D) as shown in FIG. Covering 1. Further, the tube body 26 is covered with a stabilizing pipe 27 made of Cu or A1 to produce a composite wire 28.

そしぞ、前記複合線28に縮径加工を施して製造すべき
超電導線Tとほぼ同じ直径を有する第1図(F)に示す
超電導素線29を作製する。
Next, the composite wire 28 is subjected to diameter reduction processing to produce a superconducting wire 29 shown in FIG. 1(F) having approximately the same diameter as the superconducting wire T to be manufactured.

ここで前記各縮径工程においては、内部にNbコSn超
電導金属間化合物を生成させていない状態で加工し、し
かも、インサイチュロッドlは本来良好な加工性を有し
ているために、断線等のトラブルを起こすことなく縮径
加工することができる。
In each of the diameter reduction steps described above, processing is performed in a state in which no Nb-Sn superconducting intermetallic compound is generated inside, and since the in-situ rod l has originally good workability, wire breakage etc. The diameter can be reduced without causing any trouble.

そして次に、前記超゛電導素線29に拡散熱処理(50
0〜850℃程度に20〜300時間程度加熱ずろ熱処
理)を施し、銅合金基地22の内部のNb繊維21とS
nメッキ層23のSnを反応させてN bi S nを
生成させ、第1図(G)に示す繊維分散型Nb5Sn超
電導線′rを製造する。
Then, the superconducting wire 29 is subjected to diffusion heat treatment (50%
The Nb fibers 21 and S
Sn in the n-plated layer 23 is reacted to generate N bi S n, thereby producing a fiber-dispersed Nb5Sn superconducting wire 'r shown in FIG. 1(G).

以上説明したような方法を実施して繊維分散型Nt)+
Sn多心超電導線Tを製造した場合、メッキ複合線24
をパイプ25の内部に挿入するために、拡散熱処理時に
Snメッキ層23の溶は落ちを防止する必要はなくなる
。この点において従来方法においては、Snメッキ層の
溶は落ちを防止するために、拡散熱処理の前段階で低温
度に長時間加熱することによりSnメッキ層を基地の内
部に拡散さU・ろ必要があり、その後にNb*Sn生成
用拡散熱処理を施す必要を生じろために、熱処理時間が
長くなっていたが、本実施例においては前記低温度の熱
処理が不要になるために熱処理時間の短縮化をなしうろ
。なお、Snメッキ層23の厚さを、凋節ずろことによ
って超電導線Tに含有さ仕ろSnmを制御できろために
、所望量のSnを含有した超電導線′rを製造ずろこと
ができろ。
By carrying out the method explained above, fiber-dispersed Nt)+
When manufacturing Sn multicore superconducting wire T, plated composite wire 24
Since the Sn plating layer 23 is inserted into the pipe 25, there is no need to prevent the Sn plating layer 23 from melting during the diffusion heat treatment. In this respect, in the conventional method, in order to prevent the Sn plating layer from melting, it is necessary to diffuse the Sn plating layer inside the base by heating it at a low temperature for a long time before the diffusion heat treatment. However, in this example, the low-temperature heat treatment is no longer necessary, so the heat treatment time can be shortened. Let's change. In addition, since the amount of Sn contained in the superconducting wire T can be controlled by adjusting the thickness of the Sn plating layer 23, it is possible to manufacture a superconducting wire 'r containing a desired amount of Sn. .

