JPH0735562B2 - Method for producing fiber-dispersed superconducting wire - Google Patents

Method for producing fiber-dispersed superconducting wire

Info

Publication number
JPH0735562B2
JPH0735562B2 JP61087286A JP8728686A JPH0735562B2 JP H0735562 B2 JPH0735562 B2 JP H0735562B2 JP 61087286 A JP61087286 A JP 61087286A JP 8728686 A JP8728686 A JP 8728686A JP H0735562 B2 JPH0735562 B2 JP H0735562B2
Authority
JP
Japan
Prior art keywords
superconducting
superconducting wire
wire
situ
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61087286A
Other languages
Japanese (ja)
Other versions
JPS62243747A (en
Inventor
優 杉本
宰 河野
義光 池野
伸行 定方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP61087286A priority Critical patent/JPH0735562B2/en
Publication of JPS62243747A publication Critical patent/JPS62243747A/en
Publication of JPH0735562B2 publication Critical patent/JPH0735562B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、高磁界域における臨界電流特性を改善した超
電導線の製造方法に関するもので、核融合炉用トロイダ
ルマグネット、粒子加速器用マグネット、超電導発電機
用マグネット等に利用される繊維分散型超電導線の製造
方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a superconducting wire with improved critical current characteristics in a high magnetic field region, such as a toroidal magnet for a fusion reactor, a magnet for a particle accelerator, and a superconductivity. The present invention relates to a method for manufacturing a fiber-dispersed superconducting wire used for a generator magnet or the like.

「従来の技術」 所定成分のCu−Nb−Sn3元合金を溶製した場合、銅合金
基地内にNbのデンドライトが分散した組織を有し、しか
も加工性が高いインゴッドを得ることができる。そして
このインゴットに線引加工等を施して強加工するとNbの
繊維が多数密接して銅合金基地内に分散配列したインサ
イチュロッドを得ることができ、この製法は、従来、い
わゆるインサイチュ(In−situ)法として知られてい
る。そして更に、このインサイチュ法を採用して製造し
た前記組成のインサイチュロッドに、拡散熱処理を施す
ことによってNb3Sn超電導金属間化合物を生成させ、繊
維分散型Nb3Sn超電導線を製造することがなされてい
る。
“Prior Art” When a Cu—Nb—Sn ternary alloy having a predetermined component is melted, an ingot having a structure in which dendrite of Nb is dispersed in a copper alloy matrix and having high workability can be obtained. Then, by subjecting this ingot to a wire drawing process or the like and subjecting it to a strong process, it is possible to obtain an in-situ rod in which a large number of Nb fibers are in close contact and dispersedly arranged in a copper alloy matrix. ) Known as the law. Further, the in-situ rod of the composition produced by adopting the in-situ method is subjected to a diffusion heat treatment to generate an Nb 3 Sn superconducting intermetallic compound, thereby producing a fiber-dispersed Nb 3 Sn superconducting wire. ing.

また、Nb3Sn等の超電導金属間化合物にTi等の第3元素
を添加することによって超電導金属間化合物の高磁界域
における臨界電流特性を向上できることが知られてい
る。
It is also known that the critical current characteristics of a superconducting intermetallic compound in a high magnetic field region can be improved by adding a third element such as Ti to a superconducting intermetallic compound such as Nb 3 Sn.

そこで従来、前記インサイチュ法によって製造される繊
維分散型超電導線の高磁界域における臨界電流特性を向
上させる目的でインサイチュロッドの内部に第3元素を
複合する方法が実施されている。
Therefore, conventionally, a method of compounding the third element inside the in-situ rod has been carried out for the purpose of improving the critical current characteristics in the high magnetic field region of the fiber-dispersed superconducting wire manufactured by the in-situ method.

ここで、従来一般に、前記インサイチュ法を利用して繊
維分散型超電導線を作製する場合に第3元素を添加する
方法として、Cu−Nb−Sn合金の溶解時に予め第3元素を
添加しておく方法が採用されている。
Here, in general, as a method of adding the third element in the case of producing a fiber-dispersed superconducting wire using the in-situ method, the third element is added in advance when the Cu—Nb—Sn alloy is melted. The method has been adopted.

「発明が解決しようとする問題点」 ところがCu−Nb−Sn合金の溶解時に第3元素を添加して
繊維分散型Nb3Sn超電導線を製造した場合、以下に説明
する欠点を生じる問題があった。
If a third element is added to produce a fiber distributed Nb 3 Sn superconducting wire upon dissolution of the "invention will to Problems Solved" However Cu-Nb-Sn alloy, a problem resulting in disadvantages as described below It was

(1)添加した第3元素が、溶解工程、あるいは鋳造工
程において消耗するために、得られたインサイチュロッ
ドにおける第3元素の含有量が不足することになり、目
的とする組成の繊維分散型超電導線を得ることが困難に
なる。
(1) Since the added third element is consumed in the melting step or the casting step, the content of the third element in the obtained in-situ rod becomes insufficient, and the fiber-dispersed superconducting material having the desired composition is obtained. It's hard to get a line.

