JP3033593B2 - Aluminum stabilized superconducting wire - Google Patents
Aluminum stabilized superconducting wireInfo
- Publication number
- JP3033593B2 JP3033593B2 JP2094644A JP9464490A JP3033593B2 JP 3033593 B2 JP3033593 B2 JP 3033593B2 JP 2094644 A JP2094644 A JP 2094644A JP 9464490 A JP9464490 A JP 9464490A JP 3033593 B2 JP3033593 B2 JP 3033593B2
- Authority
- JP
- Japan
- Prior art keywords
- superconducting wire
- core
- alloy
- aluminum
- stabilized superconducting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱的電気的伝導性並びに強度に優れ、マグ
ネット用導体等に適したA安定化超電導線に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an A-stabilized superconducting wire which is excellent in thermal electric conductivity and strength and is suitable for a conductor for magnets and the like.
従来よりマグネット用導体等には、Cu又はCu合金マト
リックス中にNb−Ti合金線等の超電導芯材を所望数埋込
んで複合した単芯又は多芯超電導線が用いられている
が、この単芯又は多芯超電導線の外周に残留抵抗比(30
0Kと10Kにおける電気抵抗比)がCuより遥かに大きい高
純度Aを安定化材として被覆して、極低温における熱
的電気的伝導性を高めて安定剤を改善し、或いは超電導
線の軽量比並びに小断面化を計る試みがなされている。Conventionally, a single-core or multi-core superconducting wire in which a desired number of superconducting core materials such as Nb-Ti alloy wires are embedded in a Cu or Cu alloy matrix and compounded has been used as a conductor for magnets. Residual resistance ratio (30
High-purity A, whose electrical resistance ratio at 0K and 10K is much higher than Cu, is used as a stabilizing material to improve the thermal and electrical conductivity at cryogenic temperatures to improve the stabilizer, or to reduce the superconducting wire's weight ratio. Attempts have been made to reduce the cross section.
しかしながら高純度Aは、強度が低い為に使用中に
超電導々体が電磁力によって変形してしまう恐れがあ
り、実用化が思うにまかせぬ状況にあった。However, the high-purity A has a low strength, so that the superconductor may be deformed by the electromagnetic force during use.
本発明はかゝる状況に鑑み鋭意研究を行った結果なさ
れたもので、その目的とするところは、超電導線の外周
に被覆するA材に、極低温における電気抵抗が高純度
Cuより低く、且つマグネット等に発生する電磁力に十分
耐える強度を有するA合金を安定化材として用いたA
安定化超電導線を提供することにある。The present invention has been made as a result of intensive research in view of such a situation, and the purpose of the present invention is to provide a material A covering the outer periphery of a superconducting wire with a high-purity electrical resistance at cryogenic temperatures.
A alloy using A alloy which is lower than Cu and has sufficient strength to withstand the electromagnetic force generated in magnets etc.
It is to provide a stabilized superconducting wire.
即ち本発明は、銅又は銅合金マトリックス中に超電導
芯材を埋め込んだ単芯又は多芯超電導線の外周に安定化
材としてアルミ材を被覆してなるアルミ安定化超電導線
であって、上記アルミ安定化超電導線のアルミ安定化材
が、極低温における0.2%耐力が3kg/mm2以上、残留抵抗
比(300Kと10Kにおける電気抵抗比)が700以上であり、
且つZnを30〜500ppm含有し、残部がAからなるA−
Zn合金、又はSiを20〜40ppm含有し、残部がAからな
るA−Si合金のいずれかの合金であることを特徴とす
るものである。That is, the present invention is an aluminum-stabilized superconducting wire obtained by coating an outer periphery of a single-core or multi-core superconducting wire in which a superconducting core material is embedded in a copper or copper alloy matrix with an aluminum material as a stabilizing material, The aluminum stabilizing material of the stabilized superconducting wire has a 0.2% proof stress at extremely low temperatures of 3 kg / mm 2 or more and a residual resistance ratio (electric resistance ratio at 300K and 10K) of 700 or more.
A- containing 30 to 500 ppm of Zn, with the balance being A
It is a Zn alloy or an A-Si alloy containing 20 to 40 ppm of Si and the balance being A.
本発明においてA材を被覆する単芯及び多芯超電導
線の製造は次のようにしてなされる。In the present invention, the production of the single-core and multi-core superconducting wires coated with the material A is performed as follows.
即ち、単芯超電導線は、例えばCu製中空体にNb−Tiの
芯材を1本装入し、これを複合押出しにより一体化し、
次いで圧延、伸線等の伸延加工を施して製造される。That is, a single-core superconducting wire is, for example, one core material of Nb-Ti is charged into a hollow body made of Cu, and this is integrated by composite extrusion,
Next, it is manufactured by subjecting it to elongation such as rolling and drawing.