また、繊維分散型Nb*Sn超電導ITを製造するにあ
たり、メッキ複合線24を多数本、パイプ25の内部に
配して縮径した後に拡散熱処理を施すために、従来のプ
レイド化法のように超電導金属間化合物生成後に機械加
工を行う必要がなくなり、超電導特性の劣化を生じるこ
とがなくなるとと乙に、パイプ25の内部に挿入するメ
ッキ複合線24の数を任意に選定できるために、パイプ
25の内部に多数のメッキ複合線24を挿入することに
より大容量の超電導線を製造できる効果がある。一方、
インシチュ線2の外周に形成するSnメッキ居24の横
断面積は、超電導線Tの横断面積に対して小さい値であ
るために、拡散熱処理によりボイドを生じることはなく
なり、ボイドによる超電導特性の劣化は生じない。
In addition, in manufacturing the fiber-dispersed Nb*Sn superconducting IT, a large number of plated composite wires 24 are arranged inside the pipe 25, and after the diameter is reduced, diffusion heat treatment is performed, so that unlike the conventional plaiding method, Second, the number of plated composite wires 24 to be inserted into the pipe 25 can be arbitrarily selected, so that there is no need to perform machining after the superconducting intermetallic compound is formed and deterioration of the superconducting properties occurs. By inserting a large number of plated composite wires 24 into the wire 25, a large capacity superconducting wire can be manufactured. on the other hand,
Since the cross-sectional area of the Sn plating layer 24 formed on the outer periphery of the in-situ wire 2 is smaller than the cross-sectional area of the superconducting wire T, voids will not be generated by the diffusion heat treatment, and the deterioration of superconducting properties due to voids will be prevented. Does not occur.

ところで、前記実施例においては、Nb5Sn超電導線
の製造に本発明を適用した例について説明したがV+G
a等その他の化合物系超電導線に本発明を適用しても良
いのは勿論である。なお、■。
By the way, in the above embodiment, an example in which the present invention was applied to the production of Nb5Sn superconducting wire was explained, but V+G
Of course, the present invention may be applied to other compound-based superconducting wires such as a. In addition, ■.

Ga超電導線を製造する場合には、Cu−V−Sn3元
合金インゴット、あるいは、Cu−V合金インゴットか
らインサイチュロッドを作製し、これを用いて複合ロッ
ド、更には複合線を順次作製し、複合線にGaメッキを
施してメッキ複合線を作製し、必要に応じてメッキ複合
線を多数本集合して拡散熱処理を施し、V s G a
超電導線を製造することかできる。
When producing a Ga superconducting wire, an in-situ rod is produced from a Cu-V-Sn ternary alloy ingot or a Cu-V alloy ingot, and then a composite rod and further a composite wire are sequentially produced using the in-situ rod. A plated composite wire is produced by applying Ga plating to the wire, and if necessary, a large number of plated composite wires are assembled and subjected to diffusion heat treatment to form V s Ga
It is possible to manufacture superconducting wires.

[製造例IJ Nb30wt%を含有した外径20mmのインサイヂコ
〔ノソドをアーク溶解法等によって製造し、表面層を切
削して不純物を除去し、直(1= 17 mmのインサ
イチュロッドを作製する。このインサイチュロッドに外
径20mm、内径18mmの純Cuパイプを被せ、押し
出し加工と線引加工を施して直径IIの複合線を得た。
[Production Example IJ An in-situ rod with an outer diameter of 20 mm containing 30 wt% Nb is manufactured by an arc melting method, the surface layer is cut to remove impurities, and an in-situ rod with a diameter of 17 mm (1 = 17 mm) is manufactured. A pure Cu pipe with an outer diameter of 20 mm and an inner diameter of 18 mm was placed on the in-situ rod, and extrusion and wire drawing were performed to obtain a composite wire with a diameter II.