(2)基地内のCuまたはNbデンドライトと第3元素が反
応するか、あるいは、固溶することにより、加工性に劣
る合金、または、化合物が生成するために、インサイチ
ュ法本来の良好な加工性が失われ、縮径加工中にトラブ
ルを生じたり、中間焼鈍を頻繁に施さなくてはならない
問題がある。
(2) Cu or Nb dendrite in the matrix reacts with the third element or forms a solid solution to form an alloy or compound with poor workability, resulting in good workability inherent in the in-situ method. Are lost, and problems occur during diameter reduction processing, and intermediate annealing must be frequently performed.

(3)添加した第3元素の偏析を生じ易く、第3元素の
濃度が不均一になる。
(3) Segregation of the added third element is likely to occur, and the concentration of the third element becomes nonuniform.

本発明は、前記問題に鑑みてなされたもので、必要とす
る正確な量の第3元素を含有させた繊維分散型超電導線
を製造することができるとともに、加工性も良好であ
り、第3元素を超電導線の内部に均一に添加することが
できる超電導線の製造方法を提供することを目的とす
る。
The present invention has been made in view of the above problems, and it is possible to manufacture a fiber-dispersed superconducting wire containing a necessary and accurate amount of the third element, and the workability is also good. It is an object of the present invention to provide a method for producing a superconducting wire, which allows an element to be uniformly added to the inside of the superconducting wire.

「問題点を解決するための手段」 本発明は前記問題点を解決するために、超電導金属間化
合物を構成する2種以上の金属元素の内、少なくとも1
つからなる極細繊維を基地の内部に形成してなるインサ
イチュロッドを用意し、前記インサイチュロッドの外方
に前記超電導金属間化合物の高磁界域における臨界電流
値を向上させるTi、Ta、In、Hf、Al、Zr等の第3元素の
いずれか1つ以上からなる薄肉部材を配し、その外方に
CuまたはCu−Sn合金からなる管体を配し、その外周にSn
メッキを施し、この後に拡散熱処理を施して基地内の金
属元素と極細繊維の金属元素と第3元素を拡散し反応さ
せて超電導金属間化合物を生成させるものである。
[Means for Solving Problems] In order to solve the above problems, the present invention provides at least one of two or more kinds of metal elements constituting a superconducting intermetallic compound.
Prepare an in-situ rod formed by forming ultrafine fibers consisting of two inside the base, Ti, Ta, In, Hf to improve the critical current value in the high magnetic field region of the superconducting intermetallic compound outside the in-situ rod. A thin-walled member made of one or more of the third elements such as Al, Zr, etc. is arranged outside the thin member.
A tube made of Cu or Cu-Sn alloy is placed, and Sn is placed around the tube.
Plating is performed, and then diffusion heat treatment is performed to diffuse and react the metal element in the matrix, the metal element of the ultrafine fibers, and the third element to generate a superconducting intermetallic compound.

「作用」 インサイチュロッドに第3元素を複合し、しかも、拡散
熱処理前まで第3元素と基地を合金化しないためにイン
サイチュロッドが本来有する優れた加工性を維持しつつ
縮径加工することができるとともに中間焼鈍条件も有利
になる。また、インサイチュロッドを作製した後に第3
元素を添加するために、溶解時や鋳造時に第3元素が消
耗していた従来方法に比較して正確な量の第3元素を含
有させることができる。
"Function" Since the third element is compounded with the in-situ rod, and the alloying of the third element with the matrix is not performed before the diffusion heat treatment, it is possible to reduce the diameter while maintaining the excellent workability originally possessed by the in-situ rod. At the same time, the intermediate annealing condition becomes advantageous. In addition, after making the in-situ rod,
Since the element is added, it is possible to add an accurate amount of the third element as compared with the conventional method in which the third element was consumed during melting or casting.

「実施例」 第1図(A)〜(G)は、Nb3Sn超電導線の製造に適用
した本発明の一実施例を示すもので、第1図(A)〜
(G)に示す加工を施すことにより第1図(G)に示す
繊維分散型Nb3Sn超電導線Tを製造する。
"Examples" FIG. 1 (A) ~ (G) is, shows one embodiment of the present invention applied to the production of Nb 3 Sn superconducting wire, FIG. 1 (A) ~
By performing the processing shown in (G), the fiber-dispersed Nb 3 Sn superconducting wire T shown in FIG. 1 (G) is manufactured.

