JPH01290730A - High purity oxygen-free copper and its application - Google Patents
High purity oxygen-free copper and its applicationInfo
- Publication number
- JPH01290730A JPH01290730A JP63118875A JP11887588A JPH01290730A JP H01290730 A JPH01290730 A JP H01290730A JP 63118875 A JP63118875 A JP 63118875A JP 11887588 A JP11887588 A JP 11887588A JP H01290730 A JPH01290730 A JP H01290730A
- Authority
- JP
- Japan
- Prior art keywords
- impurities
- oxygen
- free copper
- high purity
- purity oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010949 copper Substances 0.000 title claims abstract description 33
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 28
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 25
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 30
- 239000012535 impurity Substances 0.000 claims abstract description 30
- 229910052742 iron Inorganic materials 0.000 claims abstract description 15
- 239000000463 material Substances 0.000 claims abstract description 14
- 230000000087 stabilizing effect Effects 0.000 claims abstract description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000001301 oxygen Substances 0.000 claims abstract description 7
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 7
- 239000004020 conductor Substances 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 229910052709 silver Inorganic materials 0.000 description 6
- 239000004332 silver Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 229910020012 Nb—Ti Inorganic materials 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 230000032683 aging Effects 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000001192 hot extrusion Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 229910000976 Electrical steel Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000012993 chemical processing Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000000886 hydrostatic extrusion Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910000657 niobium-tin Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Conductive Materials (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は高純度無酸素銅及びその用途に関し、特に銅被
覆超電導導体の安定化材に適した高純度無酸素銅に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to high-purity oxygen-free copper and its uses, and particularly to high-purity oxygen-free copper suitable as a stabilizing material for copper-coated superconducting conductors.
[従来の技術]
実用化されている超電導線、例えばNb−Tl系やNb
3Sn系等の超電導線は、高純度銅又はアルミニウムと
複合一体化することにより、超電導状体が崩れたときの
線材の焼損を防止している。[Prior art] Superconducting wires that are in practical use, such as Nb-Tl and Nb
Superconducting wires such as 3Sn-based wires are compositely integrated with high-purity copper or aluminum to prevent the wires from burning out when the superconducting body collapses.
この超電導安定化材は、20に以下の極低温域での電気
抵抗が小さいほど超電導線材の安定性が増すので、極低
温下での電気抵抗ができるたけ小さいことが望ましい。The stability of the superconducting wire increases as the electrical resistance of this superconducting stabilizing material decreases in the cryogenic region below 20°C, so it is desirable that the electrical resistance in the cryogenic temperature range be as low as possible.
しかし、高純度銅であっても鉄不純物を2〜3pp−以
上含んでいる場合、極低温下での電気抵抗を増大させる
傾向がある。従って、最近では鉄不純物の少ない、より
高純度な銅が要求されるようになってきいる。However, even if high-purity copper contains iron impurities of 2 to 3 pp- or more, it tends to increase the electrical resistance at extremely low temperatures. Therefore, in recent years, there has been a demand for higher purity copper with less iron impurities.
[発明が解決しようとする問題点1
以上述べた通り、従来の高純度無酸素銅及びその用途に
よれば、2〜3 ppm以上の鉄不純物を含んでいるた
め、極低温下での電気抵抗を増大させるという不都合が
ある。[Problem to be Solved by the Invention 1] As stated above, conventional high-purity oxygen-free copper and its uses contain iron impurities of 2 to 3 ppm or more, and therefore have low electrical resistance at extremely low temperatures. This has the disadvantage of increasing the
[問題点を解決するための手段]
本発明は上記に鑑みてなされたもので、極低温下での電
気抵抗の増大を抑制するために鉄不純物を1 ppm以
下にし、塑性加工性を向上させるために酸素不純物を5
ppm以下にし、かつ銀等のその他の不可避的不純物
を合計量で10pI)1m以下にしたものである。[Means for Solving the Problems] The present invention has been made in view of the above, and in order to suppress the increase in electrical resistance at extremely low temperatures, iron impurities are reduced to 1 ppm or less and plastic workability is improved. Oxygen impurities for 5
ppm or less, and the total amount of other unavoidable impurities such as silver is 10 pI) or less.
