JPS5871508A - Method of producing nb3sn series extrefine multicore superconductive wire - Google Patents

Method of producing nb3sn series extrefine multicore superconductive wire

Info

Publication number
JPS5871508A
JPS5871508A JP56170276A JP17027681A JPS5871508A JP S5871508 A JPS5871508 A JP S5871508A JP 56170276 A JP56170276 A JP 56170276A JP 17027681 A JP17027681 A JP 17027681A JP S5871508 A JPS5871508 A JP S5871508A
Authority
JP
Japan
Prior art keywords
wire
composite
diameter
heat treatment
intermediate annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56170276A
Other languages
Japanese (ja)
Inventor
河野 宰
池野 義光
伸行 定方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP56170276A priority Critical patent/JPS5871508A/en
Publication of JPS5871508A publication Critical patent/JPS5871508A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は超電導金属間化合物であるNb38nの極細
フィラメントを多数備えているNb B S n系極細
多芯超電導線の製造方法に関し、特にその製造工程中の
中間焼鈍熱処理に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an Nb B S n-based ultrafine multifilamentary superconducting wire comprising a large number of ultrafine filaments of Nb38n, which is a superconducting intermetallic compound, and particularly relates to an intermediate annealing heat treatment during the manufacturing process. It is something.

周知のようにNb s S nは超電導金属間化合物と
して優れた超電導特性を備えているが、その反面、加工
性、特に延性や展性が低い問題があり、そのためNb 
s S n系の超電導線を製造する場合、Nb s S
 nが生成された状態で加工することは困難であるから
、未だ金属間化合物が生成されていない状態、すなわち
NbとSnとが別個に存在する複合状態で加工を加えて
所望の線径とし、その後拡散熱処理を施してNb s 
S nを生成させるのが通常である。
As is well known, Nb s S n has excellent superconducting properties as a superconducting intermetallic compound, but on the other hand, it has problems with workability, especially low ductility and malleability.
When manufacturing s S n-based superconducting wire, Nb s S
Since it is difficult to process the wire in a state in which n is generated, processing is performed in a state in which no intermetallic compound has been generated, that is, in a composite state where Nb and Sn exist separately, to obtain the desired wire diameter. After that, diffusion heat treatment was performed to form Nb s
It is usual to generate S n.

ところで従来のNb s S n系極細多芯超電導線の
製造方法としては、ブロンズ法とSnメ、キ法とが知ら
れている。前者のブロンズ法はCu−8n合金(ブロン
ズ)の基地中Vc1本または2本以上のNb芯材を配し
て複合素線を作り、通常はその複合素線を複数本集合し
た後縮径加工を施して所望の線径の型組多芯複合線を得
、その極細多芯複合線に拡散熱処理を施してCu−8n
合金基地中のSnを拡散させて多数のNb3Snフィラ
メントを生成させる方法であり、また後者のSnメ、キ
法は銅からなる基地中に1本または2本以上のNb芯材
を配して複合素線を作り、通常はその複合素線を複数本
集合し光径縮径加工を施して所望の線径とし、さらにそ
の外周面にSnメ、キを施して極細多芯複合線を得、そ
の極細多芯複合線に拡散熱処理を施してSmメ、キ層か
らCu基地を介してSnを拡散させて前記同様にNJS
nフィラメントを生成させる方法である。しかしながら
従来のこれらの方法はそれぞれ一長一短があり、いずれ
も′満足すべきものでないのが実情である。
By the way, as conventional methods for manufacturing Nb s S n-based ultrafine multicore superconducting wires, the bronze method and the Sn method are known. The former bronze method involves arranging one or more Nb cores in a base of Cu-8n alloy (bronze) to create a composite strand, and usually involves diameter-reducing after gathering multiple composite strands. The molded multicore composite wire with the desired wire diameter was obtained by applying diffusion heat treatment to the ultrafine multicore composite wire to form Cu-8n.
This is a method of diffusing Sn in an alloy base to generate a large number of Nb3Sn filaments, and the latter Sn method is a composite method in which one or more Nb core materials are placed in a copper base. A strand is made, usually a plurality of the composite strands are gathered together, the optical diameter is reduced to the desired wire diameter, and the outer circumferential surface is coated with Sn and scratched to obtain an ultra-fine multicore composite wire. The ultra-fine multifilamentary composite wire is subjected to diffusion heat treatment to diffuse Sn from the Sm layer and the Cu layer through the Cu base, and then the NJ
This is a method of producing n filaments. However, each of these conventional methods has advantages and disadvantages, and the reality is that none of them is satisfactory.

すなわち、前者のブロンズ法にあっては比較的簡単な熱
処理でNb s Snを生成させることができ、しかも
S−メッキ処理を必要としない等の長所を有するが、そ
の反面、縮径加工における加工性に劣る重大な問題があ
る。すなわちブロンズ法においては充分な量のNb5S
sを生成させるためにはSn濃度が10〜16憾程度と
相当に高いCu−Sn合金を基地として用いる必要があ
るが、このようなSn濃度が高いCm−Sn合金では加
工硬化がきわめて生じ易く、そのため中間焼鈍を頻繁に
行なわなければならず、特に極細多芯超電導線の製造に
おいては1本のNb芯材の径が数詞程度のフィラメント
となるまで縮径加工を行なわなければならないため焼鈍
回数が著しく多くなり、そのため作業工数が著しく多く
なって生産性が著しく低下する問題がある。これに対し
後者のSnメ、キ法にあっては、基地として加工性が良
好な純銅を用いているため縮径加工における焼鈍回数は
ブロンズ法と比較して著しく少なくすることが可能であ
るが、その反面、充分な量のNb s S nを生成さ
せるためには相当に厚いSnメ、キ層を必要とし、この
ような厚いメッキ層を生成させるためにはメッキに相当
な長時間を要し、しかもメッキ厚みの制御が困難となる
問題があり、呼たこの方法ではNl) s S aを生
成させるためのSnがNbフィラメントから相当に離れ
ていて、長い拡散距離を必要とするため、Nb5Snの
生成効率を高める念めには拡散熱処理に長時間を要し、
しかもその熱処理条件も種々の工夫をする必要がある。
In other words, the former bronze method has the advantage of being able to generate Nb s Sn with a relatively simple heat treatment and does not require S-plating. There is a serious problem that is inferior to gender. In other words, in the bronze method, a sufficient amount of Nb5S
In order to generate s, it is necessary to use a Cu-Sn alloy with a fairly high Sn concentration of about 10 to 16 as the base, but work hardening is extremely likely to occur in a Cm-Sn alloy with such a high Sn concentration. Therefore, intermediate annealing must be performed frequently, and in particular, in the production of ultrafine multifilamentary superconducting wires, diameter reduction processing must be performed until the diameter of one Nb core material becomes a filament of about the size of a filament. There is a problem that the number of man-hours increases significantly, resulting in a significant decrease in productivity. On the other hand, in the latter method, the Sn method uses pure copper with good workability as the base, so the number of annealing times during diameter reduction processing can be significantly reduced compared to the bronze method. On the other hand, in order to generate a sufficient amount of Nb s S n, a fairly thick Sn layer is required, and in order to generate such a thick plating layer, a considerable amount of time is required for plating. However, there is a problem in that it is difficult to control the plating thickness, and in this method, the Sn for producing Nl)sSa is quite far from the Nb filament and requires a long diffusion distance. In order to increase the production efficiency of Nb5Sn, a long time is required for diffusion heat treatment.
Furthermore, it is necessary to make various adjustments to the heat treatment conditions.