前記繊維分散型Nb3Sn超電導線Tを製造するには、ま
ず、第1図(A)に示すインサイチュロッド1を作製す
る。このインサイチュロッド1を作製するには、銅合金
基地内にNbのデンドライトが分散した組織を有するCu−
Nb−Sn3元合金インゴットを溶製し、このインゴットに
線引加工を施してNbデンドライトを繊維状に密接させる
ことにより製造する。なおこのインサイチュロッド1は
Nbの繊維2が多数密接して銅合金基地3内に分散配列し
た構造を有する公知のものである。
To manufacture the fiber-dispersed Nb 3 Sn superconducting wire T, first, the in-situ rod 1 shown in FIG. 1 (A) is manufactured. To prepare this in-situ rod 1, Cu-having a structure in which Nb dendrites are dispersed in a copper alloy matrix.
It is manufactured by melting an Nb-Sn ternary alloy ingot, subjecting the ingot to a drawing process, and closely contacting the Nb dendrite into a fibrous shape. This in-situ rod 1
This is a known one having a structure in which a large number of Nb fibers 2 are closely arranged and dispersed in a copper alloy matrix 3.

次いで前記インサイチュロッド1を第1図(B)に示す
ように縮径し、更にその外方にNb3Snの高磁界域におけ
る臨界電流値を向上させる第3元素であるTiからなる薄
肉部材5を第1図(C)に示す如く被せる。この薄肉部
材5は、管体から、あるいは、テープや箔から構成さ
れ、テープや箔から構成する場合は、インサイチュロッ
ド1に縦添えする等の手段により形成される。なお、前
記薄肉部材5を構成する元素は、Ti、Ta、Hf、Al、In、
Ga、Zr等の第3元素からなる高純度材料、あるいは、こ
れらの合金材料を用いることもできる。また、前記イン
サイチュロッド1を覆う薄肉部材5の肉厚を所要の値に
設定することによって、超電導線Tに含有させる第3元
素量を所望の値に設定することができる。そしてこれに
よって所望の臨界電流値を発揮する超電導線Tを製造す
ることが可能となる。
Next, the in-situ rod 1 is reduced in diameter as shown in FIG. 1 (B), and the thin member 5 made of Ti, which is a third element, further improves the critical current value of Nb 3 Sn in the high magnetic field region outside thereof. Are covered as shown in FIG. 1 (C). The thin member 5 is formed of a tubular body, or a tape or foil. When the thin member 5 is formed of a tape or foil, it is formed by means such as being vertically attached to the in-situ rod 1. The elements forming the thin member 5 are Ti, Ta, Hf, Al, In,
It is also possible to use a high-purity material made of a third element such as Ga or Zr, or an alloy material thereof. Further, by setting the thickness of the thin member 5 that covers the in-situ rod 1 to a required value, the amount of the third element contained in the superconducting wire T can be set to a desired value. This makes it possible to manufacture the superconducting wire T that exhibits a desired critical current value.

続いて前記薄肉部材5の外周に、第1図(D)に示す如
くCuまたはCu−Snからなる管体4を被せ、更に必要に応
じて中間焼鈍処理を施しつつ第1図(E)に示す如く縮
径して複合線Fを作製する。なお、この縮径工程におい
ては、薄肉部材5と銅合金基地3を合金化していないた
めに、インサイチュロッド1が本来有する良好な加工性
を維持することができる。従って溶製時にTiを添加して
インサイチュロッドを作製していた従来の超電導線の製
造方法に比較して中間焼鈍条件も有利になって縮径加工
中のトラブルもなくなる効果がある。また、インサイチ
ュロッド1の製造のための溶解時と鋳造時に第3元素を
添加しないために、添加した第3元素の消耗もなくなる
上に、所要厚さの第3元素からなる薄肉部材5を複合す
ることによって、所望量の第3元素を正確に含有させる
ことができる。次いで前記複合線Fの外周にSnメッキ層
6を形成して第1図(F)に示すメッキ複合線7を作製
する。
Subsequently, the outer periphery of the thin member 5 is covered with a tube body 4 made of Cu or Cu-Sn as shown in FIG. 1 (D), and further subjected to an intermediate annealing treatment if necessary, as shown in FIG. 1 (E). The composite wire F is manufactured by reducing the diameter as shown. In this diameter reduction step, since the thin member 5 and the copper alloy base 3 are not alloyed, good workability originally possessed by the in-situ rod 1 can be maintained. Therefore, as compared with the conventional method for manufacturing a superconducting wire in which Ti is added at the time of melting to manufacture an in-situ rod, the intermediate annealing condition is more advantageous, and there is an effect that troubles during the diameter reducing process are eliminated. Further, since the third element is not added during melting and casting for manufacturing the in-situ rod 1, consumption of the added third element is eliminated, and the thin member 5 made of the third element having a required thickness is combined. By doing so, the desired amount of the third element can be accurately contained. Next, a Sn plating layer 6 is formed on the outer periphery of the composite wire F to produce a plated composite wire 7 shown in FIG. 1 (F).