即ち、本発明の高純度無酸素銅は以下の構成を備えてい
る。That is, the high purity oxygen-free copper of the present invention has the following configuration.
(1) 鉄
この不純物はその増加に伴い極低温下での電気抵抗を増
大させる。従って、その量は1 ppm以下に限定され
る。(1) Iron This impurity increases the electrical resistance at extremely low temperatures. Therefore, its amount is limited to 1 ppm or less.
(2)酸素
この不純物はその増加に伴い、Cu/Nb−Tl等の超
電導線材へ複合化する場合、その塑性加工性を劣化させ
る。従って、その量は5 ppm以下に限定される。(2) Oxygen As this impurity increases, when it is combined into a superconducting wire such as Cu/Nb-Tl, its plastic workability deteriorates. Therefore, its amount is limited to 5 ppm or less.
(3)その他の不可避的不純物
この場合、銀が主な成分となる。銀は鉄はどではないが
、極低温下での電気抵抗を増大させる。従って、銀を含
むその他の不可避的不純物の量も少いことが望ましく、
10pp■以下に限定される。(3) Other inevitable impurities In this case, silver is the main component. Although silver is not as strong as iron, it increases electrical resistance at extremely low temperatures. Therefore, it is desirable that the amount of other unavoidable impurities including silver is also small.
Limited to 10 pp■ or less.
これらの不可避的不純物を2 ppm以下にすることは
コスト高につながる恐れがあるので、望ましくは2〜t
oppsの範囲である。Reducing these unavoidable impurities to 2 ppm or less may lead to higher costs, so it is desirable to reduce the amount to 2 to t.
ops range.
この高純度無酸素銅の用途としては、超電導線用安定化
材、極低湯熱伝導材料等があげられる。Applications of this high-purity oxygen-free copper include stabilizing materials for superconducting wires, ultra-low-temperature heat-conducting materials, etc.
[作用]
不純物を、鉄1 ppm以下、酸素5 ppm以下、そ
の他10 ppm以下とすることにより、極低温下での
電気抵抗が小さくなり、加工性も優れたものとなる。こ
のため超電導線の安定化材として広く使用できる。[Function] By controlling the impurities to 1 ppm or less of iron, 5 ppm or less of oxygen, and 10 ppm or less of other substances, the electrical resistance at extremely low temperatures becomes small and the workability becomes excellent. Therefore, it can be widely used as a stabilizing material for superconducting wires.
[実施例] 以下、本発明を実施例により詳細に説明する。[Example] Hereinafter, the present invention will be explained in detail with reference to Examples.
実゛施例 1
鉄不純物が0.05 ppmで、その他銀等の不可避的
不純物の合計が3 ppmの電気銅を用い、全連続溶解
鋳造設備により特に鉄不純物が混入しないように十分注
意しなからφ 275のビレットを鋳造した。Example 1 Electrolytic copper containing 0.05 ppm of iron impurities and a total of 3 ppm of other unavoidable impurities such as silver was used, and sufficient care was taken to prevent iron impurities from getting mixed in using fully continuous melting and casting equipment. A billet of φ 275 was cast from.
得られたビレットにおける不純物は、鉄0.5 ppm
。The impurity in the obtained billet was 0.5 ppm iron.
.
酸素2ppm%その他銀等の不可避的不純物の合計が5
ppmと少し不純物量が増加していたが、電解銅の高
純度性は失われていなかった。Oxygen: 2 ppm% Other unavoidable impurities such as silver: 5
Although the amount of impurities increased slightly to ppm, the high purity of electrolytic copper was not lost.