このようなSnメッキ法の欠点は特に太径の極細多芯N
b s S n系超電導線を製造する場合に顕著となる
。すなわち線径が太くなればそれに伴って多量のむを必
要とするようになるためSnメッキ層の厚みを著しく厚
くする必要が生じ、ま九中心部のNb7’イラメントと
Snメッキ層との間の距離が大きくなってSnの拡散移
動すべき距離が長くなシ、そのため多量のBmを長い距
離拡散移動させて充分な量のNb 318mを生成させ
るためには、通常の拡散熱処理の前に予備熱処理を必要
とし、しかもその予備熱処理を数段階に行なわなければ
ならない等、著しい不都合が生じる。
The drawback of this Sn plating method is that it is particularly
This becomes noticeable when manufacturing bsSn-based superconducting wires. In other words, as the wire diameter becomes thicker, a larger amount of wire is required, so the thickness of the Sn plating layer needs to be significantly increased, and the gap between the Nb7' filament at the center of the ring and the Sn plating layer becomes larger. As the distance increases, the distance Sn must diffuse over is long. Therefore, in order to diffuse a large amount of Bm over a long distance and generate a sufficient amount of Nb 318m, preliminary heat treatment is required before the normal diffusion heat treatment. In addition, significant inconveniences arise, such as the need for preliminary heat treatment to be carried out in several stages.

上述のような問題を解決するため、ブロンズ法とSmメ
ッキ法とを組合せた改良方法がいくつか提案されヤいる
。すなわち、前記Smメッキ法における純銅基地の代り
に10wt1未満の低Sti濃度のCu−8m合金基地
を用い、Snメッキ法と同様に集合および縮径加工後に
Snメッキを施す方法、あるいは基地としてはCu−B
!L合金を用いるがその外側に純銅を配し、集合および
縮径加工後にSrsメ。
In order to solve the above-mentioned problems, several improved methods have been proposed that combine the bronze method and the Sm plating method. That is, a method in which a Cu-8m alloy base with a low Sti concentration of less than 10wt1 is used instead of the pure copper base in the Sm plating method, and Sn plating is applied after gathering and diameter reduction processing in the same way as in the Sn plating method, or a method in which the base is made of Cu -B
! L alloy is used, but pure copper is placed on the outside, and Srs is used after assembly and diameter reduction processing.

千を施す方法、さらには基地として高Sn濃度のCu−
8m合金を用いてその外匍に加工性が鼻好な低Sn濃度
のCu−Sn合全を配し、前記同様にSnメッキを施す
方法である。これらの方法ではいずれもブロンズ法より
は加工性が良好となって中間焼鈍の回数を減らすことが
でき、またSnメッキ法よシは拡散熱処理が簡単となる
が、未だ充分に満足し得るものではなかった。特に太線
径の場合にはある程度拡散熱処理を工夫しなければなら
なかった。また従来のSnメッキ法や前記各改良方法に
共通する欠点として、いずれも所定の線径まで縮径した
後にその外周面にSnメッキを施して拡散熱処理を行う
関係上、拡散バリヤを伴う安定化銅付きの極細多芯超電
導線の製造には適用できない問題がある。すなわち、従
来からブロンズ法の場合には1本または2本以上のNb
芯材をCu−8rs合金基地中に配した複合素線を複数
本集合してその外側にNbま九はTaからなる拡散バリ
ヤ層を形成し、さらにその拡散バリヤ層の外側に無酸素
銅からなる安定化鋼層を形成して、所望の線径となる迄
縮径加工した後拡散熱処理を施すことによって、安定化
のためのCu層を備えた極細多芯超電導線を製造する方
法が知られておシ、この場合拡散バリヤ層の存在によっ
て8nが外側のCu層に拡散しないため、Cm層の純度
を高く保って、安定化に充分な役割を果たすことができ
る。しかしながらSnメッキ法や前記各改良法を適用し
て上述のような拡散バリヤ層を伴なう安定化鋼付きの極
細多芯超電導線を製造しようとしても、拡散バリヤ層が
存在する丸め外側から8m・を拡散させることは不可能
であり、また/4リヤ層の外側に配した安定化のための
無酸素鋼を汚すことになシ、したがってこの型式の極細
多芯超電導線の製造方法はブロンズ法に限られていたの
が実情である。
Furthermore, the method of applying Cu-
In this method, 8m alloy is used, and a Cu-Sn composite with a low Sn concentration, which has good workability, is arranged on the outer spool, and Sn plating is applied in the same manner as described above. All of these methods have better workability than the bronze method and can reduce the number of intermediate annealing operations, and the Sn plating method allows for easier diffusion heat treatment, but they are still not fully satisfactory. There wasn't. Particularly in the case of thick wire diameters, some degree of diffusion heat treatment had to be devised. In addition, a common drawback of the conventional Sn plating method and each of the above-mentioned improved methods is that after the wire has been reduced to a predetermined diameter, Sn plating is applied to the outer peripheral surface and diffusion heat treatment is performed. There is a problem that it cannot be applied to the production of ultrafine multicore superconducting wires with copper. That is, in the case of the bronze method, one or more Nb
A plurality of composite wires with a core material arranged in a Cu-8rs alloy base are assembled, and a diffusion barrier layer made of Nb and Ta is formed on the outside of the composite wire, and a diffusion barrier layer made of Nb and Ta is further formed on the outside of the diffusion barrier layer. A method of manufacturing an ultrafine multicore superconducting wire with a Cu layer for stabilization is known by forming a stabilizing steel layer, reducing the diameter to the desired wire diameter, and then performing diffusion heat treatment. In this case, the presence of the diffusion barrier layer prevents 8n from diffusing into the outer Cu layer, so that the purity of the Cm layer can be kept high and play a sufficient role in stabilization. However, even if an attempt is made to manufacture an ultrafine multicore superconducting wire with a stabilizing steel and a diffusion barrier layer as described above by applying the Sn plating method or each of the above-mentioned improved methods, the distance from the outside of the round where the diffusion barrier layer is present is 8 m.・It is impossible to diffuse the oxygen-free steel provided outside the /4 rear layer for stabilization, and therefore it is impossible to do so. The reality is that it is limited to the law.