次に前記メッキ複合線7を200〜300℃程度に加熱する熱
処理を施してSnメッキ層6を複合線Fの内部側に拡散さ
せ、更に拡散熱処理(550〜850℃程度に20〜300時間程
度加熱する熱処理)を施し、銅合金基地3の内部のNbデ
ンドライトと、銅合金基地3の内部のSnとSnメッキ層6
のSnを反応させてNb3Snを生成させ、薄肉部材5の内部
のTiを拡散させて繊維状のNb3Sn−Tiを生成させ、第1
図(G)に示す超電導線Tを製造する。
Next, the plated composite wire 7 is subjected to a heat treatment for heating to about 200 to 300 ° C. to diffuse the Sn plating layer 6 to the inside of the composite wire F, and further diffusion heat treatment (about 550 to 850 ° C. for about 20 to 300 hours). Heat treatment) to perform Nb dendrite inside the copper alloy matrix 3 and Sn and Sn plating layers 6 inside the copper alloy matrix 3.
To react with Sn to generate Nb 3 Sn, and diffuse Ti inside the thin member 5 to generate fibrous Nb 3 Sn-Ti.
The superconducting wire T shown in FIG.

このように製造された超電導線TはNb3Sn層の中にTiが
拡散しているために、優れた臨界電流特性を高磁界域で
発揮する。また、Nb3Snが生成する過程において、Snメ
ッキ層6のSnがインサイチュロッド1の内部側に拡散し
てインサイチュロッド1の外周部側のNbの繊維2からNb
3Snを生成し始めるがここでインサイチュロッド1の外
周に薄肉部材5が配されているために、薄肉部材5の第
3元素がNb3Sn層の中に効率良く均一に拡散してNb3Sn−
Tiを生成する。
Since the superconducting wire T thus manufactured has Ti diffused in the Nb 3 Sn layer, it exhibits excellent critical current characteristics in a high magnetic field region. In addition, in the process of producing Nb 3 Sn, Sn of the Sn plating layer 6 diffuses to the inside of the in-situ rod 1 and the Nb fibers 2 to Nb on the outer peripheral side of the in-situ rod 1
For thin member 5 is arranged on 3 begin to generate Sn Although periphery situ rod 1 wherein the third element of the thin-walled member 5 is to efficiently and uniformly diffuse into the Nb 3 Sn layer Nb 3 Sn-
Generate Ti.

一方、第2図は、本発明を繊維分散型多心Nb3Sn超電導
線の製造に適用した例を示すものである。
On the other hand, FIG. 2 shows an example in which the present invention is applied to the production of a fiber-dispersed multi-core Nb 3 Sn superconducting wire.

本実施例においては、第2図(A)に示すインサイチュ
ロッド1を第2図(B)に示すように縮径し、Tiからな
る薄肉部材5を第2図(C)に示すように被せ、更に、
CuあるいはCu−Sn合金からなる管15を第2図(D)に示
すように被せ、更に縮径加工を施して第2図(E)に示
す複合線Fを作製し、更に複合線FにSnメッキ層6を形
成して第2図(F)に示すメッキ複合線7を作製する。
そしてこのメッキ複合線7を第2図(G)に示すように
多数本集合し、低Sn濃度のCu−Sn合金または銅からなる
パイプ20に挿入し、拡散バリヤ用のTaあるいはNbからな
る管21に挿入し、更に、安定化材となるCuまたはAlから
なる管体22に挿入し、縮径して第2図(H)に示す超電
導素線Sを作製する。次いでこの超電導素線Sに拡散熱
処理を施して繊維分散型Nb3Sn超電導線を製造する。
In this embodiment, the in-situ rod 1 shown in FIG. 2 (A) is reduced in diameter as shown in FIG. 2 (B), and the thin member 5 made of Ti is covered as shown in FIG. 2 (C). , In addition,
The pipe 15 made of Cu or Cu-Sn alloy is covered as shown in FIG. 2 (D), and further reduced in diameter to produce the composite wire F shown in FIG. 2 (E). The Sn plating layer 6 is formed to produce the plating composite wire 7 shown in FIG. 2 (F).
Then, as shown in FIG. 2G, a large number of the plated composite wires 7 are assembled and inserted into a pipe 20 made of a Cu-Sn alloy or copper having a low Sn concentration, and a pipe made of Ta or Nb for a diffusion barrier. Then, the superconducting element wire S shown in FIG. 2 (H) is manufactured by inserting it into the tubular body 22 made of Cu or Al as a stabilizing material and reducing the diameter. Next, this superconducting wire S is subjected to diffusion heat treatment to manufacture a fiber-dispersed Nb 3 Sn superconducting wire.

