JPH01290730A - High purity oxygen-free copper and its application - Google Patents

High purity oxygen-free copper and its application

Info

Publication number
JPH01290730A
JPH01290730A JP63118875A JP11887588A JPH01290730A JP H01290730 A JPH01290730 A JP H01290730A JP 63118875 A JP63118875 A JP 63118875A JP 11887588 A JP11887588 A JP 11887588A JP H01290730 A JPH01290730 A JP H01290730A
Authority
JP
Japan
Prior art keywords
impurities
oxygen
free copper
high purity
purity oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63118875A
Other languages
Japanese (ja)
Other versions
JP2574390B2 (en
Inventor
Yoichi Takazawa
高沢 洋一
Yoshinori Futamura
二村 芳甫
Shuji Sakai
修二 酒井
Kazuo Sugaya
菅谷 和雄
Yutaka Ouchi
豊 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Eneos Corp
Original Assignee
Hitachi Cable Ltd
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Nippon Mining Co Ltd filed Critical Hitachi Cable Ltd
Priority to JP63118875A priority Critical patent/JP2574390B2/en
Publication of JPH01290730A publication Critical patent/JPH01290730A/en
Application granted granted Critical
Publication of JP2574390B2 publication Critical patent/JP2574390B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Conductive Materials (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain the title copper having low electric resistance and excellent workability at extra low temp. by regulating from impurities, oxygen impurities and other inevitable impurities to the optimum amounts. CONSTITUTION:Iron impurities and oxygen impurities are independently regulat ed to <=1ppm and <=5ppm and the total of other inevitable impurities is regulat ed to <=10ppm to obtain high purity oxygen-free copper having <=2X10<-9>OMEGA.cm electric resistance of <=20K. The high purity oxygen-free copper furthermore has excellent heat conductivity and workability as well as electric resistance at extra low temp. and in the magnetic field. In this way, the high purity oxygen-free copper is suitable as a stabilizing material for a super conductive body used for manufacturing a super conductive magnet.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高純度無酸素銅及びその用途に関し、特に銅被
覆超電導導体の安定化材に適した高純度無酸素銅に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to high-purity oxygen-free copper and its uses, and particularly to high-purity oxygen-free copper suitable as a stabilizing material for copper-coated superconducting conductors.

[従来の技術] 実用化されている超電導線、例えばNb−Tl系やNb
3Sn系等の超電導線は、高純度銅又はアルミニウムと
複合一体化することにより、超電導状体が崩れたときの
線材の焼損を防止している。
[Prior art] Superconducting wires that are in practical use, such as Nb-Tl and Nb
Superconducting wires such as 3Sn-based wires are compositely integrated with high-purity copper or aluminum to prevent the wires from burning out when the superconducting body collapses.

この超電導安定化材は、20に以下の極低温域での電気
抵抗が小さいほど超電導線材の安定性が増すので、極低
温下での電気抵抗ができるたけ小さいことが望ましい。
The stability of the superconducting wire increases as the electrical resistance of this superconducting stabilizing material decreases in the cryogenic region below 20°C, so it is desirable that the electrical resistance in the cryogenic temperature range be as low as possible.

しかし、高純度銅であっても鉄不純物を2〜3pp−以
上含んでいる場合、極低温下での電気抵抗を増大させる
傾向がある。従って、最近では鉄不純物の少ない、より
高純度な銅が要求されるようになってきいる。
However, even if high-purity copper contains iron impurities of 2 to 3 pp- or more, it tends to increase the electrical resistance at extremely low temperatures. Therefore, in recent years, there has been a demand for higher purity copper with less iron impurities.