以上のような事情から本発明者等は太線径の場合でも拡
散熱処理を簡単に行うことができ、かつ縮径加工時の中
間焼鈍の回数を少なくし得、しかも拡散Δリヤを伴う安
定化鋼付きの極細多芯超電導線の製造に適したNb s
 S n系極細多芯超電導線の親規な製造方法を開発し
、別の出願にて提案している。すなわち、従来のSmメ
ッキ法や上記各改良法においては前述のように複合素線
を集合して最終的な線芯数として縮径加工を施した後、
最外周側にSmメ、キを施して込たのに対し、上記提案
の方法は、最終的な線芯数まで集合されていない素線段
階でSmメ、キを施し、最終的に集合および縮径された
極細多芯複合線の段階では基地内部にSmメ、キ層が位
置しているようにする内部メッキ法と称し得る方法であ
る。
Based on the above circumstances, the present inventors have developed a stabilized steel that can easily perform diffusion heat treatment even for thick wire diameters, can reduce the number of intermediate annealing operations during diameter reduction processing, and has a diffusion delta rear. Nb s suitable for manufacturing ultrafine multicore superconducting wire with
We have developed a standard manufacturing method for Sn-based ultrafine multicore superconducting wire and proposed it in a separate application. That is, in the conventional Sm plating method and each of the improved methods described above, after gathering the composite wires as described above and performing diameter reduction processing to obtain the final number of wire cores,
In contrast, in the method proposed above, Sm holes and holes are applied at the stage where the final number of wire cores has not yet been assembled, and Sm holes and holes are applied to the outermost circumferential side. This is a method that can be called an internal plating method in which the Sm layer and the layer are located inside the base at the stage of the reduced diameter ultrafine multicore composite wire.

上記提案の内部メッキ法を第1図〜第6図を参照してさ
らに具体的に説明すると、先ず例えば第1図(6)に示
すように棒状、線材状もしくは粉末状のNl)芯材1を
Cu−8m合金もしくはCu製の中空71イデ2人に挿
入し、必要に応じてスェージング加工、伸線・引抜加工
等の縮径加工を施して、第1図03)に示すようにCu
−8m合金もしくはCuからなる基地2に歯芯材1が埋
込まれた複合素線3を作成する。あるいはまた、第2図
囚に示すようKCu−8m合金またはCuからなる棒材
2Bに複数の穴4を穿設しておき、それら各穴4に棒状
、線材状もしくは粉末状のNb芯材1を挿入し、押出加
工、スェージング加工、伸線・引抜加工尋の縮径加工を
行って、第2図(B) K示すようにCu−8m合金も
しくはCuからなる基地2中に複数のめ芯材1が埋込憧
れた複合素線τを作成する。次いで第1図(Qもしくは
第2図(Cりに示すように複合素線3,3′の外側層す
なわちCu−Bn合金もしくはCuからなる基地2の外
表面に電気メッキ等により必要な厚みのSmメ、キ層5
を形成する0次いでそのメッキ複合線6を第1図(2)
もしくは第2図(2)に示すように複数本集合してCu
−8m合金またはCuからなる/4’イデ2CK挿入し
、スェージング加工、伸線・引抜加工等の縮径加工およ
び中間焼鈍を繰返して所望の線径、すなわち最終的に得
るべき線径となるまで縮径し、第1図(2)もしくは第
2図(ト)に示すような極細多芯複合線7を得る。この
極細多芯複合線7は第3図もしL′は第4図に示すよう
に、Cu−8m合金もしくはCuからなる基地2中に極
めて細い多数のn芯材(Nbフィラメント)1が間隔を
置いて埋設されしかも基地2の内部にNbフィラメント
1を取囲むようにSmメ、キ層5が断面網目状に配され
た構成となりてbる。上述のような極細多芯複合線7に
拡散熱処理を施すことによって、基地2の内部のSnメ
ッキ層5からSnが拡散されて、Nbフィラメント1の
周囲にNb、Snが生成され、極細多芯超電導線が得ら
れる。また拡散バリヤを伴った安定化銅付きの極細多芯
超電導線を製造する場合には、第1図(C)tたは第2
図C)に示すメ。
To explain the internal plating method proposed above in more detail with reference to FIGS. 1 to 6, first, as shown in FIG. Insert the wire into two hollow 71 ide made of Cu-8m alloy or Cu, and perform diameter reduction processing such as swaging, wire drawing, or drawing as necessary to make the Cu
A composite wire 3 is prepared in which a tooth core material 1 is embedded in a base 2 made of -8m alloy or Cu. Alternatively, as shown in FIG. The wire is inserted into the base 2 made of Cu-8m alloy or Cu by extrusion, swaging, wire drawing and drawing to reduce the diameter. Create a composite wire τ that material 1 has longed to embed. Next, as shown in FIG. 1 (Q) or FIG. 2 (C), the outer layer of the composite wires 3, 3', that is, the outer surface of the base 2 made of Cu-Bn alloy or Cu, is coated with a required thickness by electroplating or the like. Sm Me, Ki layer 5
Figure 1 (2)
Or, as shown in Figure 2 (2), collect multiple Cu
- Insert /4'ide 2CK made of 8m alloy or Cu, and repeat diameter reduction processes such as swaging, wire drawing and drawing, and intermediate annealing until the desired wire diameter, that is, the final wire diameter to be obtained. The diameter is reduced to obtain an ultrafine multifilamentary composite wire 7 as shown in FIG. 1 (2) or FIG. 2 (G). As shown in Fig. 3 and Fig. 4, this ultra-fine multifilamentary composite wire 7 has a large number of extremely thin n-core materials (Nb filaments) 1 arranged at intervals in a base 2 made of Cu-8m alloy or Cu. The Nb filament 1 is placed and buried inside the base 2, and an Sm layer 5 is arranged in a cross-sectional mesh shape so as to surround the Nb filament 1. By applying diffusion heat treatment to the ultra-fine multi-core composite wire 7 as described above, Sn is diffused from the Sn plating layer 5 inside the base 2, Nb and Sn are generated around the Nb filament 1, and the ultra-fine multi-core composite wire 7 is A superconducting wire is obtained. In addition, when producing ultrafine multicore superconducting wire with stabilized copper accompanied by a diffusion barrier,
The method shown in Figure C).

キ複合線6を第5図(4)もしくは第6図囚に示すよう
に複数本集合してCu−8m合金もしくはCuからなる
i4イデ2Cに挿入するとともにそれを拡散バリヤ層と
なるべきNbもしくはT&からなるノぐイブ8に挿入し
、かつその全体を安定化鋼層となるべき無酸素鋼・母イ
デ9に挿入し、その後前記同様に縮径加工および中間焼
鈍を複数回繰返して第3図(B)もしくは第4図に示す
ように所望の線径として、拡散バリヤ層8′を伴った安
定化銅層9′付きの極細多芯複合線7′を得、その後前
記同様に拡散熱処理を施せば、内部のSmメ、中層中の
Smが外側へ拡散されることなく、Nb 5 S nが
生成される。
As shown in FIG. 5 (4) or FIG. The T& is inserted into the nozzle 8, and the entire body is inserted into the oxygen-free steel base 9 which is to become the stabilizing steel layer, and then the diameter reduction process and intermediate annealing are repeated several times in the same manner as described above. As shown in Figure (B) or Figure 4, an ultrafine multifilamentary composite wire 7' with a stabilizing copper layer 9' accompanied by a diffusion barrier layer 8' is obtained with a desired wire diameter, and then subjected to diffusion heat treatment in the same manner as described above. By applying this, Nb 5 Sn is generated without the internal Sm and the Sm in the middle layer being diffused to the outside.

