JP2574390B2 - High-purity oxygen-free copper and its uses - Google Patents

High-purity oxygen-free copper and its uses

Info

Publication number
JP2574390B2
JP2574390B2 JP63118875A JP11887588A JP2574390B2 JP 2574390 B2 JP2574390 B2 JP 2574390B2 JP 63118875 A JP63118875 A JP 63118875A JP 11887588 A JP11887588 A JP 11887588A JP 2574390 B2 JP2574390 B2 JP 2574390B2
Authority
JP
Japan
Prior art keywords
ppm
less
oxygen
free copper
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63118875A
Other languages
Japanese (ja)
Other versions
JPH01290730A (en
Inventor
洋一 高沢
芳甫 二村
修二 酒井
和雄 菅谷
豊 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUKO KINZOKU KK
Hitachi Cable Ltd
Original Assignee
NITSUKO KINZOKU KK
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUKO KINZOKU KK, Hitachi Cable Ltd filed Critical NITSUKO KINZOKU KK
Priority to JP63118875A priority Critical patent/JP2574390B2/en
Publication of JPH01290730A publication Critical patent/JPH01290730A/en
Application granted granted Critical
Publication of JP2574390B2 publication Critical patent/JP2574390B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Conductive Materials (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高純度無酸素銅及びその用途に関し、特に銅
被覆超電導導体の安定化材に適した高純度無酸素銅に関
するものである。
Description: FIELD OF THE INVENTION The present invention relates to high-purity oxygen-free copper and uses thereof, and more particularly to high-purity oxygen-free copper suitable as a stabilizer for a copper-coated superconductor.

[従来の技術] 実用化されている超電導線、例えばNb−Ti系やNb3Sn
系等の超電導線は、高純度銅又はアルミニウムと複合一
体化することにより、超電導状体が崩れたときの線材の
焼損を防止している。
[Prior Art] Practical superconducting wires such as Nb-Ti and Nb 3 Sn
The superconducting wire of the system or the like is integrated with high-purity copper or aluminum to prevent burning of the wire when the superconducting body collapses.

この超電導安定化材は、20K以下の極低温域での電気
抵抗が小さいほど超電導線材の安定性が増すので、極低
温下での電気抵抗ができるだけ小さいことが望ましい。
しかし、高純度銅であっても鉄不純物を2〜3ppm以上含
んでいる場合、極低温下での電気抵抗を増大させる傾向
がある。従って、最近では鉄不純物の少ない、より高純
度な銅が要求されるようになってきている。
Since the stability of the superconducting wire of the superconducting stabilizer becomes smaller as the electric resistance in a cryogenic temperature region of 20 K or less becomes smaller, it is desirable that the electric resistance at a cryogenic temperature be as small as possible.
However, even in the case of high-purity copper, when iron impurities are contained in an amount of 2 to 3 ppm or more, the electric resistance at an extremely low temperature tends to increase. Therefore, recently, copper having a higher purity with less iron impurities has been required.

[発明が解決しようとする問題点] 以上述べた通り、従来の高純度無酸素銅及びその用途
によれば、2〜3ppm以上の鉄不純物を含んでいるため、
極低温下での電気抵抗を増大させるという不都合があ
る。
[Problems to be Solved by the Invention] As described above, according to the conventional high-purity oxygen-free copper and its use, since it contains iron impurities of 2 to 3 ppm or more,
There is a disadvantage that the electric resistance at a very low temperature is increased.

[問題点を解決するための手段] 本発明は上記に鑑みてなされたもので、極低温下での
電気抵抗の増大を抑制するために鉄不純物を1ppm以下に
し、塑性加工性を向上させるために酸素不純物を5ppm以
下にし、かつ銀を含むその他の不可避的不純物を合計量
で10ppm以下にしたものである。
[Means for Solving the Problems] The present invention has been made in view of the above, and has been made to reduce the amount of iron impurities to 1 ppm or less in order to suppress an increase in electric resistance at extremely low temperatures, and to improve plastic workability. In addition, oxygen impurities are reduced to 5 ppm or less, and other unavoidable impurities including silver are reduced to 10 ppm or less in total.