次に、この複合線に電気メツキ法により厚さ30μのS
nメッキ層を形成してメッキ複合線を作製した。次いで
、前記メッキ複合線を91本集合し、外径13mm、内
径12mmであって、Sn6wL%を含有するパイプに
挿入し、その外方に拡散バリアとなる外径15mm、内
径14IllIIlのNb管を披せ、更に安定化材とな
る外径20mm、内fM l G mmのCuパイプ中
に挿入して複合線を作製し、この複合線に縮径加工を施
して直径1fflI+1の超電導素線を作製した。次に
この超電導素線を550℃に100時間加熱する拡散熱
処理を施し、Snメッキ層のSnをインサイチュロッド
内部に拡散させてインサイチュロッド内部のNb繊維と
Snを反応させ、NbaSn超電導金属間化合物を生成
し、Nb*Sn超電導線を製造した。
Next, this composite wire was electroplated with a S of 30μ thick.
A plated composite wire was produced by forming n plating layers. Next, 91 of the plated composite wires were assembled and inserted into a pipe having an outer diameter of 13 mm and an inner diameter of 12 mm and containing Sn6wL%, and an Nb pipe with an outer diameter of 15 mm and an inner diameter of 14 IllIIl to serve as a diffusion barrier was placed outside of the pipe. Then, a composite wire was produced by inserting it into a Cu pipe with an outer diameter of 20 mm and an inner fM l G mm, which served as a stabilizing material, and a diameter reduction process was performed on this composite wire to produce a superconducting wire with a diameter of 1fflI+1. did. Next, this superconducting strand is subjected to diffusion heat treatment in which it is heated to 550°C for 100 hours, and the Sn in the Sn plating layer is diffused into the inside of the in-situ rod to react with the Nb fibers inside the in-situ rod, forming an NbaSn superconducting intermetallic compound. Nb*Sn superconducting wire was produced.

前述の如く製造されたNb、Sn超電導線は、外部磁場
10T(テスラ)、温度4.2 K、臨界電流200A
において、臨界電流密度として1000A/im”を得
ることができ、良好な特性を示した。
The Nb, Sn superconducting wire manufactured as described above was subjected to an external magnetic field of 10 T (Tesla), a temperature of 4.2 K, and a critical current of 200 A.
In this case, a critical current density of 1000 A/im'' could be obtained, showing good characteristics.

「発明の効果」 以上説明したように本発明によれば以下に説明する効果
を奏する。
"Effects of the Invention" As explained above, according to the present invention, the following effects are achieved.

(1)メッキ複合線を管体に挿入した後に所望の直径に
なるまで縮径加工を施し、後に拡散熱処理を施すために
、拡散熱処理前の縮径工程において、内部にNb5Sn
超電導金属間化合物を生成させていない状態で加工でき
、しかも、インサイチュロッドが本来良好な加工性を有
しているために、断線等のトラブルを起こすことなく縮
径加工ずろことができ、機械的応力による歪のない構造
の超電導線を製造することができる。
(1) After inserting the plated composite wire into the tube, it is reduced in diameter until it reaches the desired diameter, and in order to be subjected to diffusion heat treatment later, in the diameter reduction process before diffusion heat treatment, Nb5Sn is added inside.
Processing can be performed without the generation of superconducting intermetallic compounds, and since in-situ rods inherently have good workability, diameter reduction processing can be performed without causing problems such as wire breakage, and mechanical A superconducting wire with a structure free from stress-induced distortion can be manufactured.

(2)管体内部に任意数のメッキ複合線を挿入すること
ができるために、挿入するメッキ複合線の数を増加させ
ることによって大容量の超電導線を容易に製造できる効
果がある。
(2) Since any number of plated composite wires can be inserted into the tube, there is an effect that a large-capacity superconducting wire can be easily manufactured by increasing the number of plated composite wires to be inserted.

(3)管体内部にメッキ複合線を挿入するために、熱、
処理時にSnメッキ層の溶は落ちを防止することができ
る。このため本発明方法によれば、従来Nb、Sn生成
用の拡散熱処理以前にSnの溶は落ちを防止ずろために
行っていた低温度における熱処理を省略することができ
ろようになり、熱処理時間の短縮化をなしうろ。
(3) In order to insert the plated composite wire inside the pipe, heat,
Melting of the Sn plating layer can be prevented from falling off during processing. Therefore, according to the method of the present invention, it becomes possible to omit the heat treatment at a low temperature that was conventionally performed to prevent dissolution of Sn before the diffusion heat treatment for Nb and Sn production, and the heat treatment time Let's make it shorter.