以上説明したような方法を実施して繊維分散型Nb3Sn多
心超電導線を製造した場合、メッキ複合線7をパイプ20
内に挿入するために、拡散熱処理時にSnメッキ層6の溶
け落ちを防止できる効果がある。この点において先に記
載した例においては、Snメッキ層6の溶け落ちを防止す
るために、拡散熱処理の前段階で低温度に長時間加熱す
ることによりSnメッキ層6を基地の内部に拡散させる必
要があり、その後にNb3Sn生成用拡散熱処理を施す必要
を生じるために、熱処理時間が長くなるが、本実施例に
おいては前記低温度の熱処理が不要になるために熱処理
時間の短縮化をなしうる。なお、前述のように製造した
超電導線にあっては、内部に多数のNb3Sn−Ti繊維を具
備しているために、電流容量が大きな特徴がある。
When the fiber-dispersed Nb 3 Sn multi-core superconducting wire is manufactured by performing the method described above, the plated composite wire 7 is connected to the pipe 20.
Since it is inserted inside, there is an effect that it is possible to prevent the Sn plating layer 6 from being burnt through during the diffusion heat treatment. In this respect, in the above-described example, in order to prevent the Sn plating layer 6 from being burnt through, the Sn plating layer 6 is diffused into the base by heating at a low temperature for a long time before the diffusion heat treatment. Since it is necessary to perform a diffusion heat treatment for Nb 3 Sn generation after that, the heat treatment time becomes long, but in the present embodiment, the heat treatment at the low temperature is not necessary, so the heat treatment time can be shortened. You can do it. The superconducting wire manufactured as described above has a large current capacity because it has a large number of Nb 3 Sn—Ti fibers inside.

ところで従来、超電導線の容量を拡大し多心化するため
に、インサイチュロッドからなるNb3Sn超電導線を安定
化ロッドの周囲に複数、はんだ等の固定材で接着してブ
レイド化することがなされているが、Nb3Sn生成後にブ
レイド化するために機械的応力を受けて超電導特性が劣
化する問題がある。
By the way, conventionally, in order to expand the capacity of the superconducting wire and increase the number of cores, a plurality of Nb 3 Sn superconducting wires consisting of in-situ rods have been bonded around the stabilizing rod with a fixing material such as solder to form a braid. However, there is a problem that superconducting characteristics are deteriorated due to mechanical stress due to formation of braid after Nb 3 Sn formation.

この点において、前述のように繊維分散型多心Nb3Sn超
電導線を製造すると、多数のメッキ複合線7をパイプ20
内に配して縮径した後に拡散熱処理を施すために、従来
行っていたブレイド化法のように超電導金属間化合物生
成後に機械加工する必要がなくなり、超電導特性の劣化
も生じない効果がある。
In this respect, when the fiber-dispersed multi-core Nb 3 Sn superconducting wire is manufactured as described above, a large number of plated composite wires 7 are piped.
In order to perform the diffusion heat treatment after arranging in the inside and reducing the diameter, it is not necessary to perform machining after the superconducting intermetallic compound is formed unlike the conventional braiding method, and there is an effect that the superconducting characteristics are not deteriorated.

「製造例1」 外径20mmのインサイチュロッドを用意し、このインサイ
チュロッドに押出と線引加工を施して線材を得る。次に
この線材に、外径11mm、内径10.4mmのTiからなる管体を
被せ、更にこれらを外径13mm、内径12mmであって、Sn6w
t%を含有するブロンズ管に挿入し、更に縮径加工と中
間焼鈍処理を施して複合線を作製する。次に、この複合
線に電気メッキ法により5μ厚のSnメッキ層を形成して
メッキ複合線を作製した。
"Production Example 1" An in-situ rod having an outer diameter of 20 mm is prepared, and the in-situ rod is extruded and drawn to obtain a wire rod. Next, cover this wire with a tube made of Ti with an outer diameter of 11 mm and an inner diameter of 10.4 mm, and further cover these with an outer diameter of 13 mm and an inner diameter of 12 mm.
Inserted into a bronze tube containing t%, and further reduced in diameter and subjected to intermediate annealing treatment to produce a composite wire. Next, a 5 μm thick Sn plating layer was formed on this composite wire by an electroplating method to prepare a plated composite wire.