上記提案の方法における拡散熱処理の直前の極細多芯複
合線の段階においては、前述のようにSnメッキ層が基
地の内部にNbフィラメントを取囲むように配されてい
る九め、従来のSnメ、キ法やその改良方法の如< S
nメ、キ層が最外周側に位置している場合と比較し、島
ssn生成のための主たルSm 供給源であるSnメ、
キ層と島フィラメントとの間の距離が著しく短かい、換
言すれは島s Snを生成するためKSnが拡散移動す
べき距離が従来法と比較して著しく短かく、シたがって
NbjSnの拡散生成が容易であって、拡散熱処理時に
予備熱処理を施し九シ、さらKViその予備熱処理を複
数段にわ九って施したりする必要がなく、簡単な熱処理
て充分な量のNb 、S nを生成させることができる
・このような効果は特に線径が太い場合に顕著となる。
In the stage of forming the ultrafine multicore composite wire immediately before the diffusion heat treatment in the method proposed above, the Sn plating layer is placed inside the base so as to surround the Nb filament, as described above. , such as the key method and its improvement method.
Compared to the case where the n and g layers are located on the outermost side, the Sn layer, which is the main source for island ssn generation,
The distance between the Ki layer and the island filament is extremely short, in other words, the distance that KSn must diffuse and move to generate island s Sn is significantly short compared to the conventional method, and therefore the diffusion generation of NbjSn is significantly shortened. It is easy to perform preheat treatment during diffusion heat treatment, and there is no need to perform preheat treatment in multiple stages, and a sufficient amount of Nb and Sn can be generated with simple heat treatment. This effect is particularly noticeable when the wire diameter is large.

すなわち従来のSnメ、キ法婢においては線径が太くな
ればそれに伴って外側のメッキ層と中心部のン)フィラ
メントとの間の距離が大きくなるが、上記提案の方法で
は線径が太くなってもそれには無関係にSnの拡散移動
すべき距離が常に短かいから、線径が太い場合でも線径
が細い場合と同様に簡単な熱処理で充分である。なおN
b芯材が埋込れる基地は従来のSnメッキ法と同様にC
uを使用でき、またCu−Sn合金の場合でもSn濃度
が低いCu−Sn合金(望ましくはSn 10 wt係
未満、より最適にはSn 8 wt%以下)を使用でき
るから、複合素線や極細多芯複合線の加工性を良好にし
て縮径加工における中間焼鈍の回数を少なくすることが
できる。なおまた、基地のCu−Sn合金、としては小
量のPを含有するもの、すなわちいわゆるリン青銅を用
いることができる。
In other words, in the conventional Sn method, as the wire diameter increases, the distance between the outer plating layer and the central filament increases, but in the method proposed above, the distance between the outer plating layer and the central filament increases. Regardless of this, the distance through which Sn must diffuse and move is always short, so even when the wire diameter is large, a simple heat treatment is sufficient in the same way as when the wire diameter is small. Furthermore, N
b The base in which the core material is embedded is C as in the conventional Sn plating method.
In the case of Cu-Sn alloys, Cu-Sn alloys with low Sn concentrations (preferably less than Sn 10 wt%, more optimally Sn 8 wt% or less) can be used, so composite wires and ultra-fine wires can be used. It is possible to improve the workability of the multicore composite wire and reduce the number of intermediate annealing operations during diameter reduction processing. Furthermore, as the base Cu-Sn alloy, one containing a small amount of P, that is, so-called phosphor bronze can be used.

なおまた、Nbフィラメント数が多い極細多芯超電導線
を得る場合には、複合素線を最終的なNbフィラメント
数となるように集合する以前の段階でも中間的に複合素
線を集合させることがあり、例えば全く集合されて騒な
い複合緊線(以下これを一次複合素線と称する)を複数
本集合して二次複合素線を作り、その二次複合素線をさ
らに複数本集合して縮径することによって最終的なNb
フィラメント数を有する極細多芯複合線を得ることがあ
る。この場合前記提案の内部メッキ法におけるSnメ、
キは、−次複合緊線の段階もしくは二次複合素線の段階
のいずれで行っても良く、また両段階で行っても良く、
要は最終的なフィラメント数に集合される以前の段階で
8nメ、キを施せば良い。
Furthermore, in order to obtain an ultrafine multicore superconducting wire with a large number of Nb filaments, it is possible to assemble the composite strands intermediately even before the composite strands are assembled to the final number of Nb filaments. For example, a secondary composite wire is created by assembling multiple composite wires that do not make any noise when assembled at all (hereinafter referred to as primary composite wires), and then multiple secondary composite wires are assembled to create a secondary composite wire. By reducing the diameter, the final Nb
An ultrafine multifilamentary composite wire having a number of filaments may be obtained. In this case, the Sn metal in the internal plating method proposed above,
Ki may be performed at either the −th order composite wire stage or the second order composite wire stage, or may be performed at both stages.
In short, it is sufficient to apply 8n filaments and kiss at a stage before the final number of filaments is assembled.

とζろで前述のようにSnメ、キが施された複合素線を
複数本集合して縮径加工する際には、ある種度断面積が
減少した段階で中間焼鈍を施さなければならない・特に
加工性がMIh Cu−an合金の基地を吊込ている場
合には中間焼鈍の回数を多くしなければならず、マ九加
工性が比較的良好な低Sn濃度のCo−8m合金やC1
Iの基地を用いている場合でもある程度の回数の中間焼
鈍は避は得ない。このような中間焼鈍は、一般K Cu
−Sn合金やCuの軟化する温度を目安として400〜
550℃程度で行うのが通常であるが、このような温度
での中間焼鈍を過剰に行えばS!l IJ yチなCu
−8m相、すなわちβ相、r相、δ相、C相、ζ相、η
相等の金属間化合物相が生成される。これらのSn I
J 、チなCu−Sn系金属間化合物相は本来のCm−
Sn合金基゛地やCm基地と比較して硬く、加工性が悪
いから、Cu−8a系金金属化合物相が発達すれば加工
しづらくな9、遂には伸線加工中に断線に至ることがあ
る。ま丸線材全体が断線に至らないまでも、硬hCu−
an系金属間化合物相が基地中で発達すれば伸線加工中
にその硬い相によってNb芯材が局部的に圧縮されてN
b芯材の表面に凹凸が生じ、そのまま伸線加工を続けれ
ばNb芯材部分が破断され、その結果最終的に所望の超
電導特性が得られなくなることがあり、これらの理由か
ら、ある程度以上伸線加工を施すことは困難と考えられ
ていた。
When a plurality of composite wires that have been Sn-metalized and skimmed as described above are assembled and reduced in diameter using a ζ-rotation process, intermediate annealing must be performed at the stage where the cross-sectional area has been reduced to a certain degree.・In particular, when suspending a base of Cu-an alloy with MIh workability, it is necessary to increase the number of intermediate annealing, and Co-8m alloy with low Sn concentration or Co-8m alloy with relatively good workability is required. C1
Even when base I is used, intermediate annealing a certain number of times is unavoidable. Such intermediate annealing is performed by general K Cu
-400~ based on the softening temperature of Sn alloys and Cu
It is normal to perform the annealing at a temperature of about 550°C, but if the intermediate annealing is performed excessively at such a temperature, S! l IJ y chi na Cu
−8m phase, i.e. β phase, r phase, δ phase, C phase, ζ phase, η
Equivalent intermetallic phases are formed. These Sn I
J, the strong Cu-Sn intermetallic compound phase is the original Cm-
It is harder and has poor workability compared to Sn alloy bases and Cm bases, so if the Cu-8a-based gold metal compound phase develops, it becomes difficult to work9, and it may eventually lead to wire breakage during wire drawing. be. Even if the entire round wire does not break, the hard hCu-
If the an-based intermetallic compound phase develops in the base, the Nb core material is locally compressed by the hard phase during wire drawing, resulting in Nb
If unevenness occurs on the surface of the Nb core material and the wire drawing process continues, the Nb core material portion may break, and as a result, the desired superconducting properties may not be obtained. It was considered difficult to apply wire processing.