このビレットを熱間押出、中間焼鈍、引抜伸線等の加工
を加えてφ1.0とした。これを更に250’CX 3
hrs非酸化性雰囲気中で加熱した後、4.2にの液
体ヘリウム中で4端子法により電気抵抗を測定した。そ
の結果、4.2にでの比抵抗(ρ)は1.40X 1O
−9Ω・cmであった。This billet was subjected to processing such as hot extrusion, intermediate annealing, and wire drawing to obtain a diameter of 1.0. Add this to 250'CX 3
After heating in a non-oxidizing atmosphere, the electrical resistance was measured in liquid helium in step 4.2 using the four-terminal method. As a result, the specific resistance (ρ) at 4.2 is 1.40X 1O
-9Ω·cm.
同様の電気鋼にて鉄2 ppmの無酸素銅試料を作製し
てその比抵抗を測定したところ、。An oxygen-free copper sample containing 2 ppm of iron was prepared using the same electrical steel, and its specific resistance was measured.
p (at 4.2K) =2.85X10−”ΩI(
Jllであり、本発明材は従来材の約1/2となってお
り、鉄不純物の低減効果の大きいことが判る。p (at 4.2K) = 2.85X10-”ΩI(
Jll, and the material of the present invention is approximately 1/2 that of the conventional material, which indicates that it has a large effect of reducing iron impurities.
実施例2
実施例1で得られたφ 275のビレットを熱間押出に
より、外径約10On+m、肉厚約20關の鋼管に加工
した後、冷間拡管引抜加工、焼鈍を繰返して外径140
mm、肉厚10mmの大径鋼管を得た。この鋼管に外
径118mmのNb−46,5vt%Tiの超電導材を
挿入して静水圧押出用ビレットとし、このビレットを押
出、冷間引抜することにより、所謂Cu/ Nb−Tl
複合シングル線とした。このシングル線を上記と同様に
作製した大径銅管内に複数本挿入してマルチ超電導線押
出用ビレットとした。このビレットを押出、冷間引抜、
時効熱処理加工することにより外径1.2+am、銅比
2.0、Nb−Tiフィラメント径が20μm1フイラ
メント数が1200本の超電導線を得た。Example 2 The billet of φ 275 obtained in Example 1 was processed into a steel pipe with an outer diameter of about 10 On+m and a wall thickness of about 20 mm by hot extrusion, and then cold expansion drawing and annealing were repeated to obtain an outer diameter of 140 mm.
A large diameter steel pipe with a wall thickness of 10 mm and a wall thickness of 10 mm was obtained. A superconducting material of Nb-46, 5vt%Ti with an outer diameter of 118 mm is inserted into this steel pipe to form a billet for hydrostatic extrusion, and this billet is extruded and cold drawn to produce so-called Cu/Nb-Tl.
It was made into a composite single line. A plurality of these single wires were inserted into a large-diameter copper tube produced in the same manner as above to obtain a billet for extruding multi-superconducting wires. This billet is extruded, cold drawn,
A superconducting wire having an outer diameter of 1.2+am, a copper ratio of 2.0, and an Nb-Ti filament diameter of 20 μm and 1200 filaments was obtained by aging heat treatment.
この超電導線を、超電導特性を劣化させないで安定化銅
部が軟化する 250℃X3hrs加熱した後、その超
電導線について極低温下での電気抵抗を測定した。その
結果、得られた超電導線の比抵抗(at 4.2K)は
2.IX 10=Ω’(mであった。一方、鉄不純物を
2 ppm含んだ無酸素鋼を安定化材として適用した超
電導線材のそれは4.3X lo=Ω・cmてあり、本
発明材の有意性は複合材においても変わらなかった。This superconducting wire was heated at 250° C. for 3 hrs to soften the stabilizing copper portion without deteriorating the superconducting properties, and then the electrical resistance of the superconducting wire at extremely low temperatures was measured. As a result, the specific resistance (at 4.2K) of the obtained superconducting wire was 2. IX 10 = Ω' (m. On the other hand, that of the superconducting wire in which oxygen-free steel containing 2 ppm of iron impurities was applied as a stabilizing material was 4.3X lo = Ω・cm, which indicates that the material of the present invention has a significant The properties did not change even in composite materials.