即ち、本発明の高純度無酸素銅は以下の構成を備えて
いる。
That is, the high-purity oxygen-free copper of the present invention has the following configuration.

(1) 鉄 この不純物はその増加に伴い極低温下での電気抵抗を
増大させる。従って、その量は1ppm以下に限定される。
(1) Iron This impurity increases the electrical resistance at cryogenic temperatures with its increase. Therefore, its amount is limited to 1 ppm or less.

(2)酸 素 この不純物はその増加に伴い、Cu/Nb−Ti等の超電導
線材へ複合化する場合、その塑性加工性を劣化させる。
従って、その量は5ppm以下に限定される。
(2) Oxygen With the increase of these impurities, when they are combined with a superconducting wire such as Cu / Nb-Ti, the plastic workability is deteriorated.
Therefore, its amount is limited to 5 ppm or less.

(3)その他の不可避的不純物 この場合、銀が主な成分となる。銀は鉄ほどではない
が、極低温下での電気抵抗を増大させる。従って、銀を
含むその他の不可避的不純物の量も少いことが望まし
く、10ppm以下に限定される。
(3) Other unavoidable impurities In this case, silver is the main component. Silver, although not as much as iron, increases its electrical resistance at cryogenic temperatures. Therefore, the amount of other unavoidable impurities including silver is desirably small, and is limited to 10 ppm or less.

これらの不可避的不純物を2ppm以下にすることはコス
ト高につながる恐れがあるので、望ましくは2〜10ppm
の範囲である。
Since reducing these unavoidable impurities to 2 ppm or less may increase the cost, preferably 2 to 10 ppm
Range.

この高純度無酸素銅の用途としては、超電導線用安定
化材、極低温熱伝導材料等があげられる。
Applications of this high-purity oxygen-free copper include a superconducting wire stabilizer, a cryogenic thermal conductive material, and the like.

[作用] 不純物を、鉄1ppm以下、酸素5ppm以下、その他10ppm
以下とすることにより、極低温下での電気抵抗が小さく
なり、加工性も優れたものとなる。このため超電導線の
安定化材として広く使用できる。
[Action] Impurities, iron 1ppm or less, oxygen 5ppm or less, other 10ppm
By setting the content as described below, the electric resistance at an extremely low temperature is reduced, and the workability is also excellent. Therefore, it can be widely used as a stabilizing material for superconducting wires.

[実施例] 以下、本発明を実施例により詳細に説明する。[Examples] Hereinafter, the present invention will be described in detail with reference to examples.

実施例 1 鉄不純物が0.05ppmで、その他銀等の不可避的不純物
の合計が3ppmの電気銅を用い、全連続溶解鋳造設備によ
り特に鉄不純物が混入しないように十分注意しながらφ
275のビレットを鋳造した。得られたビレットにおける
不純物は、鉄0.5ppm、酸素2ppm、その他銀等の不可避的
不純物の合計が5ppmと少し不純物量が増加していたが、
電解銅の高純度性は失われていなかった。
Example 1 Iron copper containing 0.05 ppm of iron impurities and a total of 3 ppm of unavoidable impurities such as silver was used.
275 billets were cast. Impurities in the obtained billet, iron 0.5ppm, oxygen 2ppm, the total amount of other unavoidable impurities such as silver was 5ppm, the impurity amount was slightly increased,
The high purity of the electrolytic copper was not lost.

このビレットを熱間押出、中間焼鈍、引抜伸線等の加
工を加えてφ1.0とした。これを更に250℃×3hrs非酸化
性雰囲気中で加熱した後、4.2Kの液体ヘリウム中で4端
子法により電気抵抗を測定した。その結果、4.2Kでの比
抵抗(ρ)は1.40×10-9Ω・cmであった。
This billet was subjected to processing such as hot extrusion, intermediate annealing, drawing and drawing to obtain φ1.0. This was further heated in a non-oxidizing atmosphere at 250 ° C. × 3 hrs, and then the electric resistance was measured by a four-terminal method in 4.2 K of liquid helium. As a result, the specific resistance (ρ) at 4.2 K was 1.40 × 10 −9 Ω · cm.