この発明は以上の事情を背景としてなされたもので、前
記提案の如き内部メッキ法によりてNb s Sn系極
細多芯超電導線を製造するにあ念り、その縮径加工中に
Cu−Sn系金属間化合物相の生成、発達によ!1線材
自体の断線あるいは線材の基地中のNbt材の断線が生
じることな゛く、所望の径まで縮径可能とすることを目
的とするものである。
This invention was made against the background of the above-mentioned circumstances, and was designed to manufacture Nb s Sn-based ultrafine multicore superconducting wire by the internal plating method as proposed above, and during the diameter reduction process, Cu-Sn based superconducting wire was produced. Due to the formation and development of intermetallic compound phases! The purpose of this method is to enable the diameter to be reduced to a desired diameter without causing breakage of the wire rod itself or breakage of the Nbt material in the base of the wire rod.

すなわちこの発明は、Nbからなる1本以上の芯材をC
u−Sn合金もしくはCuからなる基地中に配して複合
素線を作り、その複合素線の表面にSoメ、キ層を形成
した後、その複合素線を複数本集合し、次いで縮径加工
および中間焼鈍を複数回繰返して所望の線径の極細多芯
複合線を得、その後拡散熱処理を施してNb 8tsを
生成させる、?’Jb s S n系極細多芯超電導線
の製造方法において、複数本の複合素線を集合して縮径
加工および中間焼鈍を複数回繰返すにあたり、第2回目
の中間焼鈍以降の中間焼鈍の内部くとも1回を700℃
以上の温度で5分〜1時間加熱する処理によって行うこ
とを特徴とするものである。
In other words, the present invention replaces one or more core materials made of Nb with C.
A composite strand is made by placing it in a base made of u-Sn alloy or Cu, and after forming a So layer and a layer on the surface of the composite strand, a plurality of the composite strands are assembled, and then the diameter is reduced. Processing and intermediate annealing are repeated multiple times to obtain an ultrafine multifilamentary composite wire with a desired wire diameter, and then a diffusion heat treatment is performed to generate Nb 8ts. 'Jb s S In the manufacturing method of n-based ultrafine multifilamentary superconducting wire, when a plurality of composite strands are assembled and the diameter reduction process and intermediate annealing are repeated multiple times, the inside of the intermediate annealing after the second intermediate annealing is 700℃ at least once
It is characterized in that it is carried out by heating at the above temperature for 5 minutes to 1 hour.

以上この発明の方法をさらに具体的に説明する。The method of the present invention will be explained in more detail above.

この発明の方法においては、前述のようにSnメ、キが
施された複合素線を複数本集合して縮径加工および中間
焼鈍を複数回繰返すにあたり、第2回以降の中間焼鈍の
うち、少くとも1回を700℃以上の温度で5分〜1時
間加熱処理によって行うのであるが、その700℃以上
加熱処理以外の中間焼鈍は、従来と同様に400〜55
0℃程度の熱処理を行えば良い、但し後述するように第
1回目の中間焼鈍は数秒から数分程度の短時間通電加熱
によって行うことが望ましい。
In the method of the present invention, when a plurality of composite wires having been Sn-plated and skimmed as described above are assembled and subjected to diameter reduction processing and intermediate annealing multiple times, during the second and subsequent intermediate annealing, Heat treatment is performed at least once at a temperature of 700°C or higher for 5 minutes to 1 hour, but intermediate annealing other than the heat treatment at 700°C or higher is carried out at 400 to 55°C as in the past.
Heat treatment at about 0° C. may be performed, however, as will be described later, it is preferable that the first intermediate annealing be performed by short-time electrical heating of about several seconds to several minutes.

上述のように700℃以上の温度で5分〜1時1、、 
゛ 間加熱処理すれば、それまでの低温(400〜550℃
程度)の中間焼鈍によって生成された□Cu−8n系金
属間化合物のほとんどが分解し、基地はほぼ均一な濃度
のCu−Sn合金相となる。上記温度範囲の内でも特に
790℃以上で加熱すればCu−8n系金属間化合物相
はほぼ完全に分解するから、特に790℃以上において
5分〜1時間加熱することが望ましい。このようにして
一旦生成された硬いCu−8nn金量化合物相が分解し
てしまえば、その金属間化合物相の存在により伸線加工
中に線自体が断線したり隔芯材が破断されたりすること
が防止され、したがってさらに伸線加工を繰返すことが
可能となる。
As mentioned above, at a temperature of 700°C or higher for 5 minutes to 1:1,
If heat-treated for a period of
Most of the □Cu-8n intermetallic compound generated by the intermediate annealing (degree) is decomposed, and the base becomes a Cu-Sn alloy phase with a substantially uniform concentration. Since the Cu-8n intermetallic compound phase is almost completely decomposed when heated at 790° C. or higher within the above temperature range, it is particularly desirable to heat at 790° C. or higher for 5 minutes to 1 hour. Once the hard Cu-8nn gold compound phase generated in this way decomposes, the wire itself may break during wire drawing or the spacing material may break due to the presence of the intermetallic compound phase. Therefore, it becomes possible to repeat the wire drawing process.

なお集合さ7した複合素線を700℃程度以上の高温で
熱処理すればNb 5 S aが生成される筈であるが
、実際にNb s S nが生成されるには相描な長時
間を要し、上述のような1時間以内の熱処理であればN
b s S nが生成される現象は殆ど認められない。
Note that if the assembled composite wires are heat-treated at a high temperature of about 700°C or higher, Nb 5 S a should be produced, but it takes an extremely long time to actually produce Nb s S n. In short, if the heat treatment is within 1 hour as described above, N
The phenomenon of generation of b s S n is hardly observed.