また、超電導マグネットを想定し、4.2に、 5T
(テスラ)での電気抵抗も1411J定した。その結果
、本発明材は2.IX 10−8Ω” cm、従来材は
2.5×10−8Ω・口で、零磁界中より効果は薄れる
が、2゜5以上小さくなった。Also, assuming a superconducting magnet, in 4.2, 5T
(Tesla) electrical resistance was also determined to be 1411J. As a result, the present invention material was found to be 2. IX 10-8 Ω" cm, and the conventional material was 2.5 x 10-8 Ω. Although the effect is weaker than in zero magnetic field, it is smaller by more than 2°5.
なお、本発明の超電導線用安定化銅は、所謂ブロンズ法
で作製したNb3Sn線材に適用しても同様の効果が期
待できる。Note that the same effect can be expected even when the stabilized copper for superconducting wire of the present invention is applied to a Nb3Sn wire produced by the so-called bronze method.
また、Cu/ Nb−Tl m金子芯線に適用する場合
、特にフィラメント径が108m以下になると時効熱処
理時にCuとNb−Ti間の反応が激しくなり、Nb−
Ti中の特にTiがCuを汚染し、本発明の効果が薄れ
る可能性がある。これを防止するためには、シングル線
の断面構造をCu/ Nb/ Nb−Ti SCu/
V / Nb−Ti又はCu/ Ta/ Nb−Tl等
とし、Nb、 V又はTaをCuとTi間の反応抑制拡
散バリヤとすることが望ましい。In addition, when applied to Cu/Nb-Tlm metal core wire, especially when the filament diameter is 108 m or less, the reaction between Cu and Nb-Ti becomes intense during aging heat treatment, and Nb-
Particularly Ti in Ti contaminates Cu, which may reduce the effect of the present invention. In order to prevent this, the cross-sectional structure of the single wire should be changed to Cu/Nb/Nb-Ti SCu/
V/Nb-Ti or Cu/Ta/Nb-Tl, etc., and it is desirable to use Nb, V, or Ta as a reaction-suppressing diffusion barrier between Cu and Ti.
また、本発明の無酸素銅は極低温下での熱伝導度も大き
いので、極低温用伝熱材料としても有効である。Furthermore, since the oxygen-free copper of the present invention has high thermal conductivity at extremely low temperatures, it is also effective as a heat transfer material for extremely low temperatures.
[発明の効果コ
以上説明した通り、本発明によれば、不純物を減少させ
ることにより極低温下及び磁界中での電気抵抗及び熱伝
導度に優れ、且つ加工性にも優れた超電導線用安定化材
に適した高純度な無酸素銅を提供できる利点がある。[Effects of the Invention] As explained above, the present invention provides a stable superconducting wire that has excellent electrical resistance and thermal conductivity at extremely low temperatures and in a magnetic field by reducing impurities, and has excellent workability. It has the advantage of providing highly pure oxygen-free copper suitable for chemical processing.
代理人 弁理1 仏 藤 不二雌Agent: Patent attorney 1: Buddha Fujime
Claims (3)
下及び5ppm以下で、かつその他不可避的不純物の合
計が10ppm以下であって、20K以下の電気抵抗が
2×10^−^9Ω・cm以下であることを特徴とする
高純度無酸素銅。(1) Iron impurities and oxygen impurities are 1 ppm or less and 5 ppm or less by weight, respectively, and the total amount of other unavoidable impurities is 10 ppm or less, and the electrical resistance at 20K or less is 2 x 10^-^9 Ω・cm or less. High purity oxygen-free copper characterized by:
用したことを特徴とする超電導導体。(2) A superconducting conductor characterized in that the high purity oxygen-free copper described in item 1 is used as a stabilizing material.