(4)超電導線の内部に複合するSnはメッキ層状態で
あり、超電導線の横断面積に対するSnの割合は小さい
ために、拡散熱処理時にボイドを生じろこともなくなり
、ボイドによる機械特性劣化の虞も生じない。
(4) The Sn compounded inside the superconducting wire is in the form of a plating layer, and the proportion of Sn to the cross-sectional area of the superconducting wire is small, so there is no possibility of voids occurring during diffusion heat treatment, and there is no risk of deterioration of mechanical properties due to voids. will not occur.

【図面の簡単な説明】 ′ 第1図(A)〜(F’)は、本発明方法の一例を示
すもので、第1図(A)(よインサイチュロッドの横断
面図、第1図(B)はインシチュ線を示す横断面図、第
1図(C)はメッキ複合線を示す横断面図、第1図(D
)はインシチュ線を集合してパイプの内部に挿入した状
態を示す横断面図、第1図(E)はパイプの外部に管体
と安定化パイプを被せた状態を示す横断面図、第1図(
F)は超電導素線の横断面図、第1図CG)は超電導線
の横断面図、第2図(A)〜(E)は従来方法の一例を
示すもので、第2図(A)はインサイチュロッドの横断
面図、第2図(B)はインンチュ線の横断面図、第2図
(C)はメッキ複合線の横断面図、第2図(D)は超電
導線の横断面図、第2図(E)はプレイド型超電導線の
横断面図、第3図は従来の超電導線の一構造例を示す横
断面図、第4図は従来の超電導線の他の構造例を示す横
断面図である。 ′r・・・・・・超電導線、 20・・・・・・インサイチュロッド、21・・・・・
・Nbの繊維、  22・・・・・基地、25・・・・
・・管体、     26・・・・・・パイプ、27°
゛・・・・安定化パイプ、29・・・・・・超電導素線
。 ↓ (G)  ■/T 第2図 (8)0〜2 ↓ ↓ (D)  ■−5 ↓ 第8図
[BRIEF DESCRIPTION OF THE DRAWINGS] Figures 1 (A) to (F') show an example of the method of the present invention. B) is a cross-sectional view showing the in-situ wire, Figure 1 (C) is a cross-sectional view showing the plated composite wire, and Figure 1 (D
) is a cross-sectional view showing the state in which the in-situ wires are assembled and inserted into the inside of the pipe, FIG. figure(
F) is a cross-sectional view of a superconducting wire, FIG. 1 CG) is a cross-sectional view of a superconducting wire, and FIGS. is a cross-sectional view of the in-situ rod, Figure 2 (B) is a cross-sectional view of the in-situ wire, Figure 2 (C) is a cross-sectional view of the plated composite wire, and Figure 2 (D) is a cross-sectional view of the superconducting wire. , FIG. 2(E) is a cross-sectional view of a plaid superconducting wire, FIG. 3 is a cross-sectional view showing one structure example of a conventional superconducting wire, and FIG. 4 is a cross-sectional view showing another structure example of a conventional superconducting wire. FIG. 'r...Superconducting wire, 20...In-situ rod, 21...
・Nb fiber, 22... Base, 25...
・・Pipe body, 26・・・・Pipe, 27°
゛... Stabilization pipe, 29... Superconducting wire. ↓ (G) ■/T Fig. 2 (8) 0-2 ↓ ↓ (D) ■-5 ↓ Fig. 8

Claims (1)