又多芯超電導線は、上記の単芯超電導線をCu製中空体
に複数本充填して前述と同じ複合押出し及び伸延加工を
施して製造される。この充填及び伸延加工の工程を繰返
すことにより、より多数本の超電導芯材を複合した多芯
超電導線が製造される。The multi-core superconducting wire is manufactured by filling a plurality of the single-core superconducting wires into a hollow body made of Cu and subjecting them to the same composite extrusion and elongation as described above. By repeating the steps of filling and elongation, a multi-core superconducting wire in which a larger number of superconducting core materials are combined is manufactured.
而してA安定化超電導線は、上記の如くして製造し
た単芯又は多芯超電導線の外周にA材を複合一体化加
工により複合し、更にこれを伸延加工して製造される。Thus, the A-stabilized superconducting wire is manufactured by compounding the material A on the outer periphery of the single-core or multi-core superconducting wire manufactured as described above by complex integration processing, and further elongating this.
上記において、複合一体化加工には押出法が、又伸延
加工には圧延又は引抜加工が適用されるが、引抜加工に
あっては断面方向の加工が均一になされる強制潤滑伸線
法が特に適している。In the above, the extrusion method is applied to the composite integrated processing, and the rolling or drawing processing is applied to the elongation processing. In the drawing processing, the forced lubrication drawing method in which the processing in the cross-sectional direction is uniformly performed is particularly used. Are suitable.
本発明において、単芯又は多芯超電導線に被覆するA
安定化材の0.2%耐力を3kg/mm2以上に、又残留抵抗比
(以下RRRと称す)を700以上に限定した理由は、アルミ
安定化超電導線の強度をマグネット使用時の電磁力に耐
え得る強度となし、且つ極低温における熱的電気的性質
を従来材を上回る値となす為である。In the present invention, a single-core or multi-core superconducting wire is coated with A
The reason for limiting the 0.2% proof stress of the stabilizing material to 3 kg / mm 2 or more and the residual resistance ratio (RRR) to 700 or more is that the strength of the aluminum stabilized superconducting wire withstands the electromagnetic force when a magnet is used. This is because the strength is not obtained and the thermal and electrical properties at cryogenic temperatures are higher than those of the conventional material.
而して上記限定値を満足する合金としては、A−30
〜50ppmZn合金、又はA−20〜40ppmSi合金が用いられ
る。Thus, alloys satisfying the above-mentioned limits include A-30
-50 ppm Zn alloy or A-20-40 ppm Si alloy is used.
本発明のA安定化超電導線は、A安定化材に極低
温における0.2%耐力が3kg/mm2以上のA合金を用いる
ので、マグネット用導体として強度的に従来の高純度Cu
と代替可能なものであり、且つ超電導線の熱的電気的安
定性を示すRRRが700以上で、高純度Cuの120より大幅に
高く、極低温での電気抵抗は高純度Cuの1/3以下とな
り、使用中の電気的安定性が向上する。又電気抵抗が減
少した分安定化材の断面を小さくとれ、その結果マグネ
ットに使用した場合等マグネットを小型、軽量化するこ
とができる。Since the A-stabilized superconducting wire of the present invention uses an A-alloy having a 0.2% proof stress of 3 kg / mm 2 or more at an extremely low temperature as an A-stabilizing material, the conventional high-purity Cu is used as a magnet conductor in terms of strength.
RRR indicating the thermal and electrical stability of the superconducting wire is 700 or more, significantly higher than 120 of high-purity Cu, and the electric resistance at cryogenic temperature is 1/3 of that of high-purity Cu. As a result, the electrical stability during use is improved. In addition, the cross section of the stabilizing material can be reduced by an amount corresponding to the reduced electric resistance, and as a result, the magnet can be reduced in size and weight when used as a magnet.
以下に本発明を実施例により詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to Examples.
実施例1 Ti50%、残部NbからなるNb−Ti合金と無酸素銅とを押
出しにより一体化し、次いで伸延加工により銅マトリッ
クス中に、1200芯のNbTiフィラメントが埋め込まれた極
細多芯Nb−Ti超電導線を作製し、次いでこれを2.0mmφ
まで加工したのち、99.9993%純度のAにZnを微量含
有せしめたA合金を押出法により押出被覆して6mmφ
の超電導素材となし、次にこの素材を強制潤滑伸線法に
より伸線して希薄A−Zn合金が被覆された2.3mmφの
A安定化超電導線材を製造した。上記においてA合
金中のZn含有量は30〜50ppmの範囲で種々に変化させ
た。Example 1 An Nb-Ti alloy consisting of 50% of Ti and the balance of Nb and oxygen-free copper were integrated by extrusion, and then extra-fine multi-core Nb-Ti superconductor in which 1200-core NbTi filaments were embedded in a copper matrix by elongation. Make a wire and then
After processing to an alloy of 99.9993% purity, A alloy containing a trace amount of Zn is extruded by extrusion and coated with 6mmφ.