同様の電気銅にて鉄2ppmの無酸素銅試料を作製してそ
の比抵抗を測定したところ、 ρ(at4.2K)=2.85×10-9Ω・cmであり、本発明材は従
来材の約1/2となっており、鉄不純物の低減効果の大き
いことが判る。
An oxygen-free copper sample of 2 ppm iron was prepared using the same electrolytic copper, and its specific resistance was measured. As a result, ρ (at 4.2 K) was 2.85 × 10 −9 Ω · cm. It is about 1/2, indicating that the effect of reducing iron impurities is large.

実施例 2 実施例1で得られたφ275のビレットを熱間押出によ
り、外径約100mm、肉厚約20mmの銅管に加工した後、冷
間拡管引抜加工、焼鈍を繰返して外径140mm、肉厚10mm
の太径銅管を得た。この銅管に外径118mmのNb−46.5wt
%Tiの超電導材を挿入して静水圧押出用ビレットとし、
このビレットを押出、冷間引抜することにより、所謂Cu
/Nb−Ti複合シングル線とした。このシングル線を上記
と同様に作製した太径銅管内に複数本挿入してマルチ超
電導線押出用ビレットとした。このビレットを押出、冷
間引抜、時効熱処理加工することにより外径1.2mm、銅
比2.0、Nb−Tiフィラメント径が20μm、フィラメント
数が1200本の超電導線を得た。
Example 2 After processing the billet of φ275 obtained in Example 1 into a copper tube having an outer diameter of about 100 mm and a wall thickness of about 20 mm by hot extrusion, cold expanding and drawing and annealing were repeated to obtain an outer diameter of 140 mm. 10mm thickness
Was obtained. Nb-46.5wt with 118mm outside diameter
% Ti superconducting material is inserted into a billet for hydrostatic extrusion,
This billet is extruded and cold drawn to form a so-called Cu
/ Nb-Ti composite single wire. A plurality of the single wires were inserted into a large-diameter copper tube manufactured in the same manner as above to obtain a billet for extruding a multi-superconducting wire. The billet was subjected to extrusion, cold drawing, and aging heat treatment to obtain a superconducting wire having an outer diameter of 1.2 mm, a copper ratio of 2.0, an Nb-Ti filament diameter of 20 μm, and a number of filaments of 1200.

この超電導線を、超電導特性を劣化させないで安定化
銅部が軟化する250℃×3hrs加熱した後、その超電導線
について極低温下での電気抵抗を測定した。その結果、
得られた超電導線の比抵抗(at4.2K)は2.1×10-9Ω・c
mであった。一方、鉄不純物を2ppm含んだ無酸素銅を安
定化材として適用した超電導線材のそれは4.3×10-9Ω
・cmてあり、本発明材の有意性は複合材においても変わ
らなかった。
After heating the superconducting wire at 250 ° C. × 3 hrs, at which the stabilized copper portion softens without deteriorating the superconducting characteristics, the electric resistance of the superconducting wire at a cryogenic temperature was measured. as a result,
The specific resistance (at4.2K) of the obtained superconducting wire is 2.1 × 10 -9 Ω · c
m. On the other hand, that of superconducting wire using oxygen-free copper containing 2 ppm of iron impurities as a stabilizing material is 4.3 × 10 -9 Ω
Cm, and the significance of the material of the present invention was not changed in the composite material.

また、超電導マグネットを想定し、4.2K、5T(テス
ラ)での電気抵抗も測定した。その結果、本発明材は2.
1×10-8Ω・cm、従来材は2.5×10-8Ω・cmで、零磁界中
より効果は薄れるが、20%以上小さくなった。
Assuming a superconducting magnet, the electrical resistance at 4.2K and 5T (tesla) was also measured. As a result, the material of the present invention is 2.
1 × 10 −8 Ω · cm and 2.5 × 10 −8 Ω · cm for the conventional material, the effect is weaker than in a zero magnetic field, but is reduced by more than 20%.

なお、本発明の超電導線用安定化銅は、所謂ブロンズ
法で作製したNb3Sn線材に適用しても同様の効果が期待
できる。
The same effect can be expected when the stabilized copper for a superconducting wire of the present invention is applied to an Nb 3 Sn wire produced by a so-called bronze method.