[発明が解決しようとする問題点1 以上述べた通り、従来の高純度無酸素銅及びその用途に
よれば、2〜3 ppm以上の鉄不純物を含んでいるた
め、極低温下での電気抵抗を増大させるという不都合が
ある。
[Problem to be Solved by the Invention 1] As stated above, conventional high-purity oxygen-free copper and its uses contain iron impurities of 2 to 3 ppm or more, and therefore have low electrical resistance at extremely low temperatures. This has the disadvantage of increasing the

[問題点を解決するための手段] 本発明は上記に鑑みてなされたもので、極低温下での電
気抵抗の増大を抑制するために鉄不純物を1 ppm以
下にし、塑性加工性を向上させるために酸素不純物を5
 ppm以下にし、かつ銀等のその他の不可避的不純物
を合計量で10pI)1m以下にしたものである。
[Means for Solving the Problems] The present invention has been made in view of the above, and in order to suppress the increase in electrical resistance at extremely low temperatures, iron impurities are reduced to 1 ppm or less and plastic workability is improved. Oxygen impurities for 5
ppm or less, and the total amount of other unavoidable impurities such as silver is 10 pI) or less.

即ち、本発明の高純度無酸素銅は以下の構成を備えてい
る。
That is, the high purity oxygen-free copper of the present invention has the following configuration.

(1)  鉄 この不純物はその増加に伴い極低温下での電気抵抗を増
大させる。従って、その量は1 ppm以下に限定され
る。
(1) Iron This impurity increases the electrical resistance at extremely low temperatures. Therefore, its amount is limited to 1 ppm or less.

(2)酸素 この不純物はその増加に伴い、Cu/Nb−Tl等の超
電導線材へ複合化する場合、その塑性加工性を劣化させ
る。従って、その量は5 ppm以下に限定される。
(2) Oxygen As this impurity increases, when it is combined into a superconducting wire such as Cu/Nb-Tl, its plastic workability deteriorates. Therefore, its amount is limited to 5 ppm or less.

(3)その他の不可避的不純物 この場合、銀が主な成分となる。銀は鉄はどではないが
、極低温下での電気抵抗を増大させる。従って、銀を含
むその他の不可避的不純物の量も少いことが望ましく、
10pp■以下に限定される。
(3) Other inevitable impurities In this case, silver is the main component. Although silver is not as strong as iron, it increases electrical resistance at extremely low temperatures. Therefore, it is desirable that the amount of other unavoidable impurities including silver is also small.
Limited to 10 pp■ or less.

これらの不可避的不純物を2 ppm以下にすることは
コスト高につながる恐れがあるので、望ましくは2〜t
oppsの範囲である。
Reducing these unavoidable impurities to 2 ppm or less may lead to higher costs, so it is desirable to reduce the amount to 2 to t.
ops range.

この高純度無酸素銅の用途としては、超電導線用安定化
材、極低湯熱伝導材料等があげられる。
Applications of this high-purity oxygen-free copper include stabilizing materials for superconducting wires, ultra-low-temperature heat-conducting materials, etc.

[作用] 不純物を、鉄1 ppm以下、酸素5 ppm以下、そ
の他10 ppm以下とすることにより、極低温下での
電気抵抗が小さくなり、加工性も優れたものとなる。こ
のため超電導線の安定化材として広く使用できる。
[Function] By controlling the impurities to 1 ppm or less of iron, 5 ppm or less of oxygen, and 10 ppm or less of other substances, the electrical resistance at extremely low temperatures becomes small and the workability becomes excellent. Therefore, it can be widely used as a stabilizing material for superconducting wires.

[実施例] 以下、本発明を実施例により詳細に説明する。[Example] Hereinafter, the present invention will be explained in detail with reference to Examples.

実゛施例 1 鉄不純物が0.05 ppmで、その他銀等の不可避的
不純物の合計が3 ppmの電気銅を用い、全連続溶解
鋳造設備により特に鉄不純物が混入しないように十分注
意しなからφ 275のビレットを鋳造した。
Example 1 Electrolytic copper containing 0.05 ppm of iron impurities and a total of 3 ppm of other unavoidable impurities such as silver was used, and sufficient care was taken to prevent iron impurities from getting mixed in using fully continuous melting and casting equipment. A billet of φ 275 was cast from.

得られたビレットにおける不純物は、鉄0.5 ppm
The impurity in the obtained billet was 0.5 ppm iron.
.

