KR100201752B1 - Making device for super conductive wire - Google Patents
Making device for super conductive wire Download PDFInfo
- Publication number
- KR100201752B1 KR100201752B1 KR1019960002614A KR19960002614A KR100201752B1 KR 100201752 B1 KR100201752 B1 KR 100201752B1 KR 1019960002614 A KR1019960002614 A KR 1019960002614A KR 19960002614 A KR19960002614 A KR 19960002614A KR 100201752 B1 KR100201752 B1 KR 100201752B1
- Authority
- KR
- South Korea
- Prior art keywords
- wire
- superconducting
- metal
- extrusion
- cable
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B12/00—Superconductive or hyperconductive conductors, cables, or transmission lines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
본 발명은 콘폼가공에 의한 금속계 초전도선의 제조방법에 관한 것으로, 단심소선이 연선된 연선케이블 또는 다심소선을 콘폼장치의 압출대 중심축상으로 연속적으로 통과시키면서 안정화 피복용 금속선재를 압출방식으로 연속적으로 선재주위로 피복할 수 있기 때문에 종래의 제조방법에 의해 생산되는 동일한 수준의 모노리스형의 원형 초전도선을 중·소형의 압출,인발 가공 설비로도 장척으로 제조할 수 있다.The present invention relates to a method of manufacturing a metal-based superconductor by conform processing, and continuously passes a stranded cable or a multicore wire in which single-core wires are stranded on the center axis of an extrusion table of a conform device, and continuously passes the stabilizing coating metal wire by an extrusion method. Since it can be coated around the wire rod, the monolithic circular superconducting wire of the same level produced by the conventional manufacturing method can be produced with long length even in the medium and small extrusion and drawing processing equipment.
Description
제1도는 본 발명에서 도입한 콘폼가공 방법의 원리를 나타낸 단면도.1 is a cross-sectional view showing the principle of the conform processing method introduced in the present invention.
제2도는 콘폼가공 전후의 선재단면도.2 is a cross-sectional view of the wire rod before and after processing the conform.
(a)는 실시예1에 대한 선재 단면도.(a) is sectional drawing of the wire rod for Example 1. FIG.
(b)는 실시예2에 대한 선재 단면도.(b) is sectional drawing of the wire rod for Example 2. FIG.
(c)는 실시예3에 대한 선재 단면도.(c) is sectional drawing of the wire rod for Example 3. FIG.
제3도는 종래의 납땜방식의 단면도.3 is a cross-sectional view of a conventional soldering method.
(a)는 다심소선의 경우.(a) is for multicore wires.
(b)는 단심소선을 연선한 경우.(b) is the case of single stranded wire.
* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings
1 : 초전도선 2 : 단심소선1: superconducting wire 2: single core wire
3 : 다심소선 4 : 빌렛3: multi core wire 4: billet
5 : 초전도체 필라멘트 6 : 안정화재5: superconductor filament 6: stabilizer
7 : 납(또는 납합금) 8 : 안정화재동7: lead (or lead alloy) 8: stabilization
9 : 연선케이블 10 : 안정화용 선재9: stranded wire cable 10: stabilizing wire rod
11 : 확산방지용 금속 12 : 선재케이블11: diffusion preventing metal 12: wire rod cable
13 : 안정화 피복용 금속선재 20 : 콘폼장치13 stabilization coating metal wire 20: Conform device
21 : 압출실 22 : 압출대21: extrusion chamber 22: extrusion table
23 : 인입휠23: inlet wheel
본 발명은 콘폼가공에 의한 금속계 초전도선의 제조방법에 관한 것으로, 초전도체 필라멘트와 안정화재(安定化材) 금속으로 구성된 금속계 초전도선을 제조하는 방법에 있어서, 단심소선이 연선된 연선케이블 또는 다심소선을 선재케이블로 하여 콘폼장치의 압출대 중심축상으로 연속적으로 통과시키면서 안정화 피복용 금속선재를 압출방식에 의해 연속적으로 선재주위를 피복할 수 있게 한 콘폼가공에 의한 금속계 초전도선의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a metal superconducting wire by Conform processing, and in the method of manufacturing a metal superconducting wire composed of a superconductor filament and a stabilizer metal, a stranded cable or a multicore wire The present invention relates to a method for manufacturing a metal-based superconducting wire by Conform processing, in which a wire rod cable is continuously passed through a center axis of an extruder of a conform apparatus while a stabilizing coating metal wire is continuously coated by an extrusion method.