を特徴とする超電導マグネット。(3) A superconducting magnet characterized in that the superconducting conductor described in item 2 is used in a coil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63118875A JP2574390B2 (en) | 1988-05-16 | 1988-05-16 | High-purity oxygen-free copper and its uses |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63118875A JP2574390B2 (en) | 1988-05-16 | 1988-05-16 | High-purity oxygen-free copper and its uses |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01290730A true JPH01290730A (en) | 1989-11-22 |
JP2574390B2 JP2574390B2 (en) | 1997-01-22 |
Family
ID=14747282
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63118875A Expired - Lifetime JP2574390B2 (en) | 1988-05-16 | 1988-05-16 | High-purity oxygen-free copper and its uses |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2574390B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009149990A (en) * | 2008-12-24 | 2009-07-09 | Nippon Mining & Metals Co Ltd | High-purity shape-memory alloy target and high-purity shape-memory alloy thin-film |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56139643A (en) * | 1980-04-02 | 1981-10-31 | Sumitomo Electric Ind Ltd | Copper conductor for use at ultralow temperature and its manufacture |
-
1988
- 1988-05-16 JP JP63118875A patent/JP2574390B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56139643A (en) * | 1980-04-02 | 1981-10-31 | Sumitomo Electric Ind Ltd | Copper conductor for use at ultralow temperature and its manufacture |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009149990A (en) * | 2008-12-24 | 2009-07-09 | Nippon Mining & Metals Co Ltd | High-purity shape-memory alloy target and high-purity shape-memory alloy thin-film |
Also Published As
Publication number | Publication date |
---|---|
JP2574390B2 (en) | 1997-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Suenaga et al. | Superconducting properties of multifilamentary Nb3Sn made by a new process | |
US5266416A (en) | Aluminum-stabilized superconducting wire | |
US3910802A (en) | Stabilized superconductors | |
JPH02276111A (en) | Compound superconductor and its manufacture | |
Kumakura | Development of high performance MgB2 tapes and wires | |
JP2002373534A (en) | Superconducting wire, its producing method, and superconducting magnet using it | |
JP2693255B2 (en) | Nb (Bottom 3) Method and apparatus for manufacturing Al-based superconducting wire | |
US4363675A (en) | Process for producing compound based superconductor wire | |
JP4500901B2 (en) | Composite sheathed magnesium diboride superconducting wire and its manufacturing method | |
Koike et al. | Fabrication of multifilament Nb3Sn conductors | |
JPH01290730A (en) | High purity oxygen-free copper and its application | |
JP4033375B2 (en) | MgB2-based superconductor and manufacturing method thereof | |
JP2997121B2 (en) | Aluminum stabilized superconducting wire | |
US3465429A (en) | Superconductors | |
KR100201752B1 (en) | Making device for super conductive wire | |
CA1042640A (en) | Method for stabilizing a superconductor | |
Sharma et al. | Superconducting properties of a copper-ternary alloy | |
JP4237341B2 (en) | Nb3Sn compound superconducting wire and manufacturing method thereof | |
Iijima et al. | Effects of additional elements to Nb/sub 3/Al multifilamentary wire fabricated by rapid-heating/quenching process | |
JPH0251807A (en) | Manufacture of nb3al superconducting wire rod with extremely fine multiplex structure | |
Iijima et al. | Cu-added Nb/sub 3/Al multifilamentary superconductors having high J/sub c/in high fields | |
Inoue et al. | New superconducting Nb3Al MF wire made by Nb/Al Mg composite process | |
JPH01140521A (en) | Manufacture of nb3al compound superconductive wire rod | |
Iijima et al. | New Nb3Al-based A15 multifilamentary wires with high Jc in high fields | |
JPH06283059A (en) | Manufacture of nb3al very fine multicore superconductive wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081024 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081024 Year of fee payment: 12 |