Then, this material was drawn by a forced lubrication drawing method to produce a 2.3 mmφ A-stabilized superconducting wire coated with a dilute A-Zn alloy. In the above, the Zn content in the alloy A was variously changed in the range of 30 to 50 ppm.
実施例2 実施例1において、A合金にA−Si合金を用い、
その含有量を20〜40ppmの範囲で種々に変化させた他は
実施例1と同じ方法によりA安定化超電導線を製造し
た。Example 2 In Example 1, an A-Si alloy was used for the A alloy,
An A-stabilized superconducting wire was manufactured in the same manner as in Example 1 except that its content was varied in the range of 20 to 40 ppm.
比較例1 実施例1において、A−Zn合金のZnの含有量を30pp
m未満又は50ppmを超える量とした他は実施例1と同じ方
法によりA安定化超電導線を製造した。Comparative Example 1 In Example 1, the content of Zn in the A-Zn alloy was 30 pp.
An A-stabilized superconducting wire was manufactured in the same manner as in Example 1, except that the amount was less than 50 m or more than 50 ppm.
比較例2 実施例2において、A−Si合金のSiの含有量を20pp
m未満又は40ppmを超える量とした他は実施例2と同じ方
法によりA安定化超電導線を製造した。Comparative Example 2 In Example 2, the content of Si in the A-Si alloy was set to 20 pp.
An A-stabilized superconducting wire was produced in the same manner as in Example 2 except that the amount was less than 40 m or more than 40 ppm.
比較例3 実施例1において、A−Zn合金に代えて99.9993%
の高純度Aを用いた他は、実施例1と同じ方法により
A安定化超電導線を製造した。Comparative Example 3 In Example 1, 99.9993% was used instead of the A-Zn alloy.
A-stabilized superconducting wire was manufactured in the same manner as in Example 1 except that high-purity A was used.
比較例4 比較例3において、高純度Aに代えて99.9998%純
度の高純度Cuを用いた他は比較例3と同じ方法によりCu
安定化超電導線を製造した。Comparative Example 4 In Comparative Example 3, Cu was used in the same manner as in Comparative Example 3 except that high-purity Cu having 99.9998% purity was used instead of high-purity A.
A stabilized superconducting wire was manufactured.
斯くのごとくして得られた各々のA安定化超電導線
について、液体He中(4.2K)にて5Tの磁場をかけた状態
で電流を徐々に増加させて通電し、抵抗が10-11Ωcmに
達した時の臨界電流値(IC)を長さ1mの短尺材について
測定した。又各々のA安定化超電導線のA安定化材
について、4.2Kにおける0.2%耐力及びRRRを測定した。With respect to each A-stabilized superconducting wire thus obtained, a current was gradually increased in a liquid He (4.2 K) while applying a magnetic field of 5 T, and the resistance was 10 −11 Ωcm. The critical current value (I C ) at the time when the temperature reached was measured for a short material having a length of 1 m. The A-stabilizing material of each A-stabilized superconducting wire was measured for 0.2% proof stress and RRR at 4.2K.
又上記超電導線を用いて、内径20mm、外径50mmのマグ
ネットを作製し、クエンチ電流及び最大発生磁界を測定
した。尚、このマグネットは580A通電した時に5Tの磁界
を発生する設計となっている。結果は第1表に示した。Also, a magnet having an inner diameter of 20 mm and an outer diameter of 50 mm was prepared using the superconducting wire, and the quench current and the maximum generated magnetic field were measured. This magnet is designed to generate a 5T magnetic field when 580 A is energized. The results are shown in Table 1.
第1表より明らかなように、本発明品は短尺材のICが
従来材(比較例4)と同等であるが、これをマグネット
に巻いた時のマグネット特性は従来材を上回るものとな
った。 As is clear from Table 1, the product of the present invention is I C of the short member is equivalent to the conventional material (Comparative Example 4), which magnet properties when wound magnets become a greater than conventional material Was.
これはA安定化材の極低温における0.2%耐力が所
定値(3kgf/mm2)以上で電磁力により導体が変形したり
せず、又RRRが極めて高く電気的安定性に優れる為であ
る。This is because when the 0.2% proof stress of the A stabilizing material at a very low temperature is not less than a predetermined value (3 kgf / mm 2 ), the conductor is not deformed by electromagnetic force, and the RRR is extremely high and the electrical stability is excellent.