초전도선은 전기저항이 0인 상태로 전류를 수송하는 초전도체 필라멘트(5)와 외부적 교란에 의하여 상전도핵이 초전도체에 생성되어 온도가 상승할 때 선재외부의 냉매쪽으로 열을 방열(放熱)시켜서 상전도액의 성장을 억제하거나 전류를 분류시켜 고저항의 상전도체로 전이한 초전도체의 발열을 억제하는 무산소동(無酸素銅)이나 고순도알루미늄 재질의 안정화재(6)로 구성되어 있다. 이러한 복합초전도선은 제조공정시 선재접속이 불가능하기 때문에 가능한한 장척(長尺)으로 제조할 필요가 있었다.The superconducting wire dissipates heat toward the refrigerant outside the wire rod when the temperature rises due to the superconducting filament (5) that carries current with zero electrical resistance and the phase conduction nucleus is generated in the superconductor due to external disturbance. It consists of an oxygen-free copper or a high purity aluminum stabilization material 6 which suppresses the growth of the phase conductive liquid or classifies the current to suppress the heat generation of the superconductor transferred to the high resistance phase conductor. Such composite superconducting wires had to be manufactured as long as possible because wire connection was impossible during the manufacturing process.
종래의 제조방법은 초전도체 필라멘트와 안정화제로 구성된 빌렛(billet)을 만들고 이것을 압출한 후 NbTi 등과 같은 합금계 초전도선의 제조의 경우에는 중간열처리 공정을 거치면서 인발, 신선 공정으로 세선화(細線化)하여 모노리스형의 최종 초전도선을 만들고, Nb3Sn 등의 금속간화합물계 초전도선의 제조의 경우에는 중간 열처리는 낮은 온도에서 아닐링처리를 하고 코일의 형태에서 Nb3Sn 생성을 위한 반응열처리를 하여 제조하는 경우가 일반적이었다. 또한 필요에 따라서 최종 선재를 집합(集合), 연선(撚線)하고 안정화재를 첨가한 구조의 초전도선을 만들기도 했다.In the conventional manufacturing method, a billet composed of a superconductor filament and a stabilizer is made and extruded, and in the case of manufacturing an alloy-based superconductor such as NbTi, the wire is thinned by drawing and drawing process through an intermediate heat treatment process. The final superconductor of monolithic type is made, and in the case of manufacturing intermetallic superconductor such as Nb 3 Sn, intermediate heat treatment is performed by annealing at low temperature and by reaction heat treatment for Nb 3 Sn formation in the form of coil. It was a common case. In addition, if necessary, superconducting wires with a structure in which final wires were assembled, stranded and stabilized were added.
모노리스형 초전도선을 제조하는 경우 종래의 방법에서는 선재의 구조와 길이가 최초의 빌렛형태 및 크기에 의해 결정되기 때문에 공정에서의 자유도가 없고 제조하고자 하는 초전도선의 최종길이를 길게 할수록 큰 규모의 빌렛이 요구되며 압출기 및 인발기의 규모도 대형화 될 수 밖에 없는 단점이 있었다.In the case of manufacturing a monolithic superconducting wire, in the conventional method, since the structure and length of the wire rod are determined by the initial billet shape and size, there is no degree of freedom in the process, and the larger the final length of the superconducting wire to be manufactured, the larger the billet. It is required and the size of the extruder and the drawer also had a disadvantage that must be enlarged.