またCl−8!l系金属間化合物を分解するためには少
くとも5分程度加熱する必要がある。これらの理由から
前述の700℃以上の熱処理時間は5分〜1時間とする
。この熱処理における加熱温度の上限は特に定めな込が
、高温すぎることによるNb3Sn生成を避ける等の理
由から通常は850℃程度以下とすることが望ましい。
Cl-8 again! In order to decompose the l-based intermetallic compound, it is necessary to heat it for at least about 5 minutes. For these reasons, the above-mentioned heat treatment time at 700° C. or higher is set to 5 minutes to 1 hour. The upper limit of the heating temperature in this heat treatment is not particularly determined, but it is usually desirably about 850° C. or lower in order to avoid Nb3Sn formation due to excessively high temperatures.

なおまた基地中に一旦生成され九Cm−8n系金属間化
合物を前述の700℃以上の熱処理によって分解させれ
ば基地の均一8n濃度が上昇し、縮径加工開始前の状態
と比較すれば加工性が低下する(もちろんCu−8El
系金属間化合物が発達した状態よりは格段く加工性が良
好である)。そのため上述の700℃以上の熱処理はで
きるだけ加工の後半に挿入することが望ましい。但しこ
の熱処理を遅らせ過ぎればそれまでの400〜550℃
程度の通常の中間焼鈍によってSnす、チなCu−Sn
系金属間化■相が発達し過ぎ、その結果線自体が断線し
九りNbフィラメントに凹凸が生じてNbフィラメント
が破断したシしてしまうから、両者の兼ね合いで700
℃以上の熱処理を挿入する段階を定めれば良い。
Furthermore, if the 9Cm-8n intermetallic compound once generated in the matrix is decomposed by the above-mentioned heat treatment at 700°C or higher, the uniform 8n concentration in the matrix will increase, and if compared with the state before the start of diameter reduction processing, (Of course, Cu-8El
Processability is much better than in a state where intermetallic compounds have developed). Therefore, it is desirable to insert the above-mentioned heat treatment at 700° C. or higher as late as possible in the processing. However, if this heat treatment is delayed too much, the temperature will rise to 400-550℃.
By ordinary intermediate annealing of
The system intermetallic phase develops too much, and as a result, the wire itself breaks, and the Nb filament becomes uneven, causing the Nb filament to break.
It is sufficient to determine the stage at which heat treatment at temperatures above 0.degree. C. is to be performed.

また、Snメッキを施し次複合素線を集合して縮径加工
を行う間の第1回目の焼鈍は数秒〜数分間の短時間の通
電加熱によって行うことが望ましい。
Further, it is desirable that the first annealing, which is performed after Sn plating is performed and the composite strands are assembled and subjected to diameter reduction processing, be carried out by electrical heating for a short period of several seconds to several minutes.

斯くすれば通電焼鈍によっである程度のCu−Sn系金
属間化合物相が生成されるため、その後の400〜55
0℃程度の中間焼鈍によって内部のst1メ、キ層が溶
融してそのSnが端末から溶は出したり外周面から浸み
出たりすることを防止でき、したがってSnの溶は出し
に起因してNb 3 Snの生成に寄与するSn量が不
足し、充分な冷s S aが生成されなかったりするこ
とや、溶は出したSnの部分に形成されるボイドによっ
て伸線加工中処断線することを防止できる。但し、通電
焼鈍を長時間行えばCu−Sn系金属間化合物が過剰に
発達し、それに起因して早期に断線し易くなったfi 
Nl)フィラメントに凹凸が生じてそのNbフィラメン
トが破断したりするおそれがあるから、通電焼鈍は最大
限数分程度の短時間とすることが望ましい。なおこの発
嘴では前述のように第2回目以降の複数回の中間焼鈍の
内、少くとも1回は700C以上の熱処理によってSn
す、チなCu−Sn系金属間化合物相を分解させる工程
となるから、第1回目の焼鈍を通電加熱としてもそれに
よって生成したCu−Sn系金属間化鱈相は前記700
’C以上の熱処理により分解されることになる。そして
この700℃以上の熱処理が終了した段階ではSnメ、
キ層のSnはそのはとんどが基地(CuもしくはCu−
Sn合金)中に均一濃度で拡散されてhるため、その後
の中間焼鈍によってFJnが溶は出すようなことはほと
んどない。
In this way, a certain amount of Cu-Sn intermetallic compound phase is generated by the current annealing, so that the subsequent 400 to 55
Intermediate annealing at about 0°C melts the internal ST1 and G layers and prevents the Sn from melting out from the terminals or seeping out from the outer circumferential surface. The amount of Sn that contributes to the generation of Nb 3 Sn may be insufficient, and sufficient cold S a may not be generated, or wire breakage may occur during wire drawing due to voids formed in the portion of Sn that has been molten. can be prevented. However, if electrical annealing is carried out for a long time, Cu-Sn intermetallic compounds will develop excessively, which may cause early wire breakage.
Since there is a risk that unevenness may occur in the Nb filament and the Nb filament may break, it is desirable that the current annealing be carried out for a short time of several minutes at most. In addition, in this beak, as mentioned above, among the multiple intermediate annealing steps after the second, at least one is performed by heat treatment at 700C or higher to remove Sn.
Since this is a step to decompose the Cu-Sn-based intermetallic compound phase, even if the first annealing is electrically heated, the Cu-Sn-based intermetallic phase generated thereby will be
It will be decomposed by heat treatment above 'C. Then, at the stage where this heat treatment at 700°C or higher is completed, the Sn metal
Most of the Sn in the Q layer is the base (Cu or Cu-
Since FJn is diffused at a uniform concentration into the Sn alloy (Sn alloy), it is unlikely that FJn will be dissolved during the subsequent intermediate annealing.

上述のように第1回目の焼鈍を通電焼鈍とした場合の縮
径加工の工程例を第7図に示す・このようにして極細多
芯複合線が得られ念後には、従来と同様に拡散熱処理を
施してNb58nを生成させればNb5Bn系極細多芯
超電導線が得られる。
Figure 7 shows an example of the diameter reduction process when the first annealing is electrical annealing as described above.In this way, an ultra-fine multifilamentary composite wire is obtained. If heat treatment is performed to generate Nb58n, an Nb5Bn-based ultrafine multicore superconducting wire can be obtained.

このNb s S !l生成の念めの拡散熱処理は、具
体的には真空中もしくは不活性ガス雰囲気中において6
50〜850℃程度の温1f−t”20〜150時間程
度熱処理すれば良い。
This Nb s S! Specifically, the diffusion heat treatment to prepare for the formation of l is performed in a vacuum or in an inert gas atmosphere.
Heat treatment may be performed at a temperature of about 50 to 850° C. for about 20 to 150 hours.