次いでこのメッキ複合線に200℃と350℃に段階的に昇温
する熱処理を施してSnメッキ層を基地内に拡散させ、こ
の後に650℃に75時間加熱する拡散熱処理を施してNb3Sn
を生成させ、薄肉部材のTiをNb3Sn層の中に拡散させて
超電導線を製造した。
Then, the plated composite wire is subjected to a heat treatment of gradually raising the temperature to 200 ° C. and 350 ° C. to diffuse the Sn plating layer into the matrix, and then subjected to a diffusion heat treatment of heating to 650 ° C. for 75 hours to form Nb 3 Sn.
Was produced and Ti of the thin member was diffused into the Nb 3 Sn layer to manufacture a superconducting wire.

この超電導線の臨界電流特性を測定したところ、外部磁
界14T(テスラ)のもとで臨界電流密度500A/mm2を示し
た。なお、同等の条件において、Tiを添加していない従
来の超電導線は臨界電流密度が200A/mm2程度であること
を考慮するならば本発明の超電導線は極めて優秀な臨界
電流値を示すことが明らかになった。
When the critical current characteristics of this superconducting wire were measured, it showed a critical current density of 500 A / mm 2 under an external magnetic field of 14 T (Tesla). Under the same conditions, the conventional superconducting wire to which Ti is not added has an extremely excellent critical current value if the critical current density is about 200 A / mm 2. Became clear.

「製造例2」 直径20mmの銅基地の内部にNb繊維を配した構成であっ
て、Nb30wt%を含有するCu−Nb合金からなるインサイチ
ュロッドをアーク溶解法を採用して作製した。このイン
サイチュロッドに縮径加工を施して直径6mmのロッドを
作製した。このロッドに厚さ60μmのTi箔を縦沿えして
被せ、更に、外径10mm、内径7mmであって、Sn6wt%を含
有するブロンズ管中に挿入して縮径加工を施し、直径1m
mの複合線を作製した。
[Manufacturing Example 2] An in-situ rod made of a Cu-Nb alloy containing 30 wt% of Nb and having a configuration in which Nb fibers were arranged inside a copper matrix having a diameter of 20 mm was produced by using an arc melting method. This in-situ rod was subjected to diameter reduction processing to produce a rod having a diameter of 6 mm. This rod is covered with a Ti foil with a thickness of 60 μm vertically, and is further inserted into a bronze tube having an outer diameter of 10 mm and an inner diameter of 7 mm and containing Sn6 wt% to reduce the diameter, and the diameter is 1 m.
A composite wire of m was made.

次に、この複合線に電気メッキ法を採用して厚さ30μm
のSnメッキ層を形成してメッキ複合線を作製し、このメ
ッキ複合線を91本集合し、更に、拡散バリヤ用のNb管と
安定化銅管を被せて縮径し、外径1mmの多心超電導素線
を得た。
Next, the electroplating method is applied to this composite wire to a thickness of 30 μm.
Sn plating layer is formed to make a plated composite wire, 91 of these plated composite wires are assembled, and further, a Nb tube for diffusion barrier and a stabilized copper tube are covered to reduce the diameter, and an outer diameter of 1 mm I got a superconducting wire.

この多心超電導素線を650℃に100時間加熱する拡散熱処
理を施して繊維分散型Nb3Sn超電導線を作製した。
A fiber-dispersed Nb 3 Sn superconducting wire was produced by subjecting this multi-core superconducting wire to diffusion heat treatment at 650 ° C for 100 hours.

前述のように作製した繊維部型Nb3Sn超電導線は、特
に、14T(テスラ)以上の高磁界域において著しい臨海
電流特性の改善が見られた。
The fiber-type Nb 3 Sn superconducting wire prepared as described above showed remarkable improvement in the critical current characteristics, especially in the high magnetic field region of 14 T (tesla) or more.

ところで、以上の例においては繊維分散型Nb3Sn超電導
線の製造に本発明を適用した例について説明したが、V3
Ga等、その他の化合物系超電導線に本発明を適用しても
良いのは勿論である。なお、繊維分散型V3Ga超電導線を
製造する場合には、Cu−V−Sn3元合金からインサイチ
ュロッドを作製し、これを用いて複合線を作製し、複合
線にGaメッキを施してメッキ複合線を作製し、必要に応
じてメッキ複合線を多数本集合して拡散熱処理を施すこ
とにより、繊維分散型V3Ga超電導線を製造することがで
きる。
Incidentally, in the above example it has been described the example of applying the present invention in the manufacture of fiber dispersion type Nb 3 Sn superconducting wire, V 3
Needless to say, the present invention may be applied to other compound-based superconducting wires such as Ga. When manufacturing a fiber-dispersed V 3 Ga superconducting wire, an in-situ rod is made from a Cu-V-Sn ternary alloy, a composite wire is made using this, and the composite wire is plated with Ga to plate it. A fiber-dispersed V 3 Ga superconducting wire can be manufactured by producing a composite wire, and assembling a large number of plated composite wires and subjecting them to diffusion heat treatment, if necessary.