최근에 NbTi 초전도선제조에 있어서 이러한 단점을 개량할 목적으로 제3(a)도에 도시한 바와 같이 다심소선(3)을 납(또는 납합금)(7)으로 오목형의 안정화재동(8)에 연속납땜하여 하우징하거나 제3(b)도에 도시한 바와 같이 단심소선(2)을 1차적으로 만든 후 연선(撚線)한 연선케이블(9)을 안정화재동(8)에 하우징하는 방법이 제안되어 상용화되고 있다. 그러나 상기와 같은 연속납땜에 의한 방법은 대기오염의 문제를 야기시키고 초전도체 필라멘트(5) 선재와 안정화제(6)의 접촉면이 불순물에 의하여 오염될 가능성이 있고 납(Pb)(또는 납합금)(7)은 초전도선(1)에서 안정화재(6)로 사용하는 무산소동 이나 고순도알루미늄에 비하여 저항율이 높고 열전도도가 떨어지기 때문에 커런트 트랜스퍼(current transfer)저항의 발생, 방열 특성의 저하 등으로 초전도선(1)의 안정화 특성을 저하시키는 원인이 되었다. 또한 납땜에 의한 방식은 극저온 바니쉬 절연처리를 할 때 선재를 300℃ 정도로 가열할 필요가 있으나 납이 녹아내리기 때문에 그 대신 글래스화이버 등으로 절연해야 한다. 그래스화이버에 의한 절연 방법은 바니쉬 코팅에 비하여 층 두께가 두꺼워지고 불균질하게 되는 단점이 있었다.In order to remedy these shortcomings in the production of NbTi superconductors in recent years, as shown in FIG. 3 (a), the multicore wires 3 are made of lead (or lead alloy) 7 with concave stabilization copper (8). The method of housing the stabilized copper 8 with a twisted pair cable 9 after continuous soldering or making a single core 2 primarily as shown in FIG. 3 (b). Proposed and commercialized. However, such a method of continuous soldering causes a problem of air pollution, and there is a possibility that the contact surface of the superconducting filament 5 wire and the stabilizer 6 is contaminated by impurities, and lead (Pb) (or lead alloy) ( 7) has higher resistivity and lower thermal conductivity than anoxic copper or high-purity aluminum used as the stabilizing material in the superconducting wires (1). Therefore, superconductivity is caused by the occurrence of current transfer resistance and deterioration of heat dissipation characteristics. It became the cause of reducing the stabilization characteristic of the line 1. In addition, the soldering method requires the wire to be heated to about 300 ° C. when the cryogenic varnish is insulated, but because the lead melts, the glass fiber must be insulated instead. The insulation method by the glass fiber has a disadvantage in that the layer thickness becomes thick and inhomogeneous compared to the varnish coating.
콘폼장치(20)는 일반적으로 케이블이나 선재가 연속적으로 압출대(22)를 통과할 때 압출용 재료가 그 주위로 피복되게 하는 것으로 알루미늄피복동선 등의 복합선재의 연속재조에 이용되고 있다.The conformal device 20 is generally used for continuous fabrication of a composite wire such as an aluminum-coated copper wire, by which an extrusion material is coated around the cable or wire as it continuously passes through the extrusion table 22.
본 발명은 종래의 방법에 의하여 1차적으로 제조된 금속계 초전도선재(케이블 또는 소선)를 안정화재와 결합시켜 2차적으로 제조하는 금속계 초전도선의 제조방법에 있어서 납(또는 납 합금) 등의 접합 물질을 사용하지 않는 콘품가공에 의한 금속계 초전도선의 제조방법으로 2차 가공시 안정화 특성이 저하되지 않는 합금계 및 화합물계의 초전도선을 제공함에 그 목적이 있다.The present invention provides a bonding material such as lead (or lead alloy) in the method of manufacturing a metal-based superconducting wire which is manufactured by combining the metal-based superconducting wire (cable or wire) firstly prepared by a conventional method with a stabilizing material. It is an object of the present invention to provide an alloy-based and compound-based superconducting wire which does not degrade stabilization characteristics during secondary processing by a method of manufacturing a metal-based superconducting wire by processing unused cone products.