これに対し比較例1〜3は、A安定化材の0.2%耐
力又はRRRが本発明の限定値を下回る為、短尺材のICは
従来材(比較例4)と同等であるが、マグネット特性が
従来材より劣るものとなり、マグネットの設計値をクリ
ヤーすることができなかった。In contrast Comparative Examples 1 to 3, since the 0.2% proof stress or RRR of A stabilizing material is below the limit value of the present invention, although I C of the short member is equivalent conventional materials (Comparative Example 4), a magnet The characteristics were inferior to those of conventional materials, and the design values of the magnet could not be cleared.
以上述べたように本発明のA安定化超電導線は、強
度及び熱的電気的性質が優れる為、例えばこれをマグネ
ット用導体に用いた場合、高いマグネット特性が得ら
れ、工業上顕著な効果を奏する。As described above, the A-stabilized superconducting wire of the present invention has excellent strength and thermoelectric properties. For example, when this is used for a magnet conductor, high magnet properties are obtained, and industrially remarkable effects are obtained. Play.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01B 12/00 - 13/00 565 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) H01B 12/00-13/00 565
Claims (1)
を埋め込んだ単芯又は多芯超電導線の外周に安定化材と
してアルミ材を被覆してなるアルミ安定化超電導線であ
って、上記アルミ安定化超電導線のアルミ安定化材が、
極低温における0.2%耐力が3kg/mm2以上、残留抵抗比
(300Kと10Kにおける電気抵抗比)が700以上であり、且
つZnを30〜50ppm含有し、残部がAからなるA−Zn
合金、又はSiを20〜40ppm含有し、残部がAからなる
A−Si合金のいずれかの合金であることを特徴とする
アルミ安定化超電導線。An aluminum-stabilized superconducting wire comprising a single-core or multi-core superconducting wire in which a superconducting core material is embedded in a copper or copper alloy matrix and an outer periphery of which is coated with an aluminum material as a stabilizing material. Aluminum stabilizing material of stabilized superconducting wire,
A-Zn with a 0.2% proof stress at cryogenic temperatures of 3 kg / mm 2 or more, a residual resistance ratio (electric resistance ratio at 300K and 10K) of 700 or more, containing 30 to 50 ppm of Zn, and the balance of A
An aluminum-stabilized superconducting wire comprising an alloy or an A-Si alloy containing 20 to 40 ppm of Si and the balance being A.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2094644A JP3033593B2 (en) | 1990-04-10 | 1990-04-10 | Aluminum stabilized superconducting wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2094644A JP3033593B2 (en) | 1990-04-10 | 1990-04-10 | Aluminum stabilized superconducting wire |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03291809A JPH03291809A (en) | 1991-12-24 |
JP3033593B2 true JP3033593B2 (en) | 2000-04-17 |
Family
ID=14115972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2094644A Expired - Lifetime JP3033593B2 (en) | 1990-04-10 | 1990-04-10 | Aluminum stabilized superconducting wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3033593B2 (en) |
-
1990
- 1990-04-10 JP JP2094644A patent/JP3033593B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH03291809A (en) | 1991-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2838091B1 (en) | Compound superconductive wire and method for manufacturing the same | |
EP0500101B1 (en) | Aluminum-stabilized superconducting wire | |
US4363675A (en) | Process for producing compound based superconductor wire | |
JP3033593B2 (en) | Aluminum stabilized superconducting wire | |
JP2997121B2 (en) | Aluminum stabilized superconducting wire | |
Koike et al. | Fabrication of multifilament Nb3Sn conductors | |
US4094059A (en) | Method for producing composite superconductors | |
GB1030975A (en) | Superconductor wires and cables | |
US4860431A (en) | Fabrication of multifilament intermetallic superconductor using strengthened tin | |
JP2876667B2 (en) | Aluminum stabilized superconducting wire | |
JP3753346B2 (en) | Aluminum stabilized superconducting wire | |
US4215465A (en) | Method of making V3 Ga superconductors | |
JP2574390B2 (en) | High-purity oxygen-free copper and its uses | |
JP2005141968A (en) | Compound superconducting wire material and its manufacturing method | |
JPH10321060A (en) | Alminum-stabilized superconducting wire | |
JPH11111081A (en) | Oxide superconducting wire | |
JPH04277416A (en) | Manufacture of nb3sn superconducting wire | |
JP3489293B2 (en) | NbTi superconducting stranded wire | |
JP3428771B2 (en) | Nb3Sn compound superconducting wire | |
JP3367316B2 (en) | Ultra-fine multi-core Nb-Ti superconducting wire | |
JPH05182536A (en) | Superconductor and stabilizing member used therein | |
JP3212596B2 (en) | Cu or Al stabilized superconducting wire and method for producing the same | |
JPS6034762B2 (en) | Multicore superconducting cable | |
JP3042094B2 (en) | Stabilizing material for superconducting conductor and superconducting conductor using the same | |
JPS625990B2 (en) |