酸素2ppm%その他銀等の不可避的不純物の合計が5
 ppmと少し不純物量が増加していたが、電解銅の高
純度性は失われていなかった。
Oxygen: 2 ppm% Other unavoidable impurities such as silver: 5
Although the amount of impurities increased slightly to ppm, the high purity of electrolytic copper was not lost.

このビレットを熱間押出、中間焼鈍、引抜伸線等の加工
を加えてφ1.0とした。これを更に250’CX 3
 hrs非酸化性雰囲気中で加熱した後、4.2にの液
体ヘリウム中で4端子法により電気抵抗を測定した。そ
の結果、4.2にでの比抵抗(ρ)は1.40X 1O
−9Ω・cmであった。
This billet was subjected to processing such as hot extrusion, intermediate annealing, and wire drawing to obtain a diameter of 1.0. Add this to 250'CX 3
After heating in a non-oxidizing atmosphere, the electrical resistance was measured in liquid helium in step 4.2 using the four-terminal method. As a result, the specific resistance (ρ) at 4.2 is 1.40X 1O
-9Ω·cm.

同様の電気鋼にて鉄2 ppmの無酸素銅試料を作製し
てその比抵抗を測定したところ、。
An oxygen-free copper sample containing 2 ppm of iron was prepared using the same electrical steel, and its specific resistance was measured.

p (at 4.2K) =2.85X10−”ΩI(
Jllであり、本発明材は従来材の約1/2となってお
り、鉄不純物の低減効果の大きいことが判る。
p (at 4.2K) = 2.85X10-”ΩI(
Jll, and the material of the present invention is approximately 1/2 that of the conventional material, which indicates that it has a large effect of reducing iron impurities.

実施例2 実施例1で得られたφ 275のビレットを熱間押出に
より、外径約10On+m、肉厚約20關の鋼管に加工
した後、冷間拡管引抜加工、焼鈍を繰返して外径140
 mm、肉厚10mmの大径鋼管を得た。この鋼管に外
径118mmのNb−46,5vt%Tiの超電導材を
挿入して静水圧押出用ビレットとし、このビレットを押
出、冷間引抜することにより、所謂Cu/ Nb−Tl
複合シングル線とした。このシングル線を上記と同様に
作製した大径銅管内に複数本挿入してマルチ超電導線押
出用ビレットとした。このビレットを押出、冷間引抜、
時効熱処理加工することにより外径1.2+am、銅比
2.0、Nb−Tiフィラメント径が20μm1フイラ
メント数が1200本の超電導線を得た。
Example 2 The billet of φ 275 obtained in Example 1 was processed into a steel pipe with an outer diameter of about 10 On+m and a wall thickness of about 20 mm by hot extrusion, and then cold expansion drawing and annealing were repeated to obtain an outer diameter of 140 mm.
A large diameter steel pipe with a wall thickness of 10 mm and a wall thickness of 10 mm was obtained. A superconducting material of Nb-46, 5vt%Ti with an outer diameter of 118 mm is inserted into this steel pipe to form a billet for hydrostatic extrusion, and this billet is extruded and cold drawn to produce so-called Cu/Nb-Tl.
It was made into a composite single line. A plurality of these single wires were inserted into a large-diameter copper tube produced in the same manner as above to obtain a billet for extruding multi-superconducting wires. This billet is extruded, cold drawn,
A superconducting wire having an outer diameter of 1.2+am, a copper ratio of 2.0, and an Nb-Ti filament diameter of 20 μm and 1200 filaments was obtained by aging heat treatment.

この超電導線を、超電導特性を劣化させないで安定化銅
部が軟化する 250℃X3hrs加熱した後、その超
電導線について極低温下での電気抵抗を測定した。その
結果、得られた超電導線の比抵抗(at 4.2K)は
2.IX 10=Ω’(mであった。一方、鉄不純物を
2 ppm含んだ無酸素鋼を安定化材として適用した超
電導線材のそれは4.3X lo=Ω・cmてあり、本
発明材の有意性は複合材においても変わらなかった。
This superconducting wire was heated at 250° C. for 3 hrs to soften the stabilizing copper portion without deteriorating the superconducting properties, and then the electrical resistance of the superconducting wire at extremely low temperatures was measured. As a result, the specific resistance (at 4.2K) of the obtained superconducting wire was 2. IX 10 = Ω' (m. On the other hand, that of the superconducting wire in which oxygen-free steel containing 2 ppm of iron impurities was applied as a stabilizing material was 4.3X lo = Ω・cm, which indicates that the material of the present invention has a significant The properties did not change even in composite materials.