「発明の効果」 以上説明したように本発明によれば以下に説明する効果
を奏する。
"Effects of the Invention" As described above, according to the present invention, the effects described below are achieved.

(1)インサイチュロッドに第3元素の芯体を複合し、
拡散熱処理前にインサイチュロッドの金属元素と第3元
素を反応させない状態で縮径加工するものであり、イン
サイチュロッドが本来有する良好な加工性を維持しつつ
縮径加工するために、溶製時に第3元素を添加していた
従来方法に比較して縮径加工中のトラブルがなくなり、
中間焼鈍条件も有利になる効果がある。
(1) Compound the core of the third element with the in-situ rod,
Prior to the diffusion heat treatment, the in-situ rod is reduced in diameter without reacting the metal element and the third element. In order to reduce the diameter while maintaining the good workability originally possessed by the in-situ rod, Compared to the conventional method in which 3 elements were added, there are no problems during the diameter reduction process,
Intermediate annealing conditions also have the effect of becoming advantageous.

(2)インサイチュロッドを覆う薄肉部材の肉厚を適宜
の値に調節するならば所望量の第3元素を含有した超電
導線を製造できる効果がある。また、薄肉部材の肉厚を
変更することにより含有させる第3元素量を調節できる
ために第3元素量を容易に調節できる効果がある。
(2) If the thickness of the thin member covering the in-situ rod is adjusted to an appropriate value, there is an effect that a superconducting wire containing a desired amount of the third element can be manufactured. Moreover, since the amount of the third element to be contained can be adjusted by changing the thickness of the thin member, there is an effect that the amount of the third element can be easily adjusted.

(3)溶製時に第3元素を添加していた従来方法におい
ては第3元素の偏析を生じる問題があったが、第3元素
を芯体の状態でインサイチュロッドに複合するために偏
析の問題を生じることもなく、しかも、溶解時や鋳造時
に第3元素が消耗することもなくなるために、正確な量
の第3元素を添加できる効果がある。
(3) In the conventional method in which the third element was added during melting, there was a problem of segregation of the third element, but since the third element is compounded in the in-situ rod in the state of the core, the problem of segregation occurs. Is not generated, and the third element is not consumed during melting or casting, so that an accurate amount of the third element can be added.

【図面の簡単な説明】[Brief description of drawings]

第1図(A)〜(G)は、本発明の一実施例を示すもの
で、第1図(A)はインサイチュロッドの横断面図、第
1図(B)は縮径したインサイチュロッドを示す横断面
図、第1図(C)はインサイチュロッドに薄肉部材を被
せた状態を示す横断面図、第1図(D)は薄肉部材の外
方に基地を被せた状態を示す横断面図、第1図(E)は
複合線を示す横断面図、第1図(F)はメッキ複合線の
横断面図、第1図(G)は超電導線の横断面図、第2図
(A)〜(H)は本発明の他の実施例を示すもので、第
2図(A)はインサイチュロッドの横断面図、第2図
(B)は縮径後のインサイチュロッドの横断面図、第2
図(C)は縮径後のインサイチュロッドに薄肉部材を被
せた状態を示す横断面図、第2図(D)は薄肉部材に管
体を被せた状態を示す横断面図、第2図(E)は複合線
の横断面図、第2図(F)はメッキ複合線の横断面図、
第2図(G)はメッキ複合線の集合状態を示す横断面
図、第2図(H)は超電導素線の横断面図である。 T……超電導線、S……超電導素線、1……インサイチ
ュロッド、2……Nbの繊維、3……銅合金基地、4……
管体、5……薄肉部材、6……Snメッキ層、7……メッ
キ複合線。
1 (A) to (G) show an embodiment of the present invention. FIG. 1 (A) is a cross-sectional view of an in-situ rod, and FIG. 1 (B) shows a reduced in-situ rod. FIG. 1 (C) is a cross-sectional view showing a state in which the in-situ rod is covered with a thin member, and FIG. 1 (D) is a cross-sectional view showing a state in which the base is covered outside the thin member. 1 (E) is a cross-sectional view showing a composite wire, FIG. 1 (F) is a cross-sectional view of a plated composite wire, FIG. 1 (G) is a cross-sectional view of a superconducting wire, and FIG. 2 (A). )-(H) show another embodiment of the present invention, FIG. 2 (A) is a cross-sectional view of the in-situ rod, FIG. 2 (B) is a cross-sectional view of the in-situ rod after diameter reduction, Second
FIG. 2C is a cross-sectional view showing a state where the thin-walled member is covered on the in-situ rod after the diameter reduction, and FIG. 2D is a cross-sectional view showing a state where the tubular body is covered on the thin-walled member. E) is a cross sectional view of the composite wire, FIG. 2 (F) is a cross sectional view of the plated composite wire,
FIG. 2 (G) is a cross-sectional view showing the state of assembly of the plated composite wire, and FIG. 2 (H) is a cross-sectional view of the superconducting element wire. T ... Superconducting wire, S ... Superconducting element wire, 1 ... In-situ rod, 2 ... Nb fiber, 3 ... Copper alloy base, 4 ...
Tube, 5 ... Thin-walled member, 6 ... Sn plated layer, 7 ... Plated composite wire.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】超電導金属間化合物を構成する2種以上の
金属元素の内、少なくとも1つからなる極細繊維を基地
の内部に形成してなるインサイチュロッドを用意し、前
記インサイチュロッドの外方に、前記超電導金属間化合
物の高磁界域における臨界電流値を向上させるTi、Ta、
In、Hf、Al、Zr等の第3元素のいずれか1つ以上からな
る薄肉部材を配し、その外方にCuまたはCu−Sn合金から
なる管体を配し、その外周にSnメッキを施した後に拡散
熱処理を施して基地内の金属元素と極細繊維の金属元素
と第3元素を拡散し反応させて超電導金属間化合物を生
成させることを特徴とする繊維分散型超電導線の製造方
法。
1. An in-situ rod formed by forming an ultrafine fiber made of at least one of two or more kinds of metal elements constituting a superconducting intermetallic compound inside a matrix is provided on the outside of the in-situ rod. , Ti, Ta for improving the critical current value in the high magnetic field region of the superconducting intermetallic compound,
A thin member made of at least one of the third elements such as In, Hf, Al, Zr, etc. is arranged, a tube body made of Cu or Cu-Sn alloy is arranged on the outside thereof, and Sn plating is applied on the outer periphery thereof. A method for producing a fiber-dispersed superconducting wire, characterized in that the superconducting intermetallic compound is produced by diffusing heat treatment and then diffusing and reacting the metal element in the matrix, the metal element of the ultrafine fibers and the third element.
JP61087286A 1986-04-16 1986-04-16 Method for producing fiber-dispersed superconducting wire Expired - Lifetime JPH0735562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61087286A JPH0735562B2 (en) 1986-04-16 1986-04-16 Method for producing fiber-dispersed superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61087286A JPH0735562B2 (en) 1986-04-16 1986-04-16 Method for producing fiber-dispersed superconducting wire