【特許請求の範囲】[Claims] 超電導金属間化合物を構成する2種以上の金属元素の内
、少なくとも1つの元素からなる極細繊維を基地の内部
に形成してなるインサイチュロッドを用意し、前記イン
サイチュロッドの表面に、前記金属間化合物を構成する
2種以上の金属元素の内、残りの元素からなるメッキ層
を形成してメッキ複合線を作製し、次に、前記メッキ複
合線を複数本集合し、これらを前記超電導金属間化合物
を構成する元素の拡散を防止する元素からなる管体に挿
入した後に、この管体の外側に安定化パイプを被せ、更
に、縮径加工を施して所望の直径の超電導素線を作製し
、次いでこの超電導素線に拡散熱処理を施し、前記メッ
キ層を構成する元素を拡散させて前記極細繊維を構成す
る元素と反応させ、超電導金属間化合物を生成させるこ
とを特徴とする繊維分散型超電導線の製造方法。
An in-situ rod is prepared in which ultrafine fibers made of at least one element among two or more metal elements constituting the superconducting intermetallic compound are formed inside a base, and the intermetallic compound is formed on the surface of the in-situ rod. A plated composite wire is produced by forming a plated layer consisting of the remaining element among the two or more metal elements constituting the superconducting intermetallic compound, and then a plurality of the plated composite wires are assembled, and these are combined with the superconducting intermetallic compound. After inserting the superconducting wire into a tube made of an element that prevents the diffusion of the elements constituting the tube, a stabilizing pipe is placed on the outside of the tube, and a diameter reduction process is performed to produce a superconducting wire of the desired diameter. A fiber-dispersed superconducting wire characterized in that the superconducting wire is then subjected to diffusion heat treatment to diffuse the elements constituting the plating layer and react with the elements constituting the ultrafine fibers to generate a superconducting intermetallic compound. manufacturing method.
JP61087284A 1986-04-16 1986-04-16 Method for producing fiber-dispersed superconducting wire Expired - Lifetime JPH0735560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61087284A JPH0735560B2 (en) 1986-04-16 1986-04-16 Method for producing fiber-dispersed superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61087284A JPH0735560B2 (en) 1986-04-16 1986-04-16 Method for producing fiber-dispersed superconducting wire

Publications (2)

Publication Number Publication Date
JPS62243745A true JPS62243745A (en) 1987-10-24
JPH0735560B2 JPH0735560B2 (en) 1995-04-19

Family

ID=13910488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61087284A Expired - Lifetime JPH0735560B2 (en) 1986-04-16 1986-04-16 Method for producing fiber-dispersed superconducting wire

Country Status (1)

Country Link
JP (1) JPH0735560B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294310A (en) * 1988-05-20 1989-11-28 Fujikura Ltd Superconductive wire and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294310A (en) * 1988-05-20 1989-11-28 Fujikura Ltd Superconductive wire and its manufacture

Also Published As

Publication number Publication date
JPH0735560B2 (en) 1995-04-19

Similar Documents

Publication Publication Date Title
JPS61194155A (en) Production of nb3sn superconductive wire
US3836404A (en) Method of fabricating composite superconductive electrical conductors
US3996662A (en) Method for the manufacture of a superconductor having an intermetallic two element compound
JPS62243745A (en) Manufacture of superconductive electric wire containing dispersed fiber
JPH08180752A (en) Nb3sn superconductive wire and manufacture thereof
JP2517594B2 (en) Method for producing fiber-dispersed superconducting wire
JP3059570B2 (en) Superconducting wire and its manufacturing method
JP2719155B2 (en) Superconducting stranded wire manufacturing method
JP2742421B2 (en) Superconducting wire and its manufacturing method
JPS602728B2 (en) Method for manufacturing compound composite superconductor
JP2878390B2 (en) Method of manufacturing Nb (3) Sn superconducting wire for superconducting generator
JP2742436B2 (en) Method for producing compound superconducting stranded wire
JPS637353A (en) Production of fiber dispersion type superconductive wire
JPS62267050A (en) Production of in-situ rod for fiber dispersion type superconducting wire
JPH0735561B2 (en) Method for producing fiber-dispersed superconducting wire
JPH087681A (en) A3b type compound superconductive wire rod and manufacture thereof
JP2742422B2 (en) Method of manufacturing compound superconducting wire
JP2644854B2 (en) Method of manufacturing compound superconducting wire
JPH0735562B2 (en) Method for producing fiber-dispersed superconducting wire
JP2742437B2 (en) Method for producing compound superconducting stranded wire
JPS60250509A (en) Method of producing nb3sn composite superconductive wire
JPH0381247B2 (en)
JPH0350368B2 (en)
JPS60101816A (en) Method of producing nb3sn superconductive wire material
JPH0132303B2 (en)