また、超電導マグネットを想定し、4.2に、  5T
(テスラ)での電気抵抗も1411J定した。その結果
、本発明材は2.IX 10−8Ω” cm、従来材は
2.5×10−8Ω・口で、零磁界中より効果は薄れる
が、2゜5以上小さくなった。
Also, assuming a superconducting magnet, in 4.2, 5T
(Tesla) electrical resistance was also determined to be 1411J. As a result, the present invention material was found to be 2. IX 10-8 Ω" cm, and the conventional material was 2.5 x 10-8 Ω. Although the effect is weaker than in zero magnetic field, it is smaller by more than 2°5.

なお、本発明の超電導線用安定化銅は、所謂ブロンズ法
で作製したNb3Sn線材に適用しても同様の効果が期
待できる。
Note that the same effect can be expected even when the stabilized copper for superconducting wire of the present invention is applied to a Nb3Sn wire produced by the so-called bronze method.

また、Cu/ Nb−Tl m金子芯線に適用する場合
、特にフィラメント径が108m以下になると時効熱処
理時にCuとNb−Ti間の反応が激しくなり、Nb−
Ti中の特にTiがCuを汚染し、本発明の効果が薄れ
る可能性がある。これを防止するためには、シングル線
の断面構造をCu/ Nb/ Nb−Ti SCu/ 
V / Nb−Ti又はCu/ Ta/ Nb−Tl等
とし、Nb、 V又はTaをCuとTi間の反応抑制拡
散バリヤとすることが望ましい。
In addition, when applied to Cu/Nb-Tlm metal core wire, especially when the filament diameter is 108 m or less, the reaction between Cu and Nb-Ti becomes intense during aging heat treatment, and Nb-
Particularly Ti in Ti contaminates Cu, which may reduce the effect of the present invention. In order to prevent this, the cross-sectional structure of the single wire should be changed to Cu/Nb/Nb-Ti SCu/
V/Nb-Ti or Cu/Ta/Nb-Tl, etc., and it is desirable to use Nb, V, or Ta as a reaction-suppressing diffusion barrier between Cu and Ti.

また、本発明の無酸素銅は極低温下での熱伝導度も大き
いので、極低温用伝熱材料としても有効である。
Furthermore, since the oxygen-free copper of the present invention has high thermal conductivity at extremely low temperatures, it is also effective as a heat transfer material for extremely low temperatures.

[発明の効果コ 以上説明した通り、本発明によれば、不純物を減少させ
ることにより極低温下及び磁界中での電気抵抗及び熱伝
導度に優れ、且つ加工性にも優れた超電導線用安定化材
に適した高純度な無酸素銅を提供できる利点がある。
[Effects of the Invention] As explained above, the present invention provides a stable superconducting wire that has excellent electrical resistance and thermal conductivity at extremely low temperatures and in a magnetic field by reducing impurities, and has excellent workability. It has the advantage of providing highly pure oxygen-free copper suitable for chemical processing.

代理人  弁理1  仏 藤 不二雌Agent: Patent attorney 1: Buddha Fujime

Claims (3)