また、Cu/Nb−Ti複合多芯線に適用する場合、特にフ
ィラメント径が10μm以下になると時効熱処理時にCuと
Nb−Ti間の反応が激しくなり、Nb−Ti中の特にTiがCuを
汚染し、本発明の効果が薄れる可能性がある。これを防
止するためには、シングル線の断面構造をCu/Nb/Nb−T
i、Cu/V/Nb−Ti又はCu/Ta/Nb−Ti等とし、Nb、V又はTa
をCuとTi間の反応抑制拡散バリヤとすることが望まし
い。
In addition, when applied to a Cu / Nb-Ti composite multifilamentary wire, particularly when the filament diameter is 10 μm or less, it is not possible to form Cu and
There is a possibility that the reaction between Nb-Ti becomes violent, and particularly Ti in Nb-Ti contaminates Cu, and the effect of the present invention is weakened. In order to prevent this, the cross-sectional structure of the single wire should be Cu / Nb / Nb-T
i, Cu / V / Nb-Ti or Cu / Ta / Nb-Ti etc., Nb, V or Ta
Is desirably a diffusion barrier for suppressing the reaction between Cu and Ti.

また、本発明の無酸素銅は極低温下での熱伝導度も大
きいので、極低温用伝熱材料としても有効である。
Further, the oxygen-free copper of the present invention has a high thermal conductivity at cryogenic temperatures, and thus is effective as a cryogenic heat transfer material.

[発明の効果] 以上説明した通り、本発明によれば、不純物を減少さ
せることにより極低温下及び磁界中での電気抵抗及び熱
伝導度に優れ、且つ加工性にも優れた超電導線用安定化
材に適した高純度な無酸素銅を提供できる利点がある。
[Effects of the Invention] As described above, according to the present invention, by reducing impurities, the stability for superconducting wires excellent in electric resistance and thermal conductivity at cryogenic temperatures and in a magnetic field and also excellent in workability is obtained. There is an advantage that high-purity oxygen-free copper suitable for a chemical material can be provided.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 酒井 修二 茨城県土浦市木田余町3550番地 日立電 線株式会社金属研究所内 (72)発明者 菅谷 和雄 茨城県土浦市木田余町3550番地 日立電 線株式会社土浦工場内 (72)発明者 大内 豊 茨城県土浦市木田余町3550番地 日立電 線株式会社土浦工場内 (56)参考文献 特開 昭62−111455(JP,A) 特開 昭60−62009(JP,A) 特開 昭56−139643(JP,A) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shuji Sakai 3550 Kida Yomachi, Tsuchiura City, Ibaraki Prefecture Inside the Metal Research Laboratory, Hitachi Cable, Ltd. (72) Kazuo Sugaya 3550 Kida Yomachi, Tsuchiura City, Ibaraki Hitachi Line Inside the Tsuchiura Plant Co., Ltd. (72) Inventor Yutaka Ouchi 3550 Kida Yomachi, Tsuchiura City, Ibaraki Prefecture Inside the Tsuchiura Plant Hitachi Cable Co., Ltd. (56) References JP-A-62-111455 (JP, A) JP-A-60 -62009 (JP, A) JP-A-56-133963 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】鉄不純物及び酸素不純物が夫々重量で1ppm
以下及び5ppm以下で、かつ銀を含む不可避的不純物の合
計が10ppm以下であり、20K以下の電気抵抗が2×10-9Ω
・cm以下であることを特徴とする高純度無酸素銅。
An iron impurity and an oxygen impurity are each 1 ppm by weight.
Not more than 5 ppm, and the total of unavoidable impurities including silver is 10 ppm or less, and the electric resistance of 20K or less is 2 × 10 −9 Ω.
-High purity oxygen-free copper characterized by being less than cm.
【請求項2】鉄不純物及び酸素不純物が夫々重量で1ppm
以下及び5ppm以下で、かつ銀を含む不可避的不純物の合
計が10ppm以下であり、20K以下の電気抵抗が2×10-9Ω
・cm以下である高純度無酸素銅を安定化材として使用し
たことを特徴とする超電導導体。
2. An iron impurity and an oxygen impurity each containing 1 ppm by weight.
Not more than 5 ppm, and the total of unavoidable impurities including silver is 10 ppm or less, and the electric resistance of 20K or less is 2 × 10 −9 Ω.
-A superconducting conductor characterized by using high-purity oxygen-free copper having a size of not more than cm as a stabilizer.
【請求項3】鉄不純物及び酸素不純物が夫々重量で1ppm
以下及び5ppm以下で、かつ銀を含む不可避的不純物の合
計が10ppm以下であり、20K以下の電気抵抗が2×10-9Ω
・cm以下である高純度無酸素銅を安定化材として使用し
た超電導導体をコイルに使用したことを特徴とする超電
導マグネット。
3. An iron impurity and an oxygen impurity each containing 1 ppm by weight.
Not more than 5 ppm, and the total of unavoidable impurities including silver is 10 ppm or less, and the electric resistance of 20K or less is 2 × 10 −9 Ω.
-A superconducting magnet characterized in that a superconducting conductor using high-purity oxygen-free copper of less than cm as a stabilizer is used for the coil.
JP63118875A 1988-05-16 1988-05-16 High-purity oxygen-free copper and its uses Expired - Lifetime JP2574390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63118875A JP2574390B2 (en) 1988-05-16 1988-05-16 High-purity oxygen-free copper and its uses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63118875A JP2574390B2 (en) 1988-05-16 1988-05-16 High-purity oxygen-free copper and its uses