なお、島フィラメント数が多いNb s S n系極細
多芯超電導を製造する場合、−次複合素線(Cu−Sn
合金基地もしくはCu基地中−に1本ま九は2本以上の
Nb芯材が埋込まれた状態となっており、かつそれが未
だ複数本集合されていないもの)の外周面にSnメ、キ
を施してこれを複数本集合し、それに縮径加工を施して
二次複合素線を得、その二次複合素線に再びSnメ、キ
を施した後、これを複数本集合して縮径加工を施し、所
望の線径の極細多芯複合線として拡散熱処理を施すこと
もある。この場合−次複合素線集合後の縮径加工工程お
よび二次複合素線集合後の縮径加工工程のいずれにおい
ても伸線加工等の縮径加工と中間焼鈍とを繰返すのが通
常であるが、この場合−次複合素線集合後の縮径加工工
程においてその第2回目以降の中間焼鈍のいずれかを前
述のような700℃以上の熱処理とし、しかも二次複合
素線集合後の縮径加工工程においてもその第2図以降の
中間焼鈍のいずれかを前記同様に700℃以上の熱処理
とするととが望ましい。
In addition, when manufacturing a Nb s S n ultrafine multicore superconductor with a large number of island filaments, -order composite strands (Cu-Sn
At least one Nb core material is embedded in the alloy base or Cu base, and a plurality of Nb core materials have not yet been assembled). After applying ki and assembling a plurality of these, performing a diameter reduction process on it to obtain a secondary composite strand, applying Sn and ki to the secondary composite strand again, multiple strands of this are assembled. The wire may be subjected to diameter reduction processing and then subjected to diffusion heat treatment to form an ultra-fine multifilamentary composite wire with a desired wire diameter. In this case, it is normal to repeat the diameter reduction process such as wire drawing and intermediate annealing in both the diameter reduction process after the secondary composite strand assembly and the diameter reduction process after the secondary composite strand assembly. However, in this case, in the diameter reduction process after the second composite strand assembly, any of the second and subsequent intermediate annealing is heat treated at 700°C or higher as described above, and the reduction process after the second composite strand assembly is performed. In the diameter machining step, it is also desirable that any of the intermediate annealing steps after FIG. 2 be heat treated at 700° C. or higher in the same manner as described above.

以下この発明の実施iを記す。Implementation i of this invention will be described below.

実施例 6 優Sn f含有するCws−8r1合金基地中に8
5本の島芯材が埋込−まれてなる外径0.8■φの複合
素線の外周面に30μm厚のSnメ、キ層を形成した後
、その複合緊線を85本集合して、外径1o■、内径9
■のCu−8m合金Δイア”(Sn6%)に挿入した。
Example 6 8 in Cws-8r1 alloy base containing excellent Snf
After forming a 30 μm thick Sn layer and a thin layer on the outer peripheral surface of a composite wire with an outer diameter of 0.8 φ in which five island core materials were embedded, 85 composite wires were assembled. , outer diameter 1o, inner diameter 9
It was inserted into the Cu-8m alloy Δear'' (6% Sn) of (2).

これを外径4.6■となるまで伸線加工した後、通電焼
鈍を行ない、その後件線加工と窒素雰囲気での500℃
×1時間の焼鈍とを繰返し、外径2.0■とじた。この
段階で820’CX10分間の窒素雰囲気での熱処理を
加えた後、さらに伸線加工および窒素雰囲気での5oo
℃×1時間の焼鈍を繰返し、最終的に外径0.5■φの
極細多芯複合線を得た。この極細多芯複合線に750℃
X100時間の拡散熱処理を施してNb58mを生成さ
せ、Nbl1lsn系極細多芯超電導線を得た。この超
電導線の臨界電流値を測定したとζろ、4.2に、10
0KGで120ムの良好な値が得られ念。
After wire-drawing this to an outer diameter of 4.6 mm, it was annealed by electricity, and then wire-processed and heated at 500°C in a nitrogen atmosphere.
x 1 hour annealing was repeated, and the outer diameter was 2.0 mm. At this stage, heat treatment was performed at 820'CX for 10 minutes in a nitrogen atmosphere, followed by wire drawing and 500°C in a nitrogen atmosphere.
C. for 1 hour was repeated to finally obtain an ultrafine multifilamentary composite wire with an outer diameter of 0.5 .phi. 750℃ for this ultra-fine multicore composite wire
A diffusion heat treatment was performed for 100 hours to generate Nb58m, thereby obtaining an Nbl1lsn-based ultrafine multifilamentary superconducting wire. The critical current value of this superconducting wire was measured and was 4.2, 10
I hope I can get a good value of 120mm at 0KG.

上述の実施例では0.5■φまで伸線した極細多芯複合
線の段階でその断面状況を観察したところ、基地にはC
u−8n系金属間化合物相が認められず、均一なCu−
8o合金相となっており、またNbフィラメントが正常
な状態で配列されていることが確認された。一方、上述
の実施例中における820℃×10分間の熱処理を行な
わずに(但しその他の粂件は実施例と同一にして)伸線
加工および焼鈍を繰返したところ、外径1.2 mとな
った段階で断線を生じ念。その断線した線の横断面を観
察したところ、Sn ’JッチなCu−Sn系金属間化
合物が発達しており、またその化合物によってNbフィ
ラメントの表面に著しい凹凸が生じていることが確認さ
れた。
In the above example, when the cross-sectional condition of the ultra-fine multicore composite wire was observed after it was drawn to 0.5■φ, it was found that the base had C.
No u-8n intermetallic compound phase was observed, and uniform Cu-
It was confirmed that it was an 8o alloy phase and that the Nb filaments were arranged in a normal state. On the other hand, when the wire drawing and annealing were repeated without the heat treatment at 820°C for 10 minutes as in the above example (with the other conditions being the same as in the example), the outer diameter was 1.2 m. I was worried that the wire would break when this happened. When the cross section of the broken wire was observed, it was confirmed that a Sn'J-type Cu-Sn intermetallic compound had developed, and that this compound had caused significant unevenness on the surface of the Nb filament. Ta.