이하, 첨부도면을 참조하여 본 발명을 설명해 보면, 본 발명은 종래의 방법에 의해 1차적으로 제조된 초전도선재인 다심소선(3) 또는 단심소선(2)을 연선한 선재케이블(12)을 제1도에 도시한 바와 같이 콘폼장치(20)의 압출대(22)에 연속적으로 삽입하고 동시에 인입휠(23)의 홈에 물려서 콘폼장치(20)에 삽입되는 안정화 피복용 금속선재(13)가 마찰열에 의하여 온도가 상승되면서 가소성 상태로 되고 압출실(21)에서 선재케이블(12) 주위로 연속압출되면서 안정화 피복 금속선재(13)가 피복된 복합 초전도선(1)으로 가공된다.Hereinafter, the present invention will be described with reference to the accompanying drawings. The present invention relates to a multi-core wire (3) or single-core wire (2), which is a superconducting wire primarily manufactured by a conventional method. As shown in FIG. 1, a stabilizing coating metal wire 13 inserted continuously into the extrusion table 22 of the conformer 20 and simultaneously inserted into the conformer 20 by being bitten by the groove of the inlet wheel 23 is provided. As the temperature rises due to the frictional heat, it becomes a plastic state and is continuously extruded around the wire cable 12 in the extrusion chamber 21 and processed into the composite superconducting wire 1 coated with the stabilized coated metal wire 13.
[실시예 1] Example 1
NbTi 초전도선재 제조의 경우로서, 콘폼장치(20)에 삽입하기 위한 선재케이블(12)은 Cu 와 NbTi 복합체의 단심 빌렛(4)을 만든 후 압출하고 인발한 다음 초전도성 발현을 위하여 공정 중간에 상전도 석출물 α 상을 생성하기 위한 석출열처리와 신선공정을 반복하여 제2(a)도에 도시한 바와 같이 NbTi 초전도체 필라멘트(5)와 Cu 안정화재(6)로 이루어진 초전도 단심소선(2)을 제조한다. 이때의 단심소선(2) 중의 NbTi 직경은 기존의 방법에서의 초전도체 필라멘트(5)의 직경에 비례하므로, 자속불안정성이 일어나지 않는 임계크기 이하로 초전도체 필라멘트 직경을 설계하고 초전도체와 안정화재와의 비율을 적정하게 결정하는 안정화설계 기준에 근거하여 결정해야 한다. 단심소선(2)은 다심소선(3)에 비하여 코아의 가공이 균일하게 일어나므로 가늘게 가공하는데 유리하고 가늘게 가공할 수록 비례하여 초전도선(1)은 더 장척화(長尺化) 된다. 초전도마그네트의 용도에 맞춘 핏치로 단심소선(2)을 연선한 연선케이블(9) 또는 중앙에 Cu 재질의 안정화용선재(10)를 배치한 형태로 연선한 연선케이블(9)를 이용한다. 상기 연선케이블(9)을 선재케이블(12)로 하여 콘폼장치(20)를 통과할 때 안정화피복용 금속선재(13)를 인입휠(23)의 홈에 물려 장입시키며 압출실(21)에 이동되면서 마찰열에 의하여 온도가 상승되고 인입휠(23)의 구동력에 의하여 선재케이블(12)이 압출대(22)를 통하여 빠져나갈 때 선재케이블(12) 표면 주위로 무산소동 또는 고순도알루미늄 등의 안정화 피복용 금속선재(13)가 피복되어 초전도선(1)이 제조된다.In the case of manufacturing NbTi superconducting wire, the wire cable 12 for inserting into the conformal device 20 is made of a single core billet (4) of Cu and NbTi composite, extruded and drawn, and then phase-conducted in the middle of the process for superconductivity. The precipitation heat treatment and the drawing process are repeated to produce the precipitate α phase, thereby producing a superconducting single core wire 2 composed of the NbTi superconductor filament 5 and the Cu stabilizer 6, as shown in FIG. 2 (a). . At this time, since the NbTi diameter in the single core wire 2 is proportional to the diameter of the superconductor filament 5 in the conventional method, the superconductor filament diameter is designed to be below the critical size at which magnetic flux instability does not occur, and the ratio between the superconductor and the stabilizing material is Decisions should be made based on appropriate stabilization design criteria. Since single core wires 2 have a uniform core processing compared to multi core wires 3, the superconducting wires 1 are more elongated in proportion to the thinner wires. A twisted pair cable 9 in which the single core wires 2 are stranded or a twisted pair cable 9 in the form of a stabilizing wire 10 made of Cu in the center is used in a pitch suitable for the purpose of the superconducting magnet. When the twisted pair cable 9 is used as the wire rod cable 12, the stabilizing coating metal wire 13 is inserted into the groove of the inlet wheel 23 when the wire is passed through the conformal device 20, and then moved to the extrusion chamber 21. As the temperature rises due to frictional heat and the wire rod cable 12 is pulled out through the extrusion table 22 by the driving force of the inlet wheel 23, stabilization of oxygen free copper or high purity aluminum, etc., around the wire rod cable 12 surface is avoided. The dose metal wire 13 is coated to produce the superconducting wire 1.