Publications (2)

Publication Number Publication Date
JPH01290730A JPH01290730A (en) 1989-11-22
JP2574390B2 true JP2574390B2 (en) 1997-01-22

Family

ID=14747282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63118875A Expired - Lifetime JP2574390B2 (en) 1988-05-16 1988-05-16 High-purity oxygen-free copper and its uses

Country Status (1)

Country Link
JP (1) JP2574390B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5118618B2 (en) * 2008-12-24 2013-01-16 Jx日鉱日石金属株式会社 High purity shape memory alloy target and alloy thin film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139643A (en) * 1980-04-02 1981-10-31 Sumitomo Electric Ind Ltd Copper conductor for use at ultralow temperature and its manufacture

Also Published As

Publication number Publication date
JPH01290730A (en) 1989-11-22

Similar Documents

Publication Publication Date Title
US4148129A (en) Aluminum-stabilized multifilamentary superconductor and method of its manufacture
US5266416A (en) Aluminum-stabilized superconducting wire
US3910802A (en) Stabilized superconductors
JP2693255B2 (en) Nb (Bottom 3) Method and apparatus for manufacturing Al-based superconducting wire
JPS6215967B2 (en)
JP2574390B2 (en) High-purity oxygen-free copper and its uses
Koike et al. Fabrication of multifilament Nb3Sn conductors
JP4500901B2 (en) Composite sheathed magnesium diboride superconducting wire and its manufacturing method
JP2997121B2 (en) Aluminum stabilized superconducting wire
JP3047540B2 (en) High purity Cu alloy for superconducting stabilizer with high residual resistance ratio
US4153986A (en) Method for producing composite superconductors
Tsuei Ductile superconducting Cu-rich alloys containing A-15 filaments
US3465429A (en) Superconductors
US3996662A (en) Method for the manufacture of a superconductor having an intermetallic two element compound
KR100201752B1 (en) Making device for super conductive wire
US4321749A (en) Method for producing superconductors
CA1042640A (en) Method for stabilizing a superconductor
Inoue et al. New superconducting Nb3Al MF wire made by Nb/Al Mg composite process
Iijima et al. Effects of additional elements to Nb/sub 3/Al multifilamentary wire fabricated by rapid-heating/quenching process
JPH0211733A (en) Manufacture of nb3 sn superconducting wire by internal diffusing method
JP3753346B2 (en) Aluminum stabilized superconducting wire
JPH04277416A (en) Manufacture of nb3sn superconducting wire
JP4237341B2 (en) Nb3Sn compound superconducting wire and manufacturing method thereof
JP3033593B2 (en) Aluminum stabilized superconducting wire
Iijima et al. Cu-added Nb/sub 3/Al multifilamentary superconductors having high J/sub c/in high fields

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 12