以上の散開で明らかなようにこの発明の方法によれば、
内部メッキ法によって’Nb 5 S a系極細多芯超
電導線を製造するにあたり、その製造工程中の縮径加工
の間、でおける中間焼鈍によって生成、発達したSn 
’)ッチなCu−8n系金属間化合物相によって線材自
体がf+7r線したジNbフィラメントの表面に凹凸が
生じてそのNbフィラメントが破断に至ったりすること
を有効に防止して、所望の線径となるまで円滑に縮径可
能とするとともに、内部のNbフィラメントの破断によ
って良好な超電導特性が得られなくなる事態の発生を有
効に防止できる等の効果が得られる。
As is clear from the above dispersion, according to the method of this invention,
When producing 'Nb 5 S a -based ultrafine multifilamentary superconducting wires using the internal plating method, Sn generated and developed by intermediate annealing during the diameter reduction process during the manufacturing process.
') By effectively preventing unevenness from occurring on the surface of the di-Nb filament whose wire itself is f+7r wire due to the thick Cu-8n intermetallic compound phase and causing the Nb filament to break, it is possible to form the desired wire. In addition to being able to smoothly reduce the diameter until it reaches the same diameter, it is also possible to effectively prevent the occurrence of a situation where good superconducting characteristics cannot be obtained due to breakage of the internal Nb filament.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の前提となる内部メッキ法の一例を段
階的に示すための説明図、第2図は同上内部メッキ法の
他の例を段階的に示すための説明図、第3図は第1図■
)に示される複合線の拡大断面図、第4図は第2図@)
に示される複合線の拡大断面図、第5図および第6図は
それぞれ安定化鋼・  付きの極細多芯超電導線を前記
内部メッキ法に従って製造する場合の段階的な説明図で
ある。第7図はこの発明の方法における縮径加工工程の
一例を示すフローチャートでアル。 1・・・Nb芯材、2・・・基地、3・・・複合素線、
5・・・Smメッキ層、7・・・極細多芯複合線。 第1図     第2図 4 31− 第3図 第4図
Fig. 1 is an explanatory diagram showing step-by-step an example of the internal plating method that is the premise of this invention; Fig. 2 is an explanatory diagram showing step-by-step another example of the same internal plating method; Fig. 3; Figure 1■
), Figure 4 is an enlarged cross-sectional view of the compound line shown in Figure 2 @)
The enlarged cross-sectional view of the composite wire shown in FIGS. 5 and 6 are step-by-step explanatory diagrams in the case of manufacturing an ultrafine multicore superconducting wire with stabilizing steel according to the internal plating method described above, respectively. FIG. 7 is a flowchart showing an example of the diameter reduction process in the method of the present invention. 1...Nb core material, 2...base, 3...composite wire,
5... Sm plating layer, 7... Ultra-fine multicore composite wire. Figure 1 Figure 2 4 31- Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 Nbからなる1本以上の芯材をCu−8n合金もしくは
C1Iからなる基地中に配して複合素線を作り、その複
合素線の表面にSfiメッキ層を形成した後、その複合
素線を複数本集合し、次いで縮径加工および中間焼鈍を
複数回繰返して所望の線径の極細多芯複合線を得、その
後拡散熱処理を施してNb s S nを生成させるN
b s Sn系極細多芯超電導線の製造方法において、 前記縮径加工の間における複数回の中間焼鈍の内、tJ
/cz回以降の中間焼鈍の少くとも1回を700℃以上
の温度で5分〜1時間行うことを特徴とするNb、Sn
系極細多芯超電導線の製造方法。
[Claims] After making a composite wire by arranging one or more core materials made of Nb in a base made of Cu-8n alloy or C1I, and forming an Sfi plating layer on the surface of the composite wire, , a plurality of the composite wires are assembled, and then diameter reduction processing and intermediate annealing are repeated multiple times to obtain an ultrafine multifilamentary composite wire with a desired wire diameter, and then a diffusion heat treatment is performed to produce Nb s S n.
bs In the method for manufacturing a Sn-based ultrafine multifilamentary superconducting wire, tJ
Nb, Sn characterized in that at least one intermediate annealing after /cz times is performed at a temperature of 700 ° C. or higher for 5 minutes to 1 hour.
A method for manufacturing ultrafine multicore superconducting wire.
JP56170276A 1981-10-24 1981-10-24 Method of producing nb3sn series extrefine multicore superconductive wire Pending JPS5871508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56170276A JPS5871508A (en) 1981-10-24 1981-10-24 Method of producing nb3sn series extrefine multicore superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56170276A JPS5871508A (en) 1981-10-24 1981-10-24 Method of producing nb3sn series extrefine multicore superconductive wire

Publications (1)

Publication Number Publication Date
JPS5871508A true JPS5871508A (en) 1983-04-28

Family

ID=15901939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56170276A Pending JPS5871508A (en) 1981-10-24 1981-10-24 Method of producing nb3sn series extrefine multicore superconductive wire

Country Status (1)

Country Link
JP (1) JPS5871508A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5888942A (en) * 1996-06-17 1999-03-30 Superconductor Technologies, Inc. Tunable microwave hairpin-comb superconductive filters for narrow-band applications
WO2021112211A1 (en) * 2019-12-04 2021-06-10 古河電気工業株式会社 PRECURSOR FOR Nb3Sn SINGLE-CORE SUPERCONDUCTING WIRE RODS AND METHOD FOR PRODUCING SAME, Nb3Sn SINGLE-CORE SUPERCONDUCTING WIRE ROD, PRECURSOR FOR Nb3Sn MULTICORE SUPERCONDUCTING WIRE RODS AND METHOD FOR PRODUCING SAME, AND Nb3Sn MULTICORE SUPERCONDUCTING WIRE ROD

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5888942A (en) * 1996-06-17 1999-03-30 Superconductor Technologies, Inc. Tunable microwave hairpin-comb superconductive filters for narrow-band applications
WO2021112211A1 (en) * 2019-12-04 2021-06-10 古河電気工業株式会社 PRECURSOR FOR Nb3Sn SINGLE-CORE SUPERCONDUCTING WIRE RODS AND METHOD FOR PRODUCING SAME, Nb3Sn SINGLE-CORE SUPERCONDUCTING WIRE ROD, PRECURSOR FOR Nb3Sn MULTICORE SUPERCONDUCTING WIRE RODS AND METHOD FOR PRODUCING SAME, AND Nb3Sn MULTICORE SUPERCONDUCTING WIRE ROD

Similar Documents

Publication Publication Date Title
US3954572A (en) Method of manufacturing an intermetallic superconductor
JPS5871508A (en) Method of producing nb3sn series extrefine multicore superconductive wire
JP2719155B2 (en) Superconducting stranded wire manufacturing method
JPH0313686B2 (en)
JP3059570B2 (en) Superconducting wire and its manufacturing method
JPS6262004B2 (en)
JPS59214111A (en) Method of producing compound extrafine multicore superconductive conductor
JPS637353A (en) Production of fiber dispersion type superconductive wire
JP3701349B2 (en) Superconducting wire manufacturing method and superconducting wire
JPH11238418A (en) Compound superconductive wire
JP3855681B2 (en) Manufacturing method of electrode wire for wire electric discharge machining
JPS62229720A (en) Manufacture of nb3 sn superconductor wire
JPH041446B2 (en)
JP2517594B2 (en) Method for producing fiber-dispersed superconducting wire
JPH0381247B2 (en)
JPS6358716A (en) Manufacture of nb3sn multi-core superconductor
JPS62211359A (en) Manufacture of nb3sn superconductor element wire
JPH0735561B2 (en) Method for producing fiber-dispersed superconducting wire
JPS62211358A (en) Manufacture of nb3sn superconductor wire
JPH0554741A (en) Manufacture of compound superconducting wire
JPS6113508A (en) Method of producing low copper ratio nb3sn superconductive wire
JPS62243745A (en) Manufacture of superconductive electric wire containing dispersed fiber
JPS6358715A (en) Manufacture of nb3sn multi-core superconductor
JPS6347086B2 (en)
JPS609012A (en) Method of producing extrafine multicore compound superconductive conductor