[실시예 2] Example 2
다심의 Cu 와 NbTi 빌렛(4)을 압출-인발-신선-석출열처리-신선-트위스트 하여 기존의 방법으로 다심소선(3)을 제조한 다음 실시예1과 동일한 방법에 의하여 무산소동 혹은 고순도알루미늄 등의 안정화 피복용 선재(13)가 피복된 초전도선(1)을 제조한다.Multicore Cu and NbTi billets (4) were extruded, drawn, drawn, precipitated, heat treated, drawn and twisted to produce multicore wires (3) by the conventional method, followed by anoxic copper or high purity aluminum by the same method as in Example 1. The superconducting wire 1 by which the stabilizing coating wire 13 of this invention was coat | covered is manufactured.
[실시예 3] Example 3
브론즈(Cu-S)재질의 안정화재(6)에 다수개의 홈을 뚫고 Nb를 삽입한 구조의 빌렛(4)을 압출-인발-신선-트위스트 공정으로 가공한 후 Nb 또는 Ta 등의 확산방지용 금속(11)으로 코팅한 선재케이블(12)을 콘폼가공에 의하여 무산소동 또는 고순도알루미늄 금속을 피복하고 반응열처리에 의하여 초전도화합물상 Nb3Sn의 초전도체 필라멘트(5)를 생성시켜 모노리스형의 Nb3Sn 초전도선(1)을 제조한다.Metals for preventing diffusion such as Nb or Ta after the billet 4 having a structure in which a plurality of grooves are inserted in the stabilized material 6 made of bronze (Cu-S) and Nb is inserted are processed by an extrusion-drawing-fresh-twist process. The wire rod 12 coated with (11) was coated with an oxygen-free copper or high purity aluminum metal by conform processing, and a superconducting filament (5) of superconducting compound Nb 3 Sn was formed by reaction heat treatment to produce a monolithic Nb 3 Sn. The superconducting wire 1 is manufactured.
상기와 같은 작용 및 실시예를 가지는 본 발명에 의해 얻을 수 있는 효과는 종래의 방법에 의하여 제조되는 선재 단면 형태를 그대로 유지하면서 소형의 가공설비(압출기, 인발기 등)로 콘폼가공전의 소선직경에 비례한 장척의 초전도선을 제조할 수 있고, 콘폼 가공시 압출용 재료로 알루미늄을 선택하면 경량의 초전도선을 제조 할 수 있으며, 종래의 방법으로 제조된 모노리스 선재를 이용하여 안정화재 비율이 큰 원형의 초전도선을 제조할 수 있고, 안정화용 금속이 압출방식에 의하여 초전도선재에 피복되기 때문에 계면밀착력이 우수하고 계면에서의 커런트트랜스퍼저항이 발생하지 않고 계면에서의 방열 특성의 저하가 일어나지 않는 효과가 있다.The effect obtained by the present invention having the above-described functions and examples is that the wire diameter before compaction processing is maintained in a small processing facility (extruder, drawing machine, etc.) while maintaining the cross-sectional shape of the wire rod manufactured by the conventional method. It is possible to manufacture proportional elongated superconducting wires, and when aluminum is selected as the material for extrusion during conform processing, lightweight superconducting wires can be manufactured, and the monolithic wire produced by the conventional method has a large ratio of stabilizing material. Superconducting wires can be produced, and since the stabilizing metal is coated on the superconducting wires by the extrusion method, the interfacial adhesion is excellent, the current transfer resistance at the interface does not occur, and the heat dissipation at the interface does not occur. have.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019960002614A KR100201752B1 (en) | 1996-02-03 | 1996-02-03 | Making device for super conductive wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019960002614A KR100201752B1 (en) | 1996-02-03 | 1996-02-03 | Making device for super conductive wire |
Publications (2)
Publication Number | Publication Date |
---|---|
KR970063284A KR970063284A (en) | 1997-09-12 |
KR100201752B1 true KR100201752B1 (en) | 1999-06-15 |
Family
ID=19450694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019960002614A KR100201752B1 (en) | 1996-02-03 | 1996-02-03 | Making device for super conductive wire |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100201752B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2194591A2 (en) | 2008-12-03 | 2010-06-09 | Korea Electro Technology Research Institute | Method of manufacturing round wire using superconducting tape and round wire manufactured using the superconducting tape |
KR101484166B1 (en) | 2013-08-08 | 2015-01-21 | 한국전기연구원 | method for manufacturing superconducting cables using superconducting coated conductors and superconducting cables by the manufacturing |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100495555B1 (en) * | 2002-12-05 | 2005-06-14 | 백창기 | Explosion proof air conditioner |
KR101493973B1 (en) * | 2013-08-19 | 2015-02-17 | 한국전기연구원 | method for manufacturing superconducting cables using superconducting coated conductors and superconducting cables by the manufacturing |
-
1996
- 1996-02-03 KR KR1019960002614A patent/KR100201752B1/en not_active IP Right Cessation
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2194591A2 (en) | 2008-12-03 | 2010-06-09 | Korea Electro Technology Research Institute | Method of manufacturing round wire using superconducting tape and round wire manufactured using the superconducting tape |
US8034746B2 (en) | 2008-12-03 | 2011-10-11 | Korea Electrotechnology Research Institute | Method of manufacturing round wire using superconducting tape and round wire manufactured using the superconducting tape |
KR101484166B1 (en) | 2013-08-08 | 2015-01-21 | 한국전기연구원 | method for manufacturing superconducting cables using superconducting coated conductors and superconducting cables by the manufacturing |
Also Published As
Publication number | Publication date |
---|---|
KR970063284A (en) | 1997-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4242536A (en) | Aluminum-stabilized multifilamentary superconductor | |
US3699647A (en) | Method of manufacturing long length composite superconductors | |
US5266416A (en) | Aluminum-stabilized superconducting wire | |
US3838503A (en) | Method of fabricating a composite multifilament intermetallic type superconducting wire | |
US4055887A (en) | Method for producing a stabilized electrical superconductor | |
US4378330A (en) | Ductile alloy and process for preparing composite superconducting wire | |
JP2693255B2 (en) | Nb (Bottom 3) Method and apparatus for manufacturing Al-based superconducting wire | |
US4363675A (en) | Process for producing compound based superconductor wire | |
KR100201752B1 (en) | Making device for super conductive wire | |
US4084989A (en) | Method for producing a stabilized electrical superconductor | |
US4153986A (en) | Method for producing composite superconductors | |
US3996662A (en) | Method for the manufacture of a superconductor having an intermetallic two element compound | |
US3857173A (en) | Method of producing a composite superconductor | |
US4982497A (en) | Process for manufacture of a superconductor | |
US4426550A (en) | Multiwire conductor having greatly increased interwire resistance and method for making same | |
JP3127181B2 (en) | Method for manufacturing composite superconducting wire and method for manufacturing composite superconducting coil | |
Pyon et al. | Development of Nb/sub 3/Sn conductors for fusion and high energy physics | |
JP2749136B2 (en) | Aluminum stabilized superconducting wire | |
JPH10162662A (en) | Aluminum stabilized superconductor | |
JP2574390B2 (en) | High-purity oxygen-free copper and its uses | |
JP2742436B2 (en) | Method for producing compound superconducting stranded wire | |
JPH10247428A (en) | Oxide superconductive wire | |
JPS6212606B2 (en) | ||
JPH08287752A (en) | Manufacture of superconducting wire material | |
JPH08212847A (en) | Composite multicore superconducting wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130110 Year of fee payment: 15 |
|
FPAY | Annual fee payment |
Payment date: 20140122 Year of fee payment: 16 |
|
FPAY | Annual fee payment |
Payment date: 20150106 Year of fee payment: 17 |
|
EXPY | Expiration of term |