【特許請求の範囲】[Claims] (1)鉄不純物及び酸素不純物が夫々重量で1ppm以
下及び5ppm以下で、かつその他不可避的不純物の合
計が10ppm以下であって、20K以下の電気抵抗が
2×10^−^9Ω・cm以下であることを特徴とする
高純度無酸素銅。
(1) Iron impurities and oxygen impurities are 1 ppm or less and 5 ppm or less by weight, respectively, and the total amount of other unavoidable impurities is 10 ppm or less, and the electrical resistance at 20K or less is 2 x 10^-^9 Ω・cm or less. High purity oxygen-free copper characterized by:
(2)第1項記載の高純度無酸素銅を安定化材として使
用したことを特徴とする超電導導体。
(2) A superconducting conductor characterized in that the high purity oxygen-free copper described in item 1 is used as a stabilizing material.
(3)第2項記載の超電導導体をコイルに使用したこと
を特徴とする超電導マグネット。
(3) A superconducting magnet characterized in that the superconducting conductor described in item 2 is used in a coil.
JP63118875A 1988-05-16 1988-05-16 High-purity oxygen-free copper and its uses Expired - Lifetime JP2574390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63118875A JP2574390B2 (en) 1988-05-16 1988-05-16 High-purity oxygen-free copper and its uses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63118875A JP2574390B2 (en) 1988-05-16 1988-05-16 High-purity oxygen-free copper and its uses

Publications (2)

Publication Number Publication Date
JPH01290730A true JPH01290730A (en) 1989-11-22
JP2574390B2 JP2574390B2 (en) 1997-01-22

Family

ID=14747282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63118875A Expired - Lifetime JP2574390B2 (en) 1988-05-16 1988-05-16 High-purity oxygen-free copper and its uses

Country Status (1)

Country Link
JP (1) JP2574390B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009149990A (en) * 2008-12-24 2009-07-09 Nippon Mining & Metals Co Ltd High-purity shape-memory alloy target and high-purity shape-memory alloy thin-film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139643A (en) * 1980-04-02 1981-10-31 Sumitomo Electric Ind Ltd Copper conductor for use at ultralow temperature and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139643A (en) * 1980-04-02 1981-10-31 Sumitomo Electric Ind Ltd Copper conductor for use at ultralow temperature and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009149990A (en) * 2008-12-24 2009-07-09 Nippon Mining & Metals Co Ltd High-purity shape-memory alloy target and high-purity shape-memory alloy thin-film

Also Published As

Publication number Publication date
JP2574390B2 (en) 1997-01-22

Similar Documents

Publication Publication Date Title
Suenaga et al. Superconducting properties of multifilamentary Nb3Sn made by a new process
US5266416A (en) Aluminum-stabilized superconducting wire
US3910802A (en) Stabilized superconductors
JPH02276111A (en) Compound superconductor and its manufacture
Kumakura Development of high performance MgB2 tapes and wires
JP2002373534A (en) Superconducting wire, its producing method, and superconducting magnet using it
JP2693255B2 (en) Nb (Bottom 3) Method and apparatus for manufacturing Al-based superconducting wire
US4363675A (en) Process for producing compound based superconductor wire
JP4500901B2 (en) Composite sheathed magnesium diboride superconducting wire and its manufacturing method
Koike et al. Fabrication of multifilament Nb3Sn conductors
JPH01290730A (en) High purity oxygen-free copper and its application
JP4033375B2 (en) MgB2-based superconductor and manufacturing method thereof
JP2997121B2 (en) Aluminum stabilized superconducting wire
US3465429A (en) Superconductors
KR100201752B1 (en) Making device for super conductive wire
CA1042640A (en) Method for stabilizing a superconductor
Sharma et al. Superconducting properties of a copper-ternary alloy
JP4237341B2 (en) Nb3Sn compound superconducting wire and manufacturing method thereof
Iijima et al. Effects of additional elements to Nb/sub 3/Al multifilamentary wire fabricated by rapid-heating/quenching process
JPH0251807A (en) Manufacture of nb3al superconducting wire rod with extremely fine multiplex structure
Iijima et al. Cu-added Nb/sub 3/Al multifilamentary superconductors having high J/sub c/in high fields
Inoue et al. New superconducting Nb3Al MF wire made by Nb/Al Mg composite process
JPH01140521A (en) Manufacture of nb3al compound superconductive wire rod
Iijima et al. New Nb3Al-based A15 multifilamentary wires with high Jc in high fields
JPH06283059A (en) Manufacture of nb3al very fine multicore superconductive wire

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 12