Publications (2)

Publication Number Publication Date
JPS62243747A JPS62243747A (en) 1987-10-24
JPH0735562B2 true JPH0735562B2 (en) 1995-04-19

Family

ID=13910549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61087286A Expired - Lifetime JPH0735562B2 (en) 1986-04-16 1986-04-16 Method for producing fiber-dispersed superconducting wire

Country Status (1)

Country Link
JP (1) JPH0735562B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116334375B (en) * 2023-05-30 2023-08-11 西安聚能超导线材科技有限公司 Niobium three-tin superconducting wire heat treatment method, preparation method and niobium three-tin superconducting wire

Also Published As

Publication number Publication date
JPS62243747A (en) 1987-10-24

Similar Documents

Publication Publication Date Title
US4665611A (en) Method of fabricating superconductive electrical conductor
JPS5823110A (en) Method of producing nb3sn superconductive wire material
JPH0735562B2 (en) Method for producing fiber-dispersed superconducting wire
US3996662A (en) Method for the manufacture of a superconductor having an intermetallic two element compound
JPH0735561B2 (en) Method for producing fiber-dispersed superconducting wire
JP2517594B2 (en) Method for producing fiber-dispersed superconducting wire
JPH0735560B2 (en) Method for producing fiber-dispersed superconducting wire
JP3061630B2 (en) Method for producing superconducting wire made of Nb (3) Sn compound
JPS602728B2 (en) Method for manufacturing compound composite superconductor
JPS5918509A (en) Method of producing compound superconductive wire
JP2719155B2 (en) Superconducting stranded wire manufacturing method
JPH0381247B2 (en)
JPS60241611A (en) Method of producing nb3sn superconductive wire
JPS6313286B2 (en)
JP2742421B2 (en) Superconducting wire and its manufacturing method
JPH0313686B2 (en)
JPH0461448B2 (en)
JPS62211358A (en) Manufacture of nb3sn superconductor wire
JPS5871508A (en) Method of producing nb3sn series extrefine multicore superconductive wire
JPS60235308A (en) Method of producing compound superconductive wire
JPS5823109A (en) Method of producing nb3sn superconductive wire material
JPS62211359A (en) Manufacture of nb3sn superconductor element wire
JPH0381248B2 (en)
JPS5933653B2 (en) Method for producing stabilized superconductor
JPS58189908A (en) Method of producing fibrous dispersion type nb3sn